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	 Heliograph imaging is the process of reconstructing a solar image from sparse 
frequency domain data, and the compressed sensing (CS) algorithm has shown potential 
to accurately recover images from highly undersampled data.  However, CS is sensitive 
to noise and often suffers from undesired convolutive artifacts.  In this paper, we present 
an improved CS algorithm with mean shift regularization, which helps to suppress the 
convolutive artifacts and reconstruct the solar fine structures.  A set of experiments have 
been conducted using both synthetic and real images.  The results demonstrate that our 
proposed algorithm has much smaller reconstruction errors than those of other methods.

1.	 Introduction

	 A heliograph is a large-scale antenna array that can provide radio solar images with 
high-spatial, high-temporal and high-frequency resolution.  The arrays directly probe 
the Fourier plane associated with the image tangent to the celestial sphere at the solar 
position and generate visibilities.  Visibility coverage in the Fourier plane is incomplete 
as the number of antennas is finite.  Consequently, recovering a solar image from 
measured visibilities requires solving an ill-posed deconvolution problem.
	 So far, various image reconstruction methods have been proposed to deal with these 
missing data.  For example, linear methods set missing data as zero and then obtain 
the solar image, also called solar brightness distribution, through the inverse Fourier 
transform.  These simple methods are generally used to acquire the initial solution for the 
nonlinear methods.  The nonlinear methods extrapolate these missing data based on some 
physical facts (such as the brightness distribution of “positive”) and statistical properties 
to obtain the “best” estimate of the solar brightness distribution.  These nonlinear 
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methods can be divided into two categories: the CLEAN algorithm that is based on 
iterative least-squares optimization and the maximum entropy method (MEM).(1,2)  Variations 
and further developments of these two methods have been subsequently proposed by 
researchers.(3,4)  Recently, compressed sensing (CS) has achieved great success in image 
reconstruction.(5,6)  Wiaux et al. first introduced CS to aperture synthesis imaging.(7)  
Since then, several papers on radio image reconstruction using CS methods have been 
published.(8–10)

	 Despite the high effectiveness in image reconstruction, CS-based algorithms often 
suffer from undesired convolutive artifacts and tend to oversmooth image details.  
Consequently, the algorithm fails to recover the solar fine structures when used in 
heliograph imaging.  To overcome the drawback, an improved CS-based heliograph 
imaging algorithm is proposed in this paper.  Besides the total variation constraint, the 
newly designed algorithm introduces a mean shift constraint to regularize the ill-posed 
problem.  Minimizing total variation (TV) ensures the sparsity in the gradient domain, 
while the mean shift constraint enforces the directional continuity in the image gradient 
domain.  Hence, the new alogrithm shows good performance in recovering the solar fine 
structures when used in heliograph imaging.
	 Our key contributions are the introduction of the CS algorithm to heliograph imaging 
and the new design of an improved CS algorithm with mean shift regularization.  The 
rest of this paper is organized as follows.  Section 2 describes the basic theory of 
compressed-sensing-based signal reconstruction.  Heliograph imaging based on CS with 
mean shift regularization is described in § 3, and both the model and solution are studied 
in detail.  Some simulations are described in § 4, and conclusions are drawn in § 5.

2.	 CS-Based Signal Reconstruction

	 In the CS framework, reconstruction of a signal X ∈ RN  that is sparse in a base 
system Ψ∈RN×N  requires just a small number of measured samples Y ∈RM , where M << N.  
This subsampling process can be represented as a projection by an M × N measurement 
matrix Φ∈RM×N .  Therefore, the observable Y can be expressed as

	 Y = Ф ∙ Ψ ∙ X = Θ∙X .	 (1)

The newly defined matrix Θ = Ф ∙ Ψ represents an overcomplete basis.
	 Equation (1) expresses an underdetermined system of linear equations where the 
number of unknowns is larger than the number of equations.  Therefore, the solution will 
be nonunique.  To solve this equation, CS assumes that the signal is sparse, which means 
that the number of nonzero coefficients of X in the Ψ-domain, |Ψ ∙ X|0, tends to be as 
small as possible.

	 min|Ψ ∙ X|0 s.t. Y = ΘX	 (2)

	 Apparently, minimization of eq. (2) is a combinatorial problem that is computationally 
intractable.  Fortunately, the solution of eq. (2) for L0 normal is identical to the solution 
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of a more tractable L1 normal problem when the signal is sparse.  Thus, the CS recovery 
of X from Y is formulated as the following constrained optimization problem.

	 min
x

||ΨT X||1 s.t. ΦΨ TX = Y	 (3)

3.	 Heliograph Imaging Based on CS with Mean Shift Regularization

	 A heliograph does not directly measure the brightness distribution of a solar image 
but samples the visible complex value on the UV plane through the array, and finally 
obtains the solar image from the obtained data through inverse Fourier transform.  
Therefore, heliograph imaging can be understood as a process of the recovery of the 
original image f from the corresponding complex visibility value Y and the sampling 
distribution S determined by the given array configuration.

3.1	 Imaging model based on CS of minimizing total variation
	 Total variation is widely used to express sparseness in a 2D image.  The minimum 
total variation, proposed by Candés,(6) is suitable for 2D image reconstruction based on 
a priori knowledge that the discrete gradient of most natural images is sparse in practice.  
According to the CS theory, the imaging model based on CS of minimizing the total 
variation for heliograph is

	 min
f

TV ( f ) s.t. ||SHf − Y ||22 ≤ σ ,	 (4)

where σ is a noise-related constant greater than 0, H is the two-dimensional discrete 
Fourier transform matrix, and S is the sampling distribution. TV(f) is the sum of the 
discrete gradient at each point of the image f:

	 TV ( f ) =  ∑
i, j

( f i+1,j − f i,j)2 + ( f i,j+1 − f i,j)2 =  ∑
i, j

||Di,j f || 2 ,

	 Di,j f = f i+1,j − f i,j

f i,j+1 − f i,j
.	

3.2	 Imaging model based on CS with mean shift regularization
	 The model based on CS of minimizing total variation has good performance in 
reconstructing extended sources but it fails to recover the solar fine structure.  The reason 
for this is that minimizing the total variation tends to oversmooth the gradient of images 
which contains most of the image details.  Moreover, the model often suffers from 
undesired convolutive artifacts because it treated the fine structure as individual pixels 
instead of a region.  

(5)
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	 To overcome the drawback, mean shift regularization is introduced.  Mean shift 
filtering is very effective in sharpening edges and preserving image details.  Hence, mean 
shift has gained widespread popularity in the fields of clustering and segmentation.
	 For a given pixel fij in an image f, its neighborhood mean, denoted by nm(fij), is 
obtained as a weighted average of surrounding pixels within a neighborhood domain, 
and the mean shift of fij, ms(fij), is given by the difference between fij and nm(fij), namely,   
ms(fij) = fij − nm(fij),

	 nm( f ij) =  ∑
m

k=1
f ijg

f ij − f k

h

2

2

m

k=1
g

f ij − f k

h

2

2
∑ ,	 (6)

where f k is the pixel in the neighborhood domain, m is the pixel number, and g is the 
kernel, typically a gaussian kernel, and h is the bandwidth.
	 Equation (6) can be expressed in vector form, nm( f ij) = WT

ijΛ ij, where Λij is the 
column vector containing all the central pixels around fij and Wij is the column vector 
containing all the corresponding weights wij.  As the elements of Λij are all the elements 
of f, ms(fij), together with nm(fij), is the weighted sum of f.  Let ms(fij) = W ijf with W ij be 
the weight matrix.
	 Thus, heliograph imaging based on CS with mean shift regularization can be modeled 
as

	 min ∑
f

i, j
(||Di,j f || 2 + α ||Wij f ||  )2  s.t. ||SHf − Y ||22 ≤ σ .	 (7)	

We introduce ωi.j to approximate eq. (7) into  

	 min ∑
f

i, j
||ω   ||i,j 2 s.t. ωi,j = Di,j f + αWij f ,∀i, j

||SHf − Y ||22 ≤ σ
.	 (8)

Thus, minimizing eq. (8) is equivalent to solving

	 min   ∑
ω, f

i, j
||ω   ||i,j 2 +

β
2 i, j

||ω i,j − Di,j f − αWij f ||2
2

+
µ
2

||SHf − Y ||22∑ ,	 (9)

where α, β, and μ are positive, indicating the weights of the punishment and the fidelity.  
Equation (9) can be solved by the alternating iterations.(11)  The main steps are as follows.
	 (i)	 Let f be fixed, eq. (9) is equivalent to solving

	 ω* = arg min
ωi, j

||ωi,j||2 +
β
2

||ωi,j − Di,j f − αWij f ||2 	 (10)
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Then, the optimal solution to eq. (10) is

   ω2
i,j = max ||Di,j f + αWij f || −

1
β

, 0
Di,j f + αWij f

||Di,j f + αWij f ||2
  (i = 1, 2, ..., n,  j = 1, 2, ..., n)	 (11)

	 (ii)	 Let ω be fixed, eq. (9) becomes a quadratic function of f.  Thus, we can obtain 
eq. (12) by derivation.  The optimal solution to eq. (12) is apparent, which is used as the 
initial value of the next iteration.

	
i, j

||(Di,j + αWij)||2 +
µ
β

(SH )T(SH ) f =
i, j

(Di,j + αWij)Tωi,j +
µ
β

(SH )TY∑ ∑ 	 (12)

	 (iii)	 Repeat steps (1) and (2).  f and ω alternately iterate as described above until the 
solution becomes convergent.

4.	 Experimental Results

	 Two groups of experiments are conducted to compare the performance of our 
approach with that of the classical Richardson-Lucy (RL) algorithm and the CS-based 
algorithm through the processing of the synthetic images and real images.
	 The fidelity of the reconstructed image is measured using relative error (Rel Err) and 
signal-to-noise ratio (SNR).  In particular, relative error is defined as Rel Err = 100 × 
norm(u − f) / norm(f) and SNR is defined as SNR = 10 × lg(||u||2 / ||u−f||2), where u is the 
reconstructed image and f is the original image.
	 In addition, in our experiments, the antenna array is configured as a three-arm 
spiral topology and composed of 100 elements with the longest baseline of 3 km and 
the shortest baseline of 6 m.  Figures 1 and 2 show topology and sampling distribution 

Fig. 1 (left).  (Color online) Three-arm spiral antenna array configuration.
Fig. 2 (right).  (Color online) Sampling distribution in UV plane of 3-arm spiral antenna array.
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S in the UV plane, respectively, where the number of sampling points is 6917 and the 
sampling rate is 2.64%.
	 The simulated solar brightness image is shown in Fig. 3(a) with a size of 512 × 
512 pixels in the first experiment.  We set three different brightness "needlelike” point 
sources in the disc center for the purpose of testing the dynamic range of each algorithm.  
Several different brightness arc sources are used to test the shape maintenance ability 
of the algorithms to extended sources, and several adjacent point sources with the same 
brightness are used to test the resolution of the three algorithms.
	 The results indicate that the proposed algorithm has advantages over the RL algorithm 
and CS algorithm in terms of image quality, shape maintenance of the extended source, 
resolution of the point source and dynamic range.
	 The second experiment is conducted on a real solar image from the NRAO image 
gallery, shown in Fig. 4(a), with the size of 512 × 512 pixels.  Figures 4(b)–4(d) give 
the reconstructed images employing the RL, CS and CS with mean shift regularization 

Fig. 3.	 (Color online) Simulated solar image and reconstructed images using 3 different 
algorithms. (a) Simulated solar image. (b) By RL algorithm (Rel Err = 92.3%, SNR = 3.55). (c) By 
CS algorithm (Rel Err = 34.3%, SNR = 32.9). (d) By our method (Rel Err = 22.5%, SNR = 43.3).

Fig. 4.	 (Color online) Real solar image and reconstructed images using 3 different algorithms. (a) 
Real solar image. (b) By RL algorithm (Rel Err = 37.5%, SNR = 16.0). (c) By CS algorithm (Rel 
Err = 53.1%, SNR = 13.4). (d) By our method (Rel Err = 24.2%, SNR = 32.5).

(b) (c)(a) (d)

(b) (c)(a) (d)
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algorithms, respectively.  The results clearly show that the method based on CS with 
mean shift regularization is superior to the RL algorithm and CS algorithm in terms of 
image quality and dynamic range.

5.	 Conclusion

	 In this paper, we presented an improved CS-based image reconstruction algorithm 
by incorporating a mean shift regularization constraint.  The total variation constraint in 
the CS model and mean shift regularization are complementary to each other, making 
the new proposed algorithm highly effective in preserving solar fine structures while 
eliminating the convolutive artifacts.  The results of our experiments demonstrated the 
potential applications of the proposed method.
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