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	 In this paper, we present a new and more realistic theoretical framework for lightwave 
propagation in a multimode graded index (GRIN) optical fiber when the fundamental 
mode is selectively excited into the fiber with constant radius bending, causing coupling 
between the various modes of the fiber.  First, a wave equation is formulated to represent 
the light behavior in the GRIN fiber and solved numerically by an eigenvalue method 
using a difference equation representation of the differential equation, resulting in the 
mode amplitudes.  Next, the local normal mode fields at a succession of infinitesimal 
corner bends are matched to calculate the bending-induced mode coupling.  Finally, 
the power in the fundamental mode vs the distance along the propagation direction is 
calculated, assuming that this is the only mode that is excited initially.  For large bend 
diameters, the output data indicates that, when the fundamental mode is excited, the 
light remains in a set of low-order modes.  However, for small radius bends (less than 
1 cm), the oscillations become irregular and the power is not completely located in the 
fundamental mode when z > 0.  While this is consistent with experimental observations, 
it contradicts the predictions of the previous oversimplified model.

1.	 Introduction

	 The research in this paper was motivated by an interest in using multimode graded 
index optical fibers as the transmission medium in intrusion-alarmed communication 
systems.(1,2)  In such systems, data is transmitted using the lowest order mode, while 
the intrusion-monitor signal is simultaneously transmitted using high-order modes.  An 
attempted intrusion results in greater attenuation of the monitor signal, thereby setting off 
an alarm.  However, for such a system to be effective, it is essential that a perturbation (e.g., 
fiber bend) introduced by an intruder removes the light from the high-order modes more 
effectively than that from the low-order modes.  Thus, in this context, it is meaningful 
to investigate the bend-induced mode couplings and lightwave behavior in graded index 
multimode fibers undergoing bending.
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	 Optical propagation in graded index fibers subject to mode-coupling perturbations or 
mode-selective attenuation has already been studied for decades owing to its implications 
for communication systems using these fibers.  Furthermore, not only means of 
communication links but also bending properties have been used for optical fiber sensor 
applications such as pressure, strain, vibration, and displacement sensors.
	 As a result, several studies of graded index fiber modes and bending have been 
reported with various objectives.(3–11)  Mode couplings in GRIN fibers have been studied.(5,6)  
The effects of bending and its sensor application for graded index fibers in which a few 
low-order modes are excited have been discussed.(8)  Studies of the bending effects in 
optical fibers have also been reported.(9–11)  In addition, mode coupling at bends in optical 
fibers supporting one or only a few guided modes has been analyzed by considering the 
local normal modes for the corresponding straight waveguide.(11)

	 From a previous theoretical study,(2) it is known that for sufficiently large bend radii, 
little coupling from the fundamental mode to high-order modes is expected.  For small 
bend radii, the fundamental mode power has been reported to oscillate as a function of 
the propagation distance in the bent fiber, where the period of oscillation is equal to the 
beat length of the graded index fiber modes.  However, this model is oversimplified on 
the basis of the assumption that the quadratic variation in refractive index extends to 
infinity.  Accordingly, the objective of this research is to develop a more realistic model 
of mode coupling in a graded index optical fiber experiencing bending around a constant-
diameter mandrel.(2)  In particular, the calculations are related to bend-induced mode 
coupling in a graded index fiber with fundamental mode excitation.

2.	 Analysis of Wave Equation

2.1	 Formulation
	 The objective is to determine the effect of the “finite core” on bend-induced mode 
coupling in a graded index fiber.  This deals with an unresolved issue from the previous 
model,(2) which treats the bend-induced mode coupling problem for an index variation,

	 n = n1 – Δn(x2+y2) / a2,	 (1)

which extends to infinity (“infinite core case”), where n1 is the refractive index of the 
core and a is the core radius.  It is already known that for the “finite core” case with 
strong intermode coupling (small radius bend), losses occur in the low-order modes, and 
these losses need to be quantified.  To solve the “finite core” issue, solutions to the wave 
equation are needed for the mode fields of a graded index fiber with an index variation,

	 n = n1 – Δn(x2+y2) / a2,      x2+y2 ≤ a2,	 (2)

	 n = n1 – Δn,               a2 < x2+y2 < b2,	 (3)

where a is the core radius and b is the fiber radius.
	 The mode fields ulm(r,θ) are the solution to 
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where k0 = 2π/λ, and r and θ are the cylindrical coordinates.  The solutions to the 
equation can be written as 

	 ulm(r,θ) = flm(r)eimθ,	 (5)

where m is an arbitrary integer and l is a positive integer, such that the number of “zeroes” 
in flm(r) equals l for any m.  The equation for f then becomes
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This f is only a function of r; thus, it can be determined by the given boundary 
conditions.  Inside the core, the solutions have the form f (r) = P(r)e−α

2 r2 /2 , where P(r) 
is a polynomial in r and α is defined by α = (2πNA/λa)1/2, where NA is the numerical 
aperture of the fiber and is given by NA = (2n1Δn)1/2.  For example, if NA equals 0.2, 
λ = 1.3 μm, and the core radius equals 25 μm, then α = 0.196 /μm.  Outside the core, 
the solutions can be expressed in terms of modified Bessel functions.  The boundary 
conditions are that f and f′ are continuous at r = a, and f(b) = 0.  As Bessel functions are 
difficult to deal with, this equation is solved as an eigenvalue problem by numerical 
analysis.

2.2	 Computational analysis
	 As the mode amplitude is obtained by solving differential eq. (6) induced from 
the wave equation, the best way to solve the equation numerically is treating it as an 
eigenvalue problem using a difference equation representation of the differential equation.(12)  
This avoids having to deal with the complexity of Bessel functions.  Thus, to convert eq. (6) 
into a difference equation form, the continuous terms need to be replaced with discrete 
terms.  Hence, the first and second derivative terms are converted into discrete terms as 

	 (
d f
dr

)r j =
f j+1 − f j−1

2∆r
,	 (7)

	 (
d2 f
dr2 )r j =

f j +1 − 2 f j + f j−1

(∆r)2 .	 (8)

Here, fj = f(rj), fj+1 = f(rj + Δr), fj−1 = f(rj − Δr), and rj = jΔr.  By collecting the terms and 
replacing the expressions in eqs. (7) and (8) with related terms, eq. (6) can be rewritten 
as

	 fj+1 = (Q/Qp)∙fj + (Qm/Qp)∙fj−1,	 (9)
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where Q = 2 − nj·(Δr)2, Qp = 1 + 0.5·Δr/rj, and Qm = 0.5·Δr/rj − 1.  From eq. (9), fj+1 
can be calculated by knowing fj−1 and fj.  Therefore, f0 and f1 are determined to get the 
process started in the m = 0 and m ≠ 0 cases, respectively.  When m = 0, assuming 
f (r) = e−α

2r2
 as a trial solution for a small r, then f0 = 1 and f1 = 1 + C2(Δr)2, where 

C2 = −
∆(β2)

4
.  Likewise, f0 = 0 and f1 = (∆r)m2  when m ≠ 0.  The following procedure is 

then executed to solve the difference equation.

1.	 Choose a very small Δr.
2.	 Choose trial values for Δ(β2).
3.	 Determine the first two values for f(r) in both the m = 0 and m ≠ 0 cases.
4.	 Use the difference equation to calculate f2, f3, f4 ∙∙∙ fN.
5.	 Iterate this procedure with a new Δ(β2) until |fN| < ε, where ε is a predetermined 

small number.

Here, when performing the above procedure, Δr = 0.1 micron and ε = 10−6 or less.  The 
program is iterated until the new trial Δ(β2) value makes the fN value converge near 0 for 
each m value and all possible numbers of zero crossings.

3.	 Coupled Mode Analysis

	 Next, the coupling between modes caused by a constant-diameter bend is considered.  
The normalized field distributions u(r,θ) for various modes can be stored and integrated 
to determine the coupling constants kij.  Once these are known, the equation representing 
the amplitude variation of each mode as a function of the fiber distance, such as eq. (18) 
from ref. 2, can be solved numerically to determine the power in each mode as a function 
of z.  Of particular interest is when A00 = 1; Aij(0) = 0 for (i,j) ≠ (0,0), in which case, 
all the power is in the lowest order mode at z = 0.  To determine the power distribution 
between the fiber modes as a function of distance in a uniform bend, the coupled mode 
analysis of a circular bend in a fiber is performed.
	 First, a single corner bend is used, where the fiber axis changes direction through 
the angle φ.  Figure 1 shows the local coordinate axis for the corner bend.  For the light 
approaching the bend, it is assumed that the electric mode field distribution is ulm(r,θ) = 
flm(r)eimθ, whereas after the bend, the electric mode field distribution is 

	 u(r,θ) = ∑Al'm'ul'm' (r,θ),	 (10)

where Al'm's are constants.
	 A bend in an optical fiber can be considered as a continuous succession of 
infinitesimal corner bends.  Thus, at a corner bend under a field matching condition for a 
small φ (φ<<1), and since z = xsinφ, the following can be written as

	 ulm = Al m ul m = ulmeiβc xφ,	 (11)
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where βc = 2πn1/λ.  For a small φ (φ<<1),  eiβc xφ ≈ 1 + i βc x φ .  When multiplying both 
sides of eq. (11) by u*

l m , this produces

	 Al m ≅ iβcφ xulm ul m dxdy* .	 (12)

Since x = rcosθ = r[
eiθ + e− iθ

2
], eq. (12) can be rewritten as

	 Al m = iβcφ r2[
eiθ + e− iθ

2
]ulm ul m drdθ* ,	 (13)

which equals 0 unless m' = m ± 1.
	 While the above results are for a corner bend, they can also be transformed into 
expressions that are applicable to a continuous bend.(11)  Thus, a continuous bend is 
modeled as a succession of corner bends of Δφ separated by Δz in the propagation 
direction, and then Δz → 0 as Δφ/Δz remains constant.  It can be easily shown that Δφ/Δz 
= 1/R, where R is the radius of the curvature of the bend.  This then allows

	
dAl m

dz
= i

lm

k(l m )( lm ) Almei∆ (l m )(lm)z ,	 (14)

where

	 ∆(l m )( lm ) = βl m − βlm,	 (15)

	 k(l m )( lm ) =
βc

R
r2 [

eiθ + e− iθ

2
]ulm ul m drdθ* .	 (16)

Fig. 1.	 Local coordinate axis for corner bend.
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	 Now, eq. (14) can be numerically solved to determine the mode coupling that results 
from a continuous bend.  The key parameters are the coupling constants, given by eq. 
(16), and the phase mismatch factor Δ(l'm')(lm) given by eq. (15), representing the difference 
in propagation constant between the modes of the graded index fiber.  Numerical values 
for the constants k(l'm')(lm) and Δ(l'm')(lm) can then be calculated for the given fiber parameters.  
In this paper, it is assumed that n1 = 1.46, λ = 1.3 μm, and α = 0.196 /μm.  From eq. (16), 
it can be seen that the coupling constants are inversely proportional to the constant bend 
radius R.  Thus, a decreasing bend radius produces a stronger coupling.
	 A program is written to solve eq. (14) numerically in order to determine the power 
distribution between the modes as a function of the distance z for a uniform, continuous 
bend.  It is assumed that all the power is in one mode at z = 0.  In addition, the coupling 
perturbation is proportional to x = rcosθ = r(eiθ + e−iθ)/2.  This is a one-dimensional 
problem as coupling only occurs between a mode with m = m0 and modes with m = m0 
± 1, in which the field varies in the direction perpendicular to the bend axis.  For well-
guided modes (low mode index), the “finite core” mode solutions u(r,θ) should approach 
the infinite core solutions in ref. 2.  Therefore, this is a good way to confirm the validity 
of the numerical solutions to eqs. (6) and (14).  Calculation of the coupling constants, 
designated k(l'm')(lm) in eq. (16), and the propagation constant differences Δ(l'm')(lm) in eq. (15), 
followed thereafter.

4.	 Results and Discussion

4.1	 Results
	 The above mode coupling analysis was performed numerically to determine the mode 
power distribution between modes for a uniform continuous bend.  All the power was 
assumed to be initially in the fundamental mode and considered as a one-dimensional 
problem, since coupling only occurs between modes in which the mode field varies in 
the direction perpendicular to the bend axis, e.g., between modes in the x-direction for 
bending around a mandrel with its axis in the y-direction.  It was also assumed that the 
parabolic index variation extended to the radius a, as in a real fiber, rather than to infinity, 
as in the previous model.
	 As a prerequisite to presenting the results of the coupled mode calculations, Table 1 
presents the number of guided modes with β > n1k0 − dbmax.  This table is based on the 
eigenvalues found in § 2, using the following conversion: dbmax = 0.0712*db2.  A small 
value for dbmax indicates that only the most strongly guided modes are included.  All the 
core modes are included if dbmax = 0.0662.  When enumerating the number of modes, 
the solutions for m = 1, 2, 3, … are counted twice to account for the modes with negative 
m-values (i.e., twofold degeneracy).
	 The relative optical power in the fundamental mode as a function of the propagation 
distance for various bend radii when dbmax = 0.01 is shown in Figs. 2–5.  In addition, 
the figure showing the previous results of Asawa and Taylor cited from Taylor is shown 
in Fig. 6, which helps in comparing the results shown in Figs. 2–5.  Figure 7 shows the 
number of core modes vs the bend radius R when the relative powers contained in those 
modes in the first peak were 99, 90, and 50% of the incident power.
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Table 1
dbmax values vs number of core modes.
dbmax Number of core modes with db2 < dbmax
0.01   1
0.02   6
0.03 15
0.04 26
0.05 45
0.06 57
0.0662 88

Fig. 4 (left).  (Color online) Relative optical power in fundamental mode vs z for R = 0.5883 cm (dbmax 
= 0.01).
Fig. 5 (right).  (Color online) Relative optical power in fundamental mode vs z for R = 0.4243 cm 
(dbmax = 0.01).

Fig. 2 (left).  (Color online) Relative optical power in fundamental mode vs z for R = 3.53 cm (dbmax 
= 0.01).
Fig. 3 (right).  (Color online) Relative optical power in fundamental mode vs z for R = 0.9413 cm 
(dbmax = 0.01).
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4.2	 Discussion
	 The difference between the model presented in this paper and the previous model is 
that the previous model assumes that the quadratic index variation extends to infinity,(2) 
which means that as β becomes smaller, the mode solutions of both f(r) and β with 
equally spaced βs become less accurate representations of the true mode solution.  With 
the previous model, periodic power variations are predicted for both large and small 
bend radii, as in Fig. 6, which presents the calculated power in the fundamental mode 
of a graded index fiber as a function of the fiber length and long bends with radii of 1 
and 0.5 cm.  Thus, when using the actual fiber modes in the previous model, small bend 
radii result in excitation of the modes in a regime where the β spacing is not uniform; 
in addition, the spatial periodicity in the mode amplitudes can no longer be predicted.  
This is particularly evident when comparing the results in Figs. 2–4 in the present study 
with the previous results in Fig. 6.  In Fig. 2, with a large bend radius of 3.53 cm, the 
power oscillates in and out of the fundamental mode with a spatial period of 1.15 mm.  
This agrees with the predictions of the previous Asawa and Taylor model, as only low-
order modes are excited and the “infinite quadratic refractive index variation” is a good 
approximation for those modes.  The results in Fig. 3 with a 0.9413 cm bend radius 
still agree fairly well with the previous model, yet only 99% of the power returns to 
the fundamental mode vs 100% predicted using the previous model.  Note also that the 
spatial period of the oscillation is decreased to 0.95 mm.  However, for the smaller bend 
radii of 0.5883 and 0.4243 cm in Figs. 4 and 5, respectively, the behavior is radically 
different from the previous model, as the power oscillates irregularly owing to the fact 
that high-order modes with irregular β spacings are excited with the bending of the fiber.

Fig. 6 (left).  (Color online) Previous results of Asawa and Taylor.
Fig. 7 (right).  (Color online) Number of core modes vs R.
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5.	 Conclusions

	 While the predictions of the previous “oversimplified” model are assumed to be 
valid for large radius bends, this study investigated both the bend radius regime when 
the previous model breaks down and the mode coupling behavior in this regime.  The 
analysis relied upon numerical (difference equation) solutions of a partial differential 
equation to (1) obtain mode solutions for a graded index fiber, taking a finite extension 
of the core and cladding into account, and (2) obtain solutions to the coupled mode 
equations vs the distance of propagation in a constant-radius bend to obtain the 
amplitudes of all the fiber modes.  The results presented here confirm the predictions 
of the previous model for bend radii above 1 cm.  In this case, when the fundamental 
mode is initially excited, the power oscillates back and forth between the fundamental 
mode and high-order modes with a constant spatial period.  However, for smaller bend 
radii, the power tends to oscillate irregularly and never completely returns to the initially 
excited mode.  This behavior is attributed to the excitation of the high-order modes for 
which the propagation constants are not regularly spaced.  Furthermore, in contrast to the 
previous model, the proposed model provides an easier approach that avoids the need for 
complicated Bessel functions or quantum mechanics.
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