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	 The application of electroactive polymers into soft transducers such as actuators, 
sensors or artificial muscles has become popular lately owing to the recent development 
of various numerical frameworks, which make it possible to analyze and simulate multi-
physics problems with the help of computational methods.  The energy formulation 
sets out to derive the free energy that contains information on the behavior of dielectric 
elastomer transducers under various electric fields or mechanical loadings, so that the 
energy-based formulation may meet the requirement of the principles of continuum 
mechanics and the laws of thermodynamics.  The goal of the present study is, by applying 
the principle of virtual work to electromechanical problems, to set up a computational 
framework for which the linearization is carried out to be readily implemented into the 
finite element method to simulate the behavior of soft transducers under external stimuli.

1.	 Introduction

	 Electroactive polymers (EAPs) is a general term to designate dielectric elastomers (DEs) 
or other similar materials, which are sensitive to electric stimuli.  Classes of EAP are 
categorized as electrostrictive, piezoelectric, and ferroelectric.(1–8) In particular, DEs have 
some advantages over other conventional materials such as flexibility, scalability, high 
energy density, low weight, large deformation, and low cost.  The application of electro-
active smart materials in the realm of transducers has been rapidly growing lately,(9–11) 
among which DEs have received much attention from various industrial sectors.  A 
typical DE transducer is composed of a dielectric polymer sandwiched by compliant 
electrodes, as shown in Fig. 1.  DEs are considered fundamentally as capacitor-like 
devices, which can change the capacitance when a voltage is applied, having the material 
squeezed in thickness and expand in area due to an electric field, that is, whose material 
properties can be changed rapidly upon the application of an electric field.  DEs need a 
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high voltage to produce electric fields yet a low electrical power consumption, and do 
not need an electric field to keep an actuator at a given position.
	 Because of their low stiffness, DEs deform by a large amount, responding to external 
electric loads rapidly on the order of milliseconds.  The application of deformation due to 
mechanical reactions of highly flexible polymers with respect to a change in an electric 
field is of great interest in the area of smart materials, particularly artificial muscles 
or robot fingers.  For a robot finger to act like a flexible actuator, it is common to take 
mechanical deformation for input and an electric voltage change for output to be used as 
readings from a measuring device.	
	 The range of topics related to DEs is enormous, including electrical response under 
high electric field, soft actuators and sensors, ferroelectric polymers, biomaterials, 
organic-based ferroelectric materials, energy-storing materials, energy-harvesting 
polymers, nonlinear electrical and mechanical properties, and electric phenomena in a 
nanoscale configuration.
	 Although DEs have many advantages over other conventional smart materials in both 
mechanical and electric performance characteristics, the complexity in the understanding 
of multi-physics phenomena has kept researchers from building proper numerical 
frameworks to grasp the whole picture of the subject at once, which may be mainly 
ascribed to the coupled nature of electroelastic phenomena.  The behavior of a DE 
transducer under multi-field loadings is very interesting yet quite a complex phenomenon 
that it is not easily explicable by a simple theoretical framework.  Macroscopic 
analysis of the subject calls for multifield theories accompanied by physics laws, 
balance equations, initial conditions, boundary conditions, and so forth.  Furthermore, 
microscopic study of the behavior of DEs is extremely complicated if not impossible.
	 A theoretical framework that can achieve the combination of two different fields—the 
electric field and the mechanical field—has long been an interesting subject for people 
from both sides.(12–22)  It is not common to see that a researcher has sufficient knowledge 
of both mechanical and electric fields and he or she may be able to put two different 
disciplines into a unified framework.  Even worse, the behavior of DEs is usually 
nonlinear, which demands numerical nonlinear analysis.

Fig. 1.	 (Color online) Schematic of a soft transducer made of dielectric elastomers, where Q is 
the electric charge and ϕ is the electric potential.
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	 The principle of virtual work (PVW) has been widely accepted and utilized to expand 
the area of such research.  According to this principle, virtual work, which consists of 
electrostatics, and mechanical and thermodynamic energies, should meet a stationary 
condition.(23–26)  However, there has been much debate on how to distinguish the electric 
effect from a mechanical one owing to the presence of dielectrics, which has resulted in 
several different kinds of formulations to date.(27–33) Many researchers have used the total 
stress that combines electromagnetic stress and mechanical stress into one.
	 According to nonlinear continuum mechanics, there are two kinds of descriptions 
of problems to be solved—the material description and the spatial description—
for example, the governing equations depending on the variables are expressed in a 
material configuration or spatial description.  Either description gives the same result, 
so it is matter of preference to choose one description over the other.  In general, a 
numerical formulation begins with the material configuration and is used to define 
constitutive relations through the push-forward operation; it is hence transformed into 
a spatial description.  Besides electrostatic problems, some interesting topics such as 
micro-structural optimization, rate-dependent material models, and electromechanical 
instability of DE transducers have appeared in the literature.
	 Here, we limit the scope of the study to the large elastic deformation.  To analyze 
complex material behavior problems occurring in DEs, there have been many studies 
regarding coupled phenomena such as the interaction between electric and mechanical 
fields.
	 Our goal in the present study is to develop a numerical framework in the material 
configuration, which is applicable in solving highly nonlinear and coupled electro-elastic 
problems.  Fundamental equations in electrodynamics and nonlinear continuum mechanics 
are explained to set up a coupled multi-field analysis environment in § 2.  Based on 
thermodynamics equilibrium, to determine the deformation subjected to electric potential 
or vice versa, constitutive equations are obtained from free energy function.  In § 3, the 
variational equations derived through the principle of virtual work need to be linearized 
with respect to the displacement and the electric potential to reduce strong nonlinearity 
in the problems.  Section 4 outlines the discretization of the equations for the finite 
element method and the linearization on the equations to be numerically solved.  In § 5, 
the procedure to build up a numerical framework is discussed.  Finally, in the conclusion, 
the present work is summarized briefly.
 
2.	 Electro-Continuum-Mechanics Equations

2.1	 Kinematics
	 Consider a body B0 and a material particle X ∈B0 in the reference configuration.  The 
particle in the current configuration B for x ∈ B and the mapping function is given by 
x = η (X, t)  at time t; the deformation gradient 𝑭 is defined as

	 F =
∂η
∂X

= ∇x 	 (1)



14	 Sensors and Materials, Vol. 27, No. 1 (2015)

where ∇ denotes the gradient with respect to the reference coordinate X.  The surface of 
each boundary as shown in Fig. 2 is defined as ∂B0 = ∂Bu

0 ∂Bt
0 and ∂B0 = ∂Bϕ

0 ∂Bq
0  

such that ∂Bu
0 ∂Bt

0 =  and ∂Bϕ
0 ∂Bq

0 =  where the superscripts u, t, ϕ, and 𝑞 
denote the displacement, the traction, the electric potential, and the electric free charge 
density, respectively.

2.2	 Electrostatics equations
	 According to the electrostatics theory, the electric displacement 𝔻 is defined by the 
constitutive equation

	 = ε0 + ,	 (2)

where ℙ is the electric polarization density and ε0 is the vacuum electric permittivity.  
The electric field 𝔼 is conservative; therefore, it can be defined in terms of the electric 
potential ϕ:

	 = −∇ϕ 	 (3)

The electric field 𝔼 satisfies the following, which is called Faraday’s law for 
electrostatics:

	 ∇ × = 0 ,	 (4) 

where ∇ ×  is the curl operation.  If there are no free currents or magnetic fields, the 
electric displacement 𝔻 is expressed in the divergence:

Fig. 2.	 (Color online) Body B0 and its surface of each boundary defined as ∂B0 = ∂Bu
0 ∂Bt

0  
and ∂B0 = ∂Bϕ

0 ∂Bq
0  such that ∂Bu

0 ∂Bt
0 =  and ∂Bϕ

0 ∂Bq
0 =  where the 

superscripts u, t, ϕ, and q denote the displacement, traction, electric potential, and electric free 
charge density, respectively.
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	 ∇ · = 0,	 (5)

where ∇ ·  is the divergence.  At the boundary of the reference configuration, the 
electric displacement 𝔻 must satisfy the continuity condition across the interfaces such 
that

	 N · = q on ∂Bq
0,	 (6)

where N is the unit outward normal vector to the reference configuration B0 and is the 
free charge density on the surface ∂B0.  The notation ⟦ ⟧ is the jump operator, which is 
⟦𝔻⟧ = 𝔻in − 𝔻out, where the subscripts “in” and “out” denote the inside and outside of the 
boundary, respectively.

2.3	 Balance laws
	 The balance laws serve as a fundamental set of equations for tackling boundary value 
problems or initial boundary problems with primary variables in continuum mechanics, 
which are composed of the balance of mass, linear momentum, angular momentum, and 
balance of energy.  Firstly, the balance of mass is given in the integral form:

	
D
Dt B

ρ dv = 0 	 (7)

where 𝜌 is the mass density.  The local form of eq. (7) is expressed as

	 ∂ρ
∂t

+ ρ∇ ·v = 0 	 (8)

where 𝒗 is the velocity.  The balance of linear momentum is

	
D
Dt B

ρ v dv =
∂B

t da +
B

b dv 	 (9)

where b and t are the body force and surface traction, respectively.  Considering 
elastostatics condition and applying the traction t = nσ to eq. (9) results in the following 
equilibrium equation:

	 ∇ · P + b = 0 ,	 (10)

where P is the first Piola-Kirchhoff stress.  It is noted that equations expressed in either 
the current configuration or the reference configuration may generate the same result; 
however, in the present study, for brevity, most equations are given in the reference 
configuration.  The boundary condition on the partial surface of the body to the 
equilibrium equation of eq. (10) is given in the form
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	 P · N = T on ∂B t
0,	 (11)

where T  denotes the surface traction at the boundary ∂Bt
0 shown in Fig. 2.

The balance of angular momentum is

	
D
Dt B

ρx × v dv =
∂B

x × t da +
B

x × b dv .	 (12)

After some complicated manipulation of eq. (12), the balance of the angular momentum 
equation turns out to be

	 skew(P : F) = 0 .	 (13)

When an electric field is activated, energy is stored in the material, generating a driving 
force and causing DEs to change in shape and size.  The balance of energy states that 
the work done by stress as internal energy, the energy stored in the free space due to an 
electric field, and the polarization of the material are balanced by the external energy 
provided by external stimuli such as mechanical force and an electric field.  The energy 
balance(25,26) is given by

	

D
Dt B

1
2
ρ|v|2 + e dv =

∂B
t · v da +

B
b · v dv

−
∂B

q · n da +
B

r · v dv ,
	 (14)

where e is the internal energy and r is the energy supply due to an electric field.  The 
energy balance equation is transformed into the local form

	 ė = P : Ḟ − ∇ · Q + R ,	 (15)

where ė is the material time derivative, Q is the heat flux and R is the energy supply in 
the reference configuration.  The second law of thermodynamics is expressed in the form

	
B
γ dv =

B
ḣ dv +

∂B

n · q
ϑ

da ,	 (16)

where γ is the entropy production, h is the internal entropy and the second term on the 
right hand side of eq. (16) is the entropy flow.  The local form of entropy inequality is 
obtained by applying the divergence theorem to eq. (16), which is
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	 Γ = Ḣ +
∇ ·Q

ϑ
−

1
ϑ2 Q · ∇ ϑ  ≥  0 ,	 (17)

where Γ is the entropy production, which should be nonnegative, and Ḣ  is the 
internal entropy in the reference configuration.  Equation (17) being multiplied by the 
temperature 𝜗 gives two types of dissipation, which are the local contribution 𝒟loc and 
the heat conduction contribution 𝒟con as follows:

	 loc = Ḣϑ + ∇ ·Q ≥ 0 ,	 (18)

	 con = −
1
ϑ

Q · ∇ϑ ≥ 0.	 (19)

Arranging for the inequality equation with the heat conduction term ∇ ∙ Q eliminated in 
eqs. (15) and (18) gives

	 P : Ḟ + R − Ḣ ϑ − ė ≥ 0.	 (20)

The free enthalpy Ψ is defined in terms of the internal energy 𝑒, the internal entropy 𝐻, 
and the temperature 𝜃 as follows:

	 Ψ = e − H θ .	 (21)

Taking the time derivative of eq. (21) gives

	 Ψ̇ = ė − Ḣ θ − H θ̇.	 (22)

Substituting eq. (22) into eq. (20) and replacing R with − · ˙  give the Clausius-Planck 
inequality

	 P : Ḟ − · ˙ − Ψ̇ ≥ 0.	 (23)

Since the free enthalpy Ψ(F,𝔼) is a function of F and 𝔼 according to eq. (23), the 
variation in time Ψ̇(F, ) is given by

	 Ψ̇(F, ) =
∂Ψ
∂F

: Ḟ +
∂Ψ
∂

· ˙ .	 (24)  

Substitution of eq. (24) into eq. (23) gives the electromechanical constitutive equation:
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	 P −
∂Ψ
∂F

: Ḟ − +
∂Ψ
∂

· ˙ ≥ 0	 (25)

or

	 P =
∂Ψ
∂F

, = −
∂Ψ
∂

.	 (26)

Yet another free energy Ψ(F, ), which is a function F and 𝔻, is defined by the partial 
Legendre transformation

	 = Ψ (F, ) + ·Ψ(F, ) .	 (27)

With the time derivative on eq. (27), the free energy Ψ (F, ) can be written in the form

	 = Ψ̇ (F, ) + ˙ · + · ˙(F, )Ψ˙ .	 (28)

The variation in time Ψ (F, )˙  is given by 

	 =
∂Ψ
∂F

: Ḟ +
∂Ψ
∂

· ˙Ψ (F, )˙ .	 (29)

In a similar fashion, substituting eq. (28) into eq. (23) with eq. (29) gives the inequality

	 P −
∂
∂F

: Ḟ −
∂
∂

· ˙ ≥ 0Ψ Ψ
− .	 (30)

From eq. (30), meeting the inequality conditions, the constitutive equations are derived 
as

	 P =
∂
∂F
Ψ

,  =
∂
∂
Ψ

.	 (31)

	 The available energy of a material can be best expressed through a free energy from 
classical thermodynamics.  Upon the application of an electric field, energy is stored 
in the material in such a way that it is turned into a driving force causing different 
macroscopic and microscopic changes.  It is noted that the work done by stress as 
internal energy, the energy stored in the free space due to an electric field, and the 
polarization all together are balanced by external energy.
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	 The principle of virtual work strictly requires that every term shown in a virtual 
equation must be of the same physical dimension such as the unit of work, which is 
called the ‘‘work conjugate’’.  It is noted that P is the first Piola-Kirchhoff stress and the  
deformation gradient δF becomes work conjugates.  Also, the electric field 𝔼 and the 
electric displacement 𝔻 are conjugated in work.  It is important that primary variables 
should be work conjugates to be used for building a free energy function; otherwise, 
by failing the consistency in the principle of virtual work, one may get incorrect 
computation results.(28–33)

3.	 Variational Formulation

3.1	 Variational formulation
	 With the equilibrium principles of thermodynamics, in order to determine the 
deformation subjected to an electric field, the constitutive equations are derived from 
the free energy function.  Thereby, in order to set up a coupled multi-field analysis 
framework, the equations from electrodynamics and nonlinear continuum mechanics are 
to be brought into the same energy framework, which calls for the principle of virtual 
work.  Upon applying the principle of virtual work, the equations can be transformed 
into integral equations, setting the displacement and the electric potential as independent 
variables.  The integral equations derived through the application of the principle of 
virtual work need to be linearized with respect to the displacement and the electric 
potential to alleviate nonlinearity of the equations; otherwise, conventional linear 
numerical analysis cannot be performed properly to produce an approximate solution to 
the problems.
	 From the mechanical point of view, displacement, strain, stress, and deformation 
gradient may be chosen to be the primary variables of governing equations.  As for the 
electric side, there are electric field, electric displacement, polarization, and electric 
potential.  Depending on the solution framework, a different set of variables can be 
selected; however, it should be mentioned that the equation formulation must proceed 
only if those selected variables are work conjugates in the light of the principle of virtual 
work.  Otherwise, numerical simulation may end up with ill-conditioned computations.  
Also, variables chosen should be measurable by instrument.  The use of non-measurable 
entities as key variables does not guarantee the feasibility of numerical simulation results, 
which need to be compared with data from experiments.  For example, interestingly, 
the nominal electric displacement and nominal electric field are work conjugates.  In 
addition, the nominal stress and deformation gradient are also work conjugates.
	 Variational formulation requires the existence of a functional, which comprises all the 
governing equations and boundary and initial conditions together.  The complexity of the 
procedure for solution to eqs. (3)–(6), (10), and (11) depends on what primary variables 
might be used in the computation, which determines a type of formulation with one 
variable or several variables.  The development of a numerical procedure that is capable 
of finding the solution to the equations above along with the boundary conditions is a 
major goal in the present study.  In this study, two different functionals—the primary 
Dirichlet functional and primal Hellinger-Reissner functional—are introduced and 
utilized up to the point where numerical frameworks are established.
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3.2	 Primal Dirichlet functional
	 The primal Dirichlet-type functional(22) has two independent variables, the 
deformation mapping η and the electric potential ϕ.  The functional may be considered as 
a maximization problem to which the solution variables are defined as

	 (ϕ, η) = Arg{sup infη W(ϕ, η)}ϕ ,	 (32)

where the functional W(ϕ, η) is

	 W(ϕ, η) =
B0

(F, ) dV −
∂B t

0

η · T dA +
∂B q

0

ϕq dAΨ .	 (33)

Equation (33) is the primal Dirichlet-type functional composed of eqs. (3)–(5) and 
(10) with the corresponding boundary conditions of eqs. (6) and (11) for the surfaces 
where each boundary condition applies as shown in Fig. 2.  Let the first variation of 
the functional of eq. (33) with respect to the deformation mapping η and the electric 
potential ϕ be δW = 0, which is

	 δW =
B0

∂
∂F

: δF dV +
B0

∂
∂

· δ dV −
∂B t

0

δη · T dA +
∂B q

0

δϕq dA
Ψ Ψ ,	 (34)

where δη is the virtual displacement and δϕ is the virtual electric potential.  The surface 
boundaries are ∂Bt

0 and ∂Bq
0 , in which the virtual displacement and virtual electric 

potential are applied, respectively.  Applying the Gauss theorem to eq. (34) gives

	

δW =
B0

(∇ · P) ·δη dV −
B0

(∇ · ) δϕ dV

−
∂B t

0

(P · N − T) ·δη dA +
∂B q

0

( · N − q)δϕ dA .
	 (35)

Applying the stationary condition δW = 0 to eq. (35) proves that the functional is 
correctly formulated because eqs. (3)–(5) and (10) along with boundary conditions of eqs. (6) 
and (11) are fully recovered from it.  The next step is to perform the discretization and 
linearization to the functional of eq. (34) to obtain the solution to the problem.

3.3	 Primal Hellinger-Reissner functional
	 As a second functional to be examined, the primal Hellinger-Reissner-type 
functional,(22) the primary variables being the deformation mapping η, the electric 
displacement 𝔻 and the electric potential ϕ, is considered in order to obtain the solution 
of the following saddle point problem:

	 (ϕ, , η) = Arg{sup inf infηW(ϕ, , η)}ϕ ,	 (36)
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where the functional W(ϕ,𝔻,η) is

     W(ϕ, , η) =
B0

Ψ(F, ) dV +
B0

· ∇ϕ dV −
∂B t

0

η ·T dA +
∂B q

0

ϕq dA.	 (37)

Taking the first variation of the functional of eq. (37) with respect to the deformation 
mapping η, the electric potential ϕ and the electric displacement 𝔻 and letting δW = 0,

	

δW =
B0

∂Ψ
∂F

: δF dV +
B0

∂Ψ
∂

·δ dV +
B0

δ · ∇ϕ dV

+
B0

∇δϕ · dV −
∂B e

0

δη · T dA +
∂B e

0

δϕq dA .

	 (38)

Applying the Gauss theorem to eq. (38) gives

	

δW =
B0

(∇ · P) ·δη dV −
B0

(∇ · ) ·δϕ V +
B0

( + ∇ϕ) ·δ dVd

−
∂B t

0

(P · N − T) ·δη dA +
∂B q

0

( · N − q)δϕ dA .
	 (39)

Equation (39) shows that the primal Hellinger-Reissner-type functional is built correctly 
because the system of equations, eqs. (3)–(5) and (10) along with the boundary 
conditions of eqs. (6) and (11) are retrieved.

4.	 Numerical Framework

4.1	 Discretization
	 The weak form shown in eq. (34) or (38) needs to be discretized into finite elements.  

The domain B0 is discretized into finite elements B e
0 , that is, =

nel

e =1
B e

0 B e
0 , where nel is 

the number of elements.  The approximation of the geometry at the element level is 
expressed in terms of the nodal value Xα at node α and the shape function Nα as

	 X =
nen

α=1
NαXα,	 (40)

where Nα is the shape function of an element 𝑒 at node α in the local coordinate, and nen 
is the number of nodes per element.  In the present study, an isoparametric mapping is 
used as follows:
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	 η =
nen

α=1
Nαηα , ϕ =

nen

α=1
Nαϕα.	 (41)

The variations of the variables are

	 δη =
nen

α=1
Nαδηα , δϕ =

nen

α=1
Nαδϕα .	 (42)

The nodal displacement and nodal electric potential of eqs. (40) and (41) are to be 
inserted into eq. (34) or (38) to generate discretized equations of the integral equations.

4.2	 Linearization of primal dirichlet functional
	 The finite element residuals are obtained by substituting eqs. (40) and (41) into eq. (34) 
and rearranging it with variational variables:

	

Rα
η =

B e
0

∇Nα ·
∂Ψ
∂F

dV −
∂B e

0

NαT dA

Rα
ϕ = −

B e
0

∂
∂

Bα dV +
∂B e

0

Nαq dA .
Ψ

	 (43)

The residuals are used to set up an algebraic set of equations, to which the solution 
is found by the Newton-Raphson numerical method.  Since DEs generate a large 
deformation under an electric field, the variational equation of eq. (34) becomes 
highly nonlinear.  In order to solve nonlinear problems, eq. (34) should be linearized 
accordingly with respect to the deformation mapping η and the electric potential ϕ; 
therefore, the Newton-Raphson method may be utilized.  The linearized equation is δW + 
ΔδW = 0, where ΔδW is the directional derivative with the increment of the deformation 
mapping Δη and the electric potential Δϕ.  The linearized equation is given by ΔδW = 
ΔδW[Δη] + ΔδW[Δϕ].  
	 Since the finite element residual R is nonlinear against the variable d, the linearization 
with the Taylor series is executed as follows:

	 Rk +
∂Rk

∂d
dk = Rk+1 + K∆dk = 0∆ 	 (44)

where k is the iteration index, the nodal variables {d} = {η,ϕ} and the residual {R}={Rη,Rϕ}.

	 K =
∂R
∂d

, dk+1 = dk + ∆ dk+1 	 (45)
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Equation (43) can be expressed in the matrix form

	 [K ]{d} = −{R}.	 (46)

The element form of eq. (46) is expressed in the form

	
Kηη Kηϕ

Kϕη Kϕϕ
∆η
∆ϕ = − Rη

Rϕ ,	 (47)

where the stiffness elements are

	 K ηη
αβ =

∂Rα
η

∂ηβ
=

B e
0

(Bα :
∂2

∂F∂F
: Bβ) dV

Ψ ,	

	 K ηϕ
αβ =

∂Rα
η

∂ϕβ
= −

B e
0

(Bα :
∂2

∂F∂
· Bβ) dVΨ ,	 (48)

	 K ϕη
αβ =

∂Rαϕ
∂ηβ

= −
B e

0

(Bα ·
∂2

∂ ∂F
: Bβ) dVΨ ,	

	 K ϕϕ
αβ =

∂Rα
ϕ

∂ϕβ
=

B e
0

(Bα ·
∂2Ψ
∂ ∂

· Bβ) dV ,	

where Bα = ∇ Nα.  By solving eqs. (47) and (48) in a numerically iterative manner, the 
primary variables, the deformation mapping η and the electric potential ϕ are finally 
obtained.

4.3	 Linearization of primal Hellinger-Reissner functional
	 In a similar fashion, the finite element residuals of eq. (38) are

	 Rα
η =

B e
0

Bα ·
∂Ψ
∂F

dV −
∂Be

0

NαT dA,	

	 Rα =
B e

0

Nα
∂Ψ
∂

dV +
∂Be

0

NαBαϕα dV ,	 (49)

	 Rα =
B e

0

Bα · αNα dV +
∂Be

0

Nα q dAϕ .	

The system of equation is given by
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Kηη Kη 0
K η K K ϕ

0 Kϕ 0

∆η
∆
∆ϕ

= −
Rη
R
Rϕ

,	 (50)

where the stiffness elements are

	 K ηη
αβ =

∂Rα
η

∂ηβ
=

B e
0

Bα
∂2Ψ
∂F∂F

Bβ dV ,	

	 K η
αβ =

∂Rα
η

∂ β
=

B e
0

Bα
∂2Ψ
∂F∂

Nβ dV ,	

	 0K ηϕ
αβ =

∂Rα
η

∂ϕβ
= ,	

	 Ψ
BK η

αβ =
∂Rα

∂ηβ
=

B e
0

Nα
∂2

∂F∂ β dV ,	

	 Ψ
NKαβ =

∂Rα

∂ β
=

B e
0

Nα
∂2

∂∂ β dV ,	 (51)

	 ϕ
ϕ BβKαβ =

∂Rα
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0

ϕ

∂ β
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	 = 0ϕϕKαβ =
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ϕ

ϕ∂ β
.	

By solving eqs. (50) and (51) in an iterative manner, the primary variables, the 
deformation mapping η, the electric displacement 𝔻 and the electric potential ϕ are 
determined.

5.	 Discussion

	 Theoretical frameworks that can deal with electro-mechanical coupling effects for 
DE have been developed for years, particularly associated with nonlinear continuum 
mechanics, providing a sound theoretical basis for multi-physics problems.  
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	 With the help of nonlinear electro-continuum mechanics theory, numerical 
frameworks have been utilized to grasp the behavior of DE under multi-field external 
loads, the frameworks that employ the notion of the total stress and free energy.  The 
total stress, which is the sum of the mechanically induced stress and electrically 
generated stress, is commonly used for the analysis.  It is almost impossible to divide the 
total stress into the electrical stress and mechanical stress.  The Maxwell stress is related 
to the force exerted by the electric field on charges in the material.  A drawback of the 
total stress approach is that it is impossible to measure the physical quantities used in the 
analysis.
	 Alternatively, starting from the thermodynamic equilibrium theorem, the free energy 
function can be derived, not taking the total stress into consideration.  Instead of non-
measurable quantities such as Cauchy stress, electro-magnetic stress, and electric body 
force, measurable quantities can serve as independent variables.(29–33)  It is stated that 
the electric force or Maxwell stress cannot be defined correctly in dielectric media 
because it is no longer an operational concept.  The use of measurable quantities for 
work conjugates such as nominal stress versus stretch and nominal electric field versus 
nominal electric displacement is proven right to produce physically correct solutions 
to the problems.  It is important to acknowledge that a free energy function for which 
variational formulation may be obtained without employing the Maxwell stress, which 
turned out to be equivalent to those from others works.  The free energy function 
consists of mechanical and electrical variables; therefore, a mathematical formulation for 
numerical analysis is set up via the principle of virtual work.
	 In order to generate a rigorous formulation in the principle of virtual work, one needs 
to keep equations of virtual work consistent in the light of work conjugates; otherwise 
it may result in an incorrect output.  In this study, firstly, the fundamental kinematics 
and electrostatics eqs. (1) and (3)–(5), balance laws of electro-nonlinear-continuum 
mechanics of eqs. (7)–(18), and the free energy functions with primary variables are 
discussed in a consistent way.
	 Once a free energy function is chosen, applying the principle of virtual work to all 
the governing equations mentioned above gives the variational equations by considering 
them as minimization or saddle point problems with primary variables.  The variational 
equations are thus discretized into the finite elements and linearized for the Newton-
Raphson method to obtain the solution.  In the present study, the whole procedure 
for setting up a numerical framework for the simulation of the behavior of dielectric 
elastomers is illustrated.

6.	 Conclusion

	 In the present study, the systematic detail in building a numerical framework for 
solving electro-mechanical problems such as the behavior of DE is illustrated clearly.  
The electro-mechanical problems on DEs are complicated so that it is quite confusing 
putting together all governing equations and physics laws from both fields into a unified 
framework.  A transducer composed of dielectric elastomers and compliant electrodes is 
considered as an example.  Conventional analysis employs the total stress that is divided 
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into two different stresses: one is from mechanical loads and the other is due to an 
electric field.
	 However, it is impossible to measure the two different stresses separately that the 
recognition of the total stress may result in ambiguity.  In this study, instead of using the 
total stress concept, a thermodynamics approach is adopted to establish the free energy 
function.  With the free energy function, the principle of virtual work applies to build a 
weak form of the equations, with which the discretization and linearization are performed 
to be used in the finite element method.  The advantage of the thermodynamic approach  
over other approaches, such as the principle of potential energy, is the sound theoretical 
background.
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