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	 In this paper, we present an algorithm for robot simultaneous localization and 
mapping (SLAM) using a Kinect sensor, which is a red-green-blue and depth (RGB-D) 
sensor.  The distortions of the RGB and depth images are calibrated before the sensor is 
used as a measuring device for robot navigation.  The calibration procedure includes the 
correction of the RGB image as well as alignment of the RGB lens with the depth lens.  
In SLAM tasks, the speeded-up robust features (SURFs) are detected from the RGB 
image and used as landmarks for building the environmental map.  The depth image 
further provides the stereo information to initialize the three-dimensional coordinates 
of each landmark.  Meanwhile, the robot estimates its own state and landmark locations 
using the extended Kalman filter (EKF).  Two SLAM experiments were carried out 
in this study and the results showed that the Kinect sensors could provide reliable 
measurement information for mobile robots navigating in unknown environments.

1.	 Introduction

	 When a robot is navigating in an unknown environment, it relies on sensors to 
recognize the outside world and then to estimate the state of the robot itself to achieve 
the task of autonomous navigation.  Commonly used sensors include the laser range 
finder (LRF) and vision sensor.  The LRF can offer high-precision measurement data, but 
it is too expensive to be extensively used.  The vision sensor has a relatively wide range 
of cost, from low-cost low-end to expensive high-order products, being generally applied 
in a robot’s sensing devices.  However, vision sensors capture only two-dimensional 
images that have no depth information of environmental objects.  One must perform 
expensive calculation to recover the depth information for visual measurement.
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	 Recently, Microsoft has released a red-green-blue and depth (RGB-D) sensor called 
Kinect, which has an RGB image sensor and a depth sensor.(1)  The RGB sensor captures 
color images of the environment.  The depth sensor uses an infrared transmitter and a 
complementary metal oxide semiconductor (CMOS) camcorder to detect the depth of 
the corresponding objects in RGB images.  When infrared light reaches rough objects 
or penetrates through frosted glass, the reflection spots or random scatterings, called 
laser speckle, are measured using the CMOS camcorder.  The depth information is then 
generated by recording the laser speckle at different positions and distances, followed 
by comparative and statistical analyses.(2)  The Microsoft Kinect sensor has several 
advantages, including low price, multiple sensing capability, and the availability of a free 
software development toolkit.  Such a sensor is suitable for 3D modeling(3) and robot 
navigation in the environment because of its functions and low price.  This study uses 
Kinect to capture color and depth images as environmental information for mobile robot 
navigation.
	 The distortions of RGB and depth images need to be calibrated before Kinect is 
applied as a measuring device.  The distortion of Kinect’s RGB image depends on the 
lens structure of the camera.  Many procedures have been developed to calibrate the RGB 
image by determining the intrinsic parameters of the camera.(4–6)  In these procedures, the 
camera or objects were arbitrarily moved and the conversion relationship of different 
images was obtained to determine the camera’s intrinsic parameters and external 
transformation parameters.  Zhang carried out a complete derivation of the conversion 
relationship between the images and objects, and then used the Levenberg-Marquardt 
optimization method to obtain accurate parameters.(4)  Heikkila and Silven established the 
image correction model to obtain the corresponding parameters.(5)  A well-known Matlab 
toolbox based on these calibration algorithms has been released.(6)  In this study, we use 
these algorithms and toolbox to deal with the calibration of the RGB images.  On the 
other hand, the distortion of Kinect’s depth image is due to the misalignment of the RGB 
sensor against the depth sensor.  However, there is no popular method of aligning the 
lenses of these two sensors.(7)  In this study, we propose a novel procedure to transfer and 
align the depth image with the RGB image.  The transformation of the sensor location 
is modeled using a mathematical interpolation model.  We choose the origin of the RGB 
camera as the reference frame and then transform the depth image to align it with the 
RGB camera frame.
	 The image features detected from Kinect RGB images can be used to represent the 
landmarks in the environment and build an environmental map for robot navigation.  A 
detection method based on the scale-invariant feature was developed by Lindeberg.(8)  He 
established image Hessian matrices, whose elements are the convolution of the Gaussian 
second-order derivative with the image.  An image feature is selected by examining the 
determinant of the Hessian matrix based on the nonmaximum suppression rule.  The 
scale-invariant features have the advantages of requiring high stability and repeatability.  
On the other hand, these features have the disadvantage of extensive computation.  
Concerning the issue of computational speed, Bay et al.  replaced the Gaussian second-
order derivative with the box filter, and calculated the approximation of determinant of 
the Hessian matrix using the integral image method.(9)  This method, called speeded-
up robust features (SURFs), significantly reduces the calculation time.  In this study, 
the SURF algorithm is employed to detect the features from Kinect RGB images and to 
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represent the landmarks in the environmental map.  To initialize the three-dimensional 
coordinates of each landmark, the information of Kinect’s depth image is integrated with 
the pixel coordinates of the corresponding SURF feature.  Meanwhile, in this study, the 
extended Kalman filter (EKF)(10) is used to recursively predict and estimate the robot 
state as well as the environmental landmarks.
	 In this study, we propose an algorithm for robot SLAM using calibrated Kinect 
RGB-D sensors.  The algorithm was validated in the experiments by performing the 
SLAM tasks on an actual system using a Kinect system as the only sensing device.  The 
contributions of this study are novel algorithms for solving the problem of aligning 
depth images with color images as well as for calibrating the Kinect RGB sensor.  In this 
study, we also extend the usability of local invariant feature detectors in SLAM tasks 
by utilizing their robust representation of visual landmarks.  Data association and map 
management for SURF-based mapping are also developed to improve the robustness of 
SLAM systems.
	 The remaining sections of the paper are organized as follows.  Section 2 presents 
the calibration methods of RGB-D sensors.  The structure of the developed robot 
SLAM system and the method of SURF-based mapping are described in §§ 3 and 4, 
respectively.  Section 5 depicts two experimental applications and results of the proposed 
algorithms.  Finally, concluding remarks are given in the last section.

2.	 Calibration of RGB-D Sensors

	 In this study, we develop novel algorithms to align depth and color images as well 
as to calibrate the Kinect RGB sensor.  The concept and procedures of the developed 
algorithms are described in the following subsections.

2.1	 Alignment of RGB and depth images
	 Kinect captures both color and depth images, as shown in Figs. 1(a) and 1(b), 
in order to construct the stereo coordinates of environmental objects.  However, the 
pixel coordinates of a corresponding object in these two images could not be matched 
correctly because the RGB and depth cameras are not located at the same position.  
There exists an unknown transformation between the RGB and depth images.  We need 
to determine the relationship between these two image planes to correct the noticeable 
image slant.  However, some defects exist in the depth image and the depth information 

Fig. 1.	 (Color online) (a) RGB image, (b) depth image, and (c) infrared image.

(b) (c)(a)
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is not available in these defective areas, as shown in Fig. 1(b).  Therefore, a one-to-one 
relationship is not guaranteed between the RGB and depth images.  On the other hand, 
the original infrared image does not contain any defective areas, as shown in Fig. 1(c).  
The depth image is a grayscale image converted from the depth datum of the original 
infrared image.  Therefore, we can align the RGB image with the infrared image, which 
has the same coordinates as those of the depth image.  The alignment procedure is 
implemented using geometrical transformation.(11)  In this study, we use a pair of bilinear 
equations to represent the pixel coordinate transformation between RGB and infrared 
images,

	 x' = Ax + By + Cxy + D,	 (1)

	 y' = Ex + Fy + Gxy + H,	 (2)

where x and y are the coordinates on the RGB image and x' and y' are the corresponding 
coordinates on the infrared image.  The eight coefficients (A to H) can be determined 
by the least-squares method if there are more than four known corresponding points.  
The transformation model with determined coefficients can be used to transform all the 
pixels within the quadrangle area defined by the four vertices.  By substituting the pixel 
coordinates of the features in the RGB image into eqs. (1) and (2), the pixel coordinates 
of features in the infrared image can be determined, and the corresponding depth 
information of the feature can be obtained.  The alignment and transformation results are 
depicted as circle marks in Fig. 2.  The figure shows the root-mean-square error (RMSE) 
of image alignments with respect to different numbers of corresponding feature points.  
The feature number 0 indicates the original situation without alignment, which has a 
RMSE of 16.05 pixels.  When using four corresponding points for alignment, the RMSE 
reduces to 2.18 pixels.  The RMSE does not change considerably when the feature 
number varies from 4 to 60.  In this study, we also use a pair of nonlinear equations to 
represent the pixel coordinate transformation as

Fig. 2.	 (Color online) RMSE of alignment results using varying numbers of corresponding 
features.
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	 x' = Ax + By + Cxy + Dx2 + Ey2 + F,	 (3)

	 y' = Gx + Hy + Ixy + Jx2 + Ky2 + L.	 (4)

The alignment and transformation results are depicted as cross marks in Fig. 2.  The 
nonlinear model does not provide a better RMSE than the bilinear model.  Therefore, 
in this study, we chose the bilinear model with four corresponding points as the 
transformation model.

2.2	 Calibration of RGB image
	 In this study, we use the algorithms and Matlab toolbox in refs. 4−6 to calibrate the 
Kinect RGB images.  A total of 20 photos of a chess board are taken, as shown in Fig. 
3.  Each photo is captured in a different orientation with horizontal rotation angle always 
less than 90°.  The study uses the image distortion model(4) to represent the lens distortion 
as
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Fig. 3.	 Twenty photos of a chess board.
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distorted ray vectors are available and the undistorted ray vectors are to be determined.  
In the study, we use the image correction model(5) to represent the inversion of the image 
distortion model as
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where kc is the vector of correction coefficients.  Perspective projection(12) is used to 
model the transformation of the 3D space coordinate system to a 2D image plane.  An 
equivalent image plane is established to represent the ray vector and the measurement 
vector of the ith observed image feature as
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Focal lengths fu and fv denote the distance from the camera lens center to the image plane 
along the u- and v-axes, respectively, (u0, v0) is the offset pixel vector of the image plane, 
and (Idx, Idy) are the pixel coordinates of a measured feature in the image plane.  The 
Matlab toolbox(6) determines the intrinsic parameters and distortion coefficients, which 
are listed in Table 1.  The correction parameters kc in Table 2 are determined by reversing 
the image distortion model.

Table 1
Image distortion coefficients.

Focal length fu 260.09598 ± 4.02164 (pixel)
fv 261.04304 ± 4.04892 (pixel)

Principal point u0 166.32693 ± 4.28107 (pixel)
v0 126.76935 ± 3.35258 (pixel)

Distortion coefficient

kd(1)   0.24376 ± 0.04412
kd(2) −0.70139 ± 0.20824
kd(3) −0.00194 ± 0.00693
kd(4)   0.01339 ± 0.00839

Table 2
Image correction coefficients.

kc(1) kc(2) kc(3) kc(4) kc(5) kc(6) kc(7) kc(8)
−0.2479 0.7104 0.0018 −0.0133 0.2800 −0.8036 −0.0005 0.0158
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3.	 Robot SLAM

	 When the robot performs SLAM tasks, the states of the robot and landmarks in the 
environment are estimated on the basis of measurement information.  The state sequence 
of a system at time step k can be expressed as

	 xk = f(xk−1, uk−1, wk−1),	 (10)

where xk is the state vector, uk is the input, and wk is the process noise.  When performing 
SLAM tasks using a Kinect sensor, the state vector contains the states of the sensor and 
landmarks,

	 x = [xT
C, MT]T = [xT

C, mT
1 , mT

2 , · · ·, mT
j ]T ,	 (11)

where xC = [rT, φT, vT, ωT]T denotes the sensor coordinates in world frame, and mj 
represents the jth landmark in the environmental map M.  The objective of the robot 
SLAM tasks is to estimate the state xk of the target recursively according to the 
measurement zk at k,

	 zk = g(xk, vk),	 (12)

where vk is the measurement noise.  A Kinect sensor system is the only sensing device 
considered in the recursive state estimation algorithm.  At time t = k, the vectors of 
measurement zk and the ith observed image feature are, respectively,

	 zk = [zT
1k , zT

2k , · · · , zT
mk ]T ,	 (13)

	 z ik = Iix
Iiy

,	 (14)

where i =1, 2, …, m; m is the number of measurements at time k.  Since the sensor frame 
is set at the center of the RGB camera lens, the coordinate representation in the depth 
image is transformed to the RGB camera.  The ith observed image feature can then be 
initialized using the 3D coordinates in the world frame (Fig. 4) as

	 mi = r + RhC
i ,	 (15)

where r is the position vector of the sensor frame, R is the rotational matrix(13) from the 
world frame to the sensor frame, and C

ih  is the ray vector of the image features in the 
sensor frame obtained from eq. (9).  In this study, the handheld Kinect sensor is the only 
sensing device used for measurement in the SLAM system.  The handheld Kinect sensor 
is treated as a free-moving robot system with unknown inputs.(14)  System states are 
estimated using the EKF estimator to solve the target tracking problem.(14,15)
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4.	 SURF-Based Mapping

	 Mapping in visual SLAM requires a robust method of representing visual landmarks 
detected in an image.  In this study, we used the SURF method to detect and represent visual 
landmarks of a map during SLAM tasks.  The SURF method developed by Bay et al. uses a 
box filter instead of a difference of Gaussians to approximate the determinant of the Hessian 
matrix.(9)  Feature detection is performed at the pixel location where the determinant of 
the Hessian matrix is a local maximum value.  The box filter is further combined with the 
integral image method(16) to reduce the image processing time.  Bay et al. applied the octaves 
concept to the design of box filter sizes for detecting features in different scales.  After the 
features are detected from the image, the description vector is computed to represent feature 
characteristics.  Bay et al. described the orientation of a feature using a Haar wavelet filter 
to compute the wavelet responses of the image feature.(9)  The orientation of a feature is 
defined as the direction with the largest sum of the Haar wavelet responses.  A high-
dimensional description vector is then used to describe the uniqueness of the feature.  
For matching high-dimensional description vectors, the most popular method is the 
nearest-neighbor (NN) search method.(17)  For a space of n dimensions with point sets P 
and Q, the query point q belongs to Q.  The NN search method can be used to find the 
point p in P, which has a minimum distance from q.  The distance between the arbitrary 
point p in the P set and the query point q is usually defined by the norm ls.  In the case of 
l2, the distance becomes the Euclidean distance d.  The criterion for matching two image 
features is usually to determine the shortest distance between their descriptors.
	 The implementation of the SLAM system with a Kinect sensor integrates the motion 
model, the measurement model, and the SURF detection algorithm.  Once the images 
are captured by the Kinect RGB camera, feature extraction is performed by the SURF 
method.  The system performs data association of the landmarks in the map database 
and the image features of the extracted SURF using the proposed matching criterion.  A 
map management system is also designed to coordinate the newly extracted features and 
the “bad” features in the system.  After the properties of newly extracted features are 
investigated, a detection algorithm is used to distinguish moving and stationary objects.  

landmarkhC

xC
zC

yC

x

z

y

r

Fig. 4.	 Kinect sensor system.
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The state variables of all stationary landmarks are augmented in the state vector in eq. (10).  
However, features that are not continuously detected at each time step are considered as 
“bad” features and are deleted from the state vector.  

5.	 Experimental Results

	 Two experiments including ground truth and robot SLAM are carried out to validate 
the proposed algorithms.

5.1	 Ground truth
	 The first experiment is a ground truth experiment to test the performance of SLAM 
using the Kinect sensor.  The sensor is carried to follow a 1 m2 track, as shown in Fig. 
5.  The sensor lens is directed toward the opposite wall in order to capture the image 
features.  There were three detour laps around the square track and about 2000 images 
were captured in each circulation.  The experimental results of ground truth are listed 
in Table 3.  The first three columns of the table are ground truth locations of ground 
truth points, and the last three columns are the estimated locations of those points.  
The ± variation values indicate the standard deviations in the estimated values.  The 
experimental results show that the developed EKF-SLAM system with the Kinect 
sensor provides a stable and accurate state estimation.  The experimental results are also 
depicted in Fig. 6.  The captured RGB image is shown in Fig. 6(a) and the top-view 

Table 3
Ground truth and estimated values.
Ground truth (m) Estimated (m) (mean ± standard deviation)

  x y z x (μ ± σ) y (μ ± σ) z (μ ± σ)
   0.00   0.00   0.00    0.0029 ± 0.0032     0.0016 ± 0.0016  −0.0013 ± 0.0012
 −1.00   0.00   0.00  −1.0565 ± 0.0307   −0.0402 ± 0.0019    0.0134 ± 0.0362
 −1.00   1.00   0.00  −1.1165 ± 0.0315   1.00459 ± 0.0052    0.0211 ± 0.0031
   0.00   1.00   0.00    0.0721 ± 0.0092     1.0364 ± 0.0036    0.0208 ± 0.0074

Fig. 5.	 (Color online) Trajectory of ground truth.
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map is depicted in Fig. 6(c); the depth image is shown in Fig. 6(b).  The (red) square 
marks in Fig. 6(a) indicate the stable landmarks extracted from the captured images.  
Fig. 6(c) shows a 2D plot of the estimated states of the camera and landmarks.  The red 
(dark) ellipses represent the uncertainty of the observed landmarks, and the green (light) 
ellipses denote the unobserved landmarks.  Note that the origin of the world coordinates 
in the map is defined as the initial position of the SLAM system.

5.2	 Robot SLAM
	 In this experiment, the Kinect sensor is hand carried in a counterclockwise direction 
following a circular path of 3 m diameter.  The camera lens is always frontward facing 
along the path.  The SLAM system starts from the first image frame and captures image 
features with unknown positions.  After these features are initialized, they are stored as 
landmarks in the map.  As the Kinect sensor follows the circular path, the SLAM system 
concurrently builds the environmental map and estimates the Kinect pose.  Figure 7 
shows the final image frame obtained in the experiments where the captured RGB and 
depth images are shown in Figs. 7(a) and 7(b), respectively.  The top-view plot of the 
environmental map is depicted in Fig. 7(c).  Figure 8 depicts the deviations of the Kinect 
pose estimation along the xyz-axes.  The figure shows that, during the SLAM task, the 
average pose deviation is less than 2 cm, and the highest peak is about 3 cm.

6.	 Conclusions

	 We developed an algorithm for robot simultaneous localization and mapping using 
a Kinect RGB-D sensor.  In this study, we solved the misalignment problem of Kinect’s 
multiple sensors as well as recovered the RGB image before the Kinect sensor could be 
applied to robot navigation.  An image correction model was used to calibrate the RGB 
image, and a bilinear interpolation model was employed to align the RGB camera with 
the depth sensor.  The novel calibration procedure reduced the RMSE from 16.05 to 2.18 
pixels.  In this study, we also extended the usability of SURF detectors in SLAM tasks 

Fig. 6.	 (Color online) Images from 4825th frame.

(b) (c)(a)
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by utilizing their robust representation of visual landmarks.  In the robot SLAM system, 
the SURF features were detected from the RGB images for building the environmental 
map.  For each SURF feature, the RGB pixel coordinates were combined with the 
depth image to calculate the 3D coordinates.  Two experiments were carried out to 
validate the performance of the RGB-D sensors for robot SLAM systems.  The ground 
truth experiment demonstrated that the Kinect sensor can provide reliable and accurate 
measurement information for robot navigation.  The robot SLAM experiment showed 
that the developed EKF-SLAM can deal with the loop-closure problem and correctly 
estimate the robot pose with a standard deviation of less than 2 cm.
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