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 Hairlike structures can be found in many living things, and are considered to be 
the fundamental sensing structure, especially for insects.  In this paper, we present a 
bioinspired hairlike acceleration sensor using an artificial filiform sensillum structure.  
The hairlike acceleration sensor is fabricated using a rigid metal rod attached to a thin 
piezoresistive membrane.  When external acceleration is applied to the rod, the torque 
generates the rotational angle, thus resulting in the deflection of the membrane.  The 
noise equivalent input acceleration resolution, the input acceleration range, and the 
sensitivity of the fabricated sensor are 86 mg, ±5 g, and 0.576 mV/g, respectively.

1. Introduction

 Hairlike structures can be found in many living things: insect’s filiform sensillum,(1,2) 
fish’s neuromast,(3) spider’s hair,(4) and human’s ear.(5)  The biggest similarity among 
these hairlike structures is that they sense the displacement or movement of the fluid 
surrounding them.  The stiffness and flexibility of a hairlike structure determine the 
functionality of sensors.  When hairlike structures are flexible with low frequency 
dynamics, the structures act as flow sensors.  When hairlike structures are rigid with high 
frequency dynamics, the structures act as vibration sensors.  
 Trichoid sensilla (hair sensilla) are considered to be the fundamental sensing 
structure for insects.(6)  There are two types of insect hair-type sensilla: thick bristles and 
trichobothria.(2)  A typical illustration of an insect’s hairlike sensor is shown in Fig. 1.  



438 Sensors and Materials, Vol. 27, No. 6 (2015)

The typical filiform mechanosensory hairs on the cerci of the Acheta domesticus cricket 
are shown in Fig. 1(a).(7)  A magnified illustration of the hair sensor is shown in Fig. 1(b).  
 The hairlike sensilla are the first-order levers, which transmit the deflection of the 
hair to the dendrite tip.  The dendrite tip consists of microtubule structures that, upon 
lateral deflection, would open a series of ion channels on their walls.(2)  The ions will be 
transmitted as neuron signals to the nervous system of the insect.  From the mechanical 
point of view, the hair structure can be modeled using a second-order system with 
torsional inertia, a spring, and a damper.(8–10)  
 Many studies on biomimetic hairlike sensors were performed.  The hairlike structures 
are used extensively in many living things to achieve merged functionalities including 
flow sensing, temperature sensing, vibration sensing, and so on.  The biomimetic sensors 
based on the hairlike structures offer possibilities for multifunctional miniaturized sensor 
platforms, because many mechanical and chemical sensing functions can be integrated to 
the hairlike structures.
 Biomimetic hair sensors for air flow sensing(8,11,12) and acoustic sensing(13) were  
reported.  Biomimetic hair sensors based on cricket hair were also reported.(14,15)  

Biomimetic hair-based structures had been exploited earlier with applications in both 
actuation and sensing,(16,17) but seldom for inertial measurement.  Previously, a hairlike 
accelerometer was investigated;(18) however, its response to external acceleration was not 
demonstrated.  
 In this paper, we present a bioinspired hairlike acceleration sensor using an artificial 
filiform sensillum structure.  The design, fabrication, and experimental evaluation of the 
bioinspired hairlike sensor will be discussed.  
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Fig. 1. Filiform mechanosensory hair sensor of insects: (a) filiform mechanosensory hairs on the 
cerci of an Acheta domesticus cricket(7) and (b) typical structure of hair sensor.
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2. Design and Modelling

 The concept of the presented artificial hairlike acceleration sensor is shown in Fig. 2.  
A rigid metal rod is attached to a thin membrane.  When external acceleration is applied 
to the rod, the torque generates the rotational angle, thus resulting in the deflection 
of the membrane.  The resistances of Wheatstone bridge piezoresistors are changed 
owing to the deflection of the membrane.  The applied acceleration can be sensed by 
measuring the voltage between the output nodes of the bridge resistors.  The fabrication 
process flow of the hairlike acceleration sensor is shown in Fig. 3.  After preparing the 
piezoresistive membrane sensor [Fig. 3(a)], adhesive glue is dispensed on the membrane 
sensor [Fig. 3(b)], and then the cylindrical metal rod is attached using the adhesive glue 
to the membrane sensor [Fig. 3(c)].
 The hairlike acceleration sensor can be modeled as a second-order rotational 
mechanical system with the moment of inertia J, rotational stiffness S, and rotational 
damping R, as shown in Fig. 4.  The rotational angle due to the external acceleration is 
written as

  , (1)

where θ(ω) is the rotational angle and Ta is the amplitude of the torque applied to the hair 
structure.  The radius and length of the metal rod are 0.5 and 14 mm, respectively.

Fig. 2. (Color online) Concept of artificial hair-like acceleration sensor.
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 The deflection of the membrane is measured using the piezoresistive membrane-
type transducer.  The transducer utilizes the Wheatstone bridge configuration and is 
implemented using the anodically bonded glass to a chemically etched silicon diaphragm.  
The typical impedance and sensitivity of the bridge are 5 kΩ and 0.35 mV/psi, 
respectively.

Fig. 3. Fabrication process flow of hairlike acceleration sensor: (a) piezoresistive membrane 
sensor preparation, (b) adhesive glue dispense, and (c) metal rod attachment.
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Fig. 4. Mechanical modeling of hair-like acceleration sensor.
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3. Experimental Results

 The fabricated hairlike acceleration sensor is shown in Fig. 5.  The piezoresistive 
membrane sensor is wirebonded to a 16-pin ceramic package (left), and the metal rod is 
attached to the membrane using adhesive glue.
 For performance evaluation, the fabricated sensor and the reference accelerometer, 
B&K8305, are mounted on the vibration exciter, as shown in Fig. 6.  The sensitivity of 
the reference accelerometer is 1.25 pC/g, and the deviation of the sensitivity from 0.2 to 
3750 Hz is less than 1%.  The excitation source from a function generator is amplified 
using the power amplifier, and the power amplifier shakes the vibration exciter.  The 
output signals of the fabricated sensor and the reference accelerometer are measured 
using the oscilloscope and the spectrum analyzer.
 The measurement results are shown in Fig. 7.  The output spectrum and the time 
domain outputs with the input sinusoidal acceleration of 40 Hz, 5 g are shown in Figs. 
7(a) and 7(b), respectively.  The signal level, noise level, and signal-to-noise ratio are 
measured to be −50.7, −92, and 41.3 dB, respectively.  The noise equivalent input 
acceleration resolution is measured to be 86 mg.  The time domain outputs of the 
fabricated sensor and reference accelerometer are shown in Fig. 7(b).  The fabricated 
sensor shows almost the same output as the reference accelerometer.  The input-output 
characteristics at 40 Hz input acceleration are shown in Fig. 7(c).  The input acceleration 
range, the sensitivity of the fabricated sensor, and the square of the correlation 
coefficient, R2, are ±5 g, 0.576 mV/g, and 0.9997, respectively.  

Fig. 5 (left).  (Color online) Fabricated hair-like acceleration sensor.
Fig. 6 (right).  Setup for performance evaluation.
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4. Conclusions

 In this paper, we present a bioinspired hairlike acceleration sensor using an artificial 
filiform sensillum structure.  The hairlike acceleration sensor is fabricated using a rigid 
metal rod attached to a thin piezoresistive membrane.  When external acceleration 
is applied to the rod, the torque generates the rotational angle, thus resulting in the 
deflection of the membrane.  The resistances of Wheatstone bridge piezoresistors are 
changed owing to the deflection of the membrane.  The applied acceleration can be 
sensed by measuring the voltage between the output nodes of the bridge resistors.  
The noise equivalent input acceleration resolution, input acceleration range, and the 
sensitivity of the fabricated sensor are 86 mg, ±5 g, and 0.576 mV/g, respectively.  
The fabricated sensor prototype shows a high linearity.  The resolution can be further 
improved with a low-noise analog front end.

(a) (b)

(c)

Fig. 7. (Color online) Measurement results: (a) output spectrum at 40 Hz, 5 g input acceleration, 
(b) time domain output of fabricated sensor and reference accelerometer, and (c) input-output 
characteristics at 40 Hz input acceleration.
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