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	 Friction exists in mechanical systems, such as machine-tool feed drives, and causes 
undesired position tracking errors.  The most difficult problem in friction compensation 
is nonlinear friction during changes in motion direction or in low velocity regions 
causing significant tracking errors.  Many static and dynamic friction models have been 
proposed to compensate for frictional effects to reduce the tracking error in the desired 
trajectory, in particular, in low velocity regions.  Although recently developed dynamic 
friction models consider the pre-sliding regime friction behavior and friction properties 
in regions of near-zero velocity, these existing friction models consider only limited 
sources of friction.  In this paper, we present a new friction model that considers many 
friction sources with complicated and nonlinear properties not only in near-zero velocity 
regions but also in higher velocity regions.  In addition, we present a controller design 
that includes a feed forward compensation term with the proposed friction model and a 
disturbance observer.  Experiments were conducted to compare the control performance 
between the proposed and conventional friction models.  The proposed controller largely 
improved the control performance, reducing the maximum contouring error to less than 1.6 
µm.

1.	 Introduction

	 Friction in mechanical systems such as machine-tool feed drives is the main 
factor reducing tracking accuracy and machining surface quality.  Therefore, friction 
compensation is generally required in controller design for high precision motion.  A 
controller that compensates for friction without using high-gain control loops inherently 
requires a suitable friction model: hence, this controller is called a model-based friction 
compensator.  A good friction model is also necessary to analyze the stability, predict the 
friction behavior, and perform simulations.
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	 Many simple and advanced friction models have been proposed in the literature.  
Most existing model-based friction compensators use conventional static friction models 
that describe the static map between velocity and friction force.(1)  The conventional static 
friction model does not describe friction in the pre-sliding regime and is insufficient to 
represent the friction behavior at very low velocities.  Dynamic friction models have 
been proposed to compensate for these shortcomings.(2)  The LuGre friction model is 
widely applied owing to its simplicity and relatively good performance.(3)  Swevers et 
al.  have improved the LuGre model, resulting in the Leuven integrated friction model,(4) 
which has been further modified by Lampaert et al.(5)  Recently, Al-Bender et al. 
developed the so-called generalized Maxwell-slip (GMS) friction model.(6)

	 Various model-based and non-model-based friction compensation schemes have 
been proposed thus far.  Armstrong-Helouvry et al. have carried out a survey on friction 
models and compensation methods for controlling machines with friction.(7)  Canudas 
de Wit and Lischinsky utilized their LuGre friction model for adaptive friction 
compensation.(8)  Tjahjowidodo et al. have shown that a Maxwell-slip-model-based 
nonlinear gain scheduling controller yields a fast response and a low steady-state error 
for friction compensation in electromechanical systems.(9)  Tung et al. applied a non-
model-based friction compensation approach in the form of a repetitive controller and 
demonstrated improved tracking performance and quadrant glitch compensation.(10)  
Lampaert et al. compared model-based and non-model-based friction compensations 
for a tracking application on a dedicated test setup (a tribometer) and concluded that 
a combination of GMS friction model-based feed forward and disturbance observers 
yielded the best performance.(11)

	 Regarding machine-tool feed drives, Erkorkmaz and Altintas proposed an unbias 
identification method and proved the effectiveness of static friction compensation.(12)  
Jamaludin et al. used a dynamic friction model (GMS friction model) for friction 
compensation techniques and evaluated it experimentally on a linear-drive XY table.(13,14)  
The GMS friction model or other dynamic friction models provide better results than the 
conventional static friction model only in the low velocity region.
	 In this paper, we focus on a static friction model and assume that nonlinear friction 
phenomena appear both in very low and high velocity regions.  We propose a new 
nonlinear friction model that includes a model of nominal linear frictions (e.g., Coulomb 
and viscous frictions) and a number of nonlinear friction sources represented by 
Gaussian functions.  In addition, we present a controller design that consists of a feed 
forward compensation term with the proposed friction model and a disturbance observer.  
Experiments were conducted to compare the control performance between the proposed 
and conventional static friction models.  The proposed controller largely improved the 
control performance, reducing the maximum contouring error to less than 1.6 µm.

2.	 Conventional and Proposed Static Friction Models

	 The conventional static friction model describes the steady-state friction behavior, 
which depends on the sliding velocity v.  The model incorporates the Coulomb, viscous, 
and Stribeck frictions as follows:
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	 Ff (v) = α0 + (α1 − α0)e−(vv−1
0 )δ sgn(v) + α2v,	 (1)

where Ff, v, α0, α1, and α2 are scalar and represent the friction force, motion velocity, 
Coulomb force, static friction, and viscous friction coefficients, respectively.  The 
Stribeck friction model parameters are the Stribeck velocity v0 and superscript δ.
	 Although the friction model in eq. (1) is widely used, it considers only three terms 
with fixed structures, and therefore its prediction of friction behavior is limited.  In this 
paper, we present a new friction model that considers a number of friction sources with 
complicated and nonlinear properties as follows:

	 Ff (v) = η0sgn(v) + η1v +
n

i =1
gia exp

v − gib

gic

2[ [− ,	 (2)

where η0 (>0) and η1 (>0) are the nominal Coulomb force and viscous friction 
coefficients of the feed drive, respectively.  The nonlinear properties of the friction are 
defined by the sum of n Gaussian equations in which gia, gib, and gic denote the height 
of the Gaussian curve’s peak, the position of the center of the peak, and the width of 
the curve, respectively.  The proposed model can include many nonlinear properties 
by increasing the number n; thus, we believe that it can be applied to various frictional 
properties.  The limitation of this model is that it does not include dynamic properties 
as in ref. 3.  However, in our study, the dynamic properties of the object were not seen 
in the experiment such that the proposed model would be effective for the feed-drive 
system.  In particular, the proposed model is effective for the object with many friction 
sources such as a sliding guide, a ball screw and a motor gear.

3.	 Identification of Friction Models

3.1	 Friction observation
	 To identify the friction model parameters in eqs. (1) and (2), we first employed a 
proportional-derivative controller (PD controller) and a disturbance observer to obtain 
the friction value.  The typical mechanical dynamics is represented as follows:

	 mẍ + d = f ,	 (3)

where m (>0), x, d, and f are the table mass, position, friction force with disturbance, and 
driving force (control input), respectively.
	 A PD controller with a disturbance observer was designed on the basis of the 
dynamics in eq. (3) as follows:

	 f = m̄(r̈ − kp ė − kd e) + d̂,	
	 e = x − r,	 (4)
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where m̄, kp, kd, e, and r are the nominal mass, proportional gain, derivative gain, tracking 
error, and reference position, respectively.  The friction force d was estimated as d̂ by a 
disturbance observer(15) as follows:

	 ˙̂v =
1
m̄ ( f − d̂) + kev(v̂ − ṙ),	

	 ˙̂d = ked(v̂ − ṙ),	 (5)

where v̂ is the estimated velocity and kev and ked are disturbance observer gains.

3.2	 Experimental setup
	 The parameters of the friction model in eqs. (1) and (2) were identified 
experimentally.  The experimental setup was a typical biaxial feed-drive system shown 
in Fig. 1, which consisted of two axes driven by DC servo motors coupled to drive 
two ball screws.  We assumed that the friction on each feed drive was the sum of many 
friction sources such as ball bearings, gears, and ball screws and nuts.  A rotary encoder 
whose resolution for position measurement was 0.025 µm was attached to each feed-
drive servomotor to measure the actual position of the feed-drive system.  In the absence 
of a velocity sensor, the velocity signal was calculated using the numerical differentiation 
of the position measurement.  The system was controlled by a personal computer (OS, 
Windows; CPU, 1 GHz) with a sampling time of 5 ms.  C++ language was used to write 
the control program.  To provide a fixed sampling period in a Windows environment, 

Fig. 1.	 (Color online) Biaxial feed-drive system.



Sensors and Materials, Vol. 27, No. 10 (2015)	 975

we employed a timer on a counter board with four channels of 24-bit up/down counters.  
Equivalent mass parameter values in eq. (3) for x- and y-axes of the experimental setup 
were mx = 57.65 kg and my = 58.93 kg, respectively.

3.3	 Identification of conventional model
	 When the dynamics in eq. (1) operate at a constant velocity, the driving force equals 
the friction force in eq. (3).  Hence, constant velocity motion was enforced using a PD 
feed-drive controller [eq. (4)] with a disturbance observer [eq. (5)].  This experiment was 
repeated for constant velocities of 0.01, 0.04, 0.08, 0.15, 0.2, 0.4, 0.5, 1.0, 1.5, 2.5, 3.0, 
3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, and 9.0 mm/s.  The PD feedback gains kp 
= 1600 s−2 and kd = 80 s−1, and the disturbance gains kev = 40 s−1 and ked = 20 kgs−1 were 
assigned in the controller.
	 Figure 2 shows the measured and fitted static friction model represented by eq. (1).  
The Stribeck effect did not clearly appear in the experimental results, and it was assumed 
to be zero.  The least-squares method was used to obtain the optimized friction model 
parameters.  The obtained parameters were α0 = α1 = 1255.38 N, and α2 = 105.04 Ns/mm 
for the x-axis, and α0 = α1 = 1066.05 N and α2 = 138.86 Ns/mm for the y-axis.

3.4	 Identification of proposed model
	 Because the conventional friction model has a simple structure, it cannot describe 
friction well in both high and low velocity regions.  To obtain friction more precisely, we 
identified the proposed friction model in eq. (2) from sinusoidal signal tracking results.  

Fig. 2.	 (Color online) Measured and computed static friction-velocity map with a conventional 
model.
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A PD controller and a disturbance observer in eqs. (4) and (5) were used for this control, 
and driving forces were measured.  Then, the friction force at each sampling time was 
estimated.
	 We explain here the method for the x-axis; a similar method was applied to the y-axis.  
The following sinusoidal reference was used in the identification experiments:

	 r = −20 + 20cos(0.475t) (mm),	

	 0.0 < t <
4.0π
0.475

(s),	

where r is the reference position on the x-axis.  The reference sinusoidal signal was 
repeated several times to eliminate uncertainty.  Controller gains for the PD controller 
were kp = 1600 s−2 and kd = 80 s−1, and disturbance observer gains were kev = 40 s−1 and 
ked = 20 kgs−1.
	 Although the reference signal is well tracked in Fig. 3, a tracking error with a 
maximum magnitude of around 5 µm still remains.  The measured driving force is 
shown in Fig. 4, in which chattering is also visible.  To avoid the effect of noise in the 
identification, we assumed that ṙ ẋ and r̈ ẍ, and then from eq. (3), the disturbance 
force was estimated as follows:

	 d = f − m̄r̈.	 (7)

	 The fluctuating green line in Fig. 5 denotes the disturbance force obtained using eq.  
(7).  We assumed that the estimated disturbance at x comprises only friction and white 
noise with a zero mean value.  A lower frequency filter was used to eliminate this noise 
and to obtain the friction as shown by the blue dotted line.  From Fig. 5, we see that the 
actual friction force is nonlinear in both the low and high velocity regions.  Therefore, 

Fig. 3.	 (Color online) Reference and measured x-positions.

(6)



Sensors and Materials, Vol. 27, No. 10 (2015)	 977

the conventional friction model was not sufficient for describing the actual friction in a 
feed-drive system, and the nonlinear static friction model in eq. (2) was proposed.  The 
Gaussian function is not a unique candidate for describing nonlinear properties in Fig. 
5, and possible candidates are a sinusoidal function, a polynomial function, a spline 
and so on.  The advantage of the Gaussian function is that frictional properties from 
difference sources can be added easily by changing the number n in eq. (2).  The number 
of Gaussian functions used is equal to the number of peaks of the estimated friction (circles 
in Fig. 5).  For curve fitting in Fig. 5, the Nelder–Mead downhill simplex method(16) was 
employed, and the result is represented by a red line.  The parameters in eq. (2) for x and 
y are shown as estimated values in Table 1.

Fig. 4.	 (Color online) Driving force.

Fig. 5.	 (Color online) Measured and estimated frictions.
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4.	 Contouring Controller Design with Friction Compensation and 
Experimental Results

4.1	 Contouring controller design
	 In machining, the contour error is an importance criterion to define the quality of the 
machined surface.  In this study, the proposed friction compensation was applied to a 
contouring controller.(17–26)  
	 Figure 6 schematically explains the relationship between the tracking error in each 
feed-drive axis and the contour error.  The coordinate ∑w, whose x- and y-axes correspond 
to the feed-drive axes, is a fixed frame.  The curve C in the figure is the desired contour 
curve of the point of a machined part driven by the feed-drive system.  The symbol 
r = [rx, ry]T is the desired position of the point of the machined part at time t and is defined 
in ∑w.  The actual position of the feed-drive system is assumed to be q = [qx, qy]T, which 
is also defined in ∑w (notations have been changed from the preceding sections).  The 
contour error is defined as the shortest distance from q to the desired contour C and 
is represented by the symbol ec; the contouring controller reduces this error.  A local 
coordinate frame ∑l is also defined, its origin is at the desired position r, and its two axes 
T and N, are shown in the figure.  The axis T is in the tangential direction of C at r, and  
N is perpendicular to T at r.  The tracking error vector ew, which consists of the tracking 
errors in both feed-drive axes, is defined as follows:

	 ew = [ewx, ewy]T = q − r.	 (8)

	 This error vector can be expressed with respect to ∑l as follows: 

	 e1 = [e1t, e1n]T = RTew,	

	 R = cos θ − sin θ
sin θ cos θ ,	

 
where the inclination θ of ∑l to ∑w is shown in Fig. 6.  We have defined the following 
improved contouring controllers where a disturbance observer and feed-forward friction 

Esimated
parameters

x-axis y-axis
ẋ ≥ 0 ẋ < 0 ẏ ≥ 0 ẏ < 0

η0, η1, n   768.6 102.48 3   −768.6 102.4 3   640.5 140.9 3 −640.5 140.9 3
g1a, g1b, g1c   517.4     1.76 3.09   −378.2   −2.16 2.26   518.0     1.76 1.98 −371.34   −1.96 2.99
g2a, g2b, g2c   509.3     5.80 1.82   −547.5   −5.91 1.76   852.0     5.87 2.73 −236.1   −5.80 1.22
g3a, g3b, g3c 1995.9   10.66 1.87 −4472   −13.9 3.65 1059.1   10.2 1.74 −354.97   −9.31 0.47
The unit for η0, g1a, g2a, and g3a is N, the unit for η1 is Ns/mm, and the unit for g1b, g2b, g3b, g1c, g2c, and g3c is mm/s.

Table 1
Estimated nonlinear static friction model parameters.

(9)
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compensation are included in the controller:(26)

	 F = M r̈ − R(Kvl ėl + Kpl el ) − θ̈Ieew + θ̇2Iew − 2θ̇Ie ėw + D + F f ,	

	 Ie = −1 0
0 1 , F = fx , fy

T[ ] , M = diag(mx , my), D = dx , dy
T][ ,	 (10)

	 Ff = Ff x , Ff y
T[ ] , Kvl = [kvlt, kvln]T, Kpl = kplt , kpln

T][ ,	
 
where F, M, I, and r̈ are the driving force vector, table mass matrix, 2 × 2 identity matrix, 
and reference acceleration vector of the desired contour, respectively.  The symbols Kvl 
and Kpl are the velocity and position feedback gain matrices, respectively.  They are 
assumed to be diagonal matrices with positive elements.  The disturbances dx and dy are 
estimated as follows:

	 ˙̇̂q =
1
m

( f i − Ff i − d̂l ) + kev( ˆ̇q − ṙl )
l¯

,	

	 ˙̂dl = ked ( ˆ̇ql − ṙl ), i = x, y.	

4.2	 Experimental conditions
	 The friction compensation performance was verified on the basis of circular 
reference tracking control results.  Most studies use circular control because of its 
simplicity in estimating the contour error and in calculating the reference velocity 
and acceleration.(26)  The maximum contour error, maximum quadrant glitch, root 
mean square contour error, and standard deviation were used to verify the friction 
compensation performance.  Quadrant glitches occur in near-zero velocity regions in 
each feed-drive axis and typically demonstrate the performance in a circular tracking 
test of an XY feed-drive table.

Fig. 6.	 (Color online) Definition of contour error.

(11)
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	 The friction compensation performance was compared for the following different 
controller configurations (all the controllers are based on the PD control):
A.	 no friction compensation,
B.	 conventional feed-forward friction compensation,
C.	 proposed nonlinear feed-forward friction compensation,
D.	 disturbance observer,
E.	 conventional feed-forward friction compensation and disturbance observer, and
F.	 proposed nonlinear feed-forward friction compensation and disturbance observer.
	 For comparison, the same PD controller gains are used in all controllers: Kvl = [40 
s−1, 60 s−1] and Kpl = [1600 s−2, 3600 s−2] for both low and high velocity regions.  The 
low velocity experiment used a sinusoidal reference with an amplitude of 10 mm and a 
frequency of 0.3 rad/s, resulting in a feed-drive velocity of 3 mm/s, which was applied to 
each axis.

	
rx = 10 cos(0.3t)
ry = 10 sin(0.3t)

(mm)
(mm)	

	 0.0 < t <
4.0π
0.3

 (s)	 (12)

 
	 The high velocity experiment used a sinusoidal reference with an amplitude of 20 
mm and a frequency of 0.475 rad/s, resulting in a feed-drive velocity of 9.5 mm/s, which 
was applied to each axis.

	
rx = 20 cos(0.475t)
ry = 20 sin(0.475t) (mm)

(mm)
	 (13)

	 0.0 < t <
4.0π
0.475

 (s)	

4.3	 Experimental results
	 Figure 7 shows the contouring error results obtained by applying controllers D–F.  
Table 2 shows the average results for ten trials in each controller at low velocity, and we 
see that the maximum contour error often occurs in the quadrants, and therefore its value 
equals the maximum quadrant glitch.  By comparing the results in B and C where only 
feed-forward compensation is applied, the nonlinear static friction model shows better 
performance.  In controller C, the maximum contour error decreases more than 50% 
in comparison with that in controller B.  This means that the proposed friction model 
is effective for the condition (low-speed condition) different from the identification 
experiment condition (high-speed condition).  The controller with the disturbance 
observer and the conventional static friction model in E provides slightly better 
performance than controller F where the maximum contour error is reduced to only 3.71 
µm.  The difference between controllers E and F in Table 2 is due to the coupling effect 
between the friction model and the disturbance observer.  To clarify this reason, both 
experimental and further theoretical analyses are required, and this will be left for future 
work.
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	 The benefit of the proposed nonlinear friction model is evident in the higher velocity 
region as shown in Table 3, which shows the average results of ten trials at a velocity of 9.5 
mm/s.  Figure 8 shows the contouring error results obtained by applying controllers D–F.  
In Table 3, we can see that the maximum contour errors in controllers B and E are greater 

Fig. 7.	 (Color online) Measured position and contour error at a feed rate of 3 mm/s for controllers 
D, E, and F.

Controller D Controller E Controller F

Table 2
Contour errors in different friction compensation strategies at a feed rate of 3 mm/s.

Friction compensation technique Max contour
error (μm)

Quadrant
glitch (μm)

Root mean 
square (μm)

Standard
deviation (μm)

A. No friction compensation 15.72 15.72 7.73 11.21
B. Conventional friction 

compensation   7.36   7.36 1.14   1.56

C. Proposed friction 
compensation   3.54   3.32 0.85   1.34

D. Disturbance observer only 13.81 13.81 2.98   3.04
E. Disturbance observer + 

conventional friction model   3.71   3.71 0.43   0.58

F. Disturbance observer + 
proposed friction model   5.43   5.43 0.55   0.73
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than the maximum quadrant glitch, because nonlinear friction is dominant in the higher 
velocity region.  Controller F clearly provides the best contour error performance, where 
the maximum contour error is reduced to only 1.56 µm.  The root mean square value of 
the contour error and its standard deviation are also improved, with values of only 0.49 
and 0.94 µm, respectively.  

Table 3
Contour errors in different friction compensation strategies at a feed rate of 9.5 mm/s.

Friction compensation technique Max contour
error (μm)

Quadrant
glitch (μm)

Root mean 
square (μm)

Standard
deviation (μm)

A. No friction compensation 12.74 12.74 6.88 9.73
B. Conventional friction 

compensation   5.38   4.98 2.23 3.19

C. Proposed friction 
compensation   3.08   2.99 1.29 1.81

D. Disturbance observer only 16.72 16.72 3.98 3.38
E. Disturbance observer + 

conventional friction model   3.82   2.41 1.01 1.38

F. Disturbance observer + 
proposed friction model   1.56   1.56 0.49 0.94

Fig. 8.	 (Color online) Measured position and contour error at a feed rate of 9.5 mm/s for controllers D, 
E, and F.

Controller D Controller E Controller F
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5.	 Conclusions

	 The nonlinear friction properties in mechanical feed-drive systems were analyzed, and 
a new nonlinear static friction model was proposed for accurate motion control.  Because 
the contour error is important in a machining application, a contouring controller design 
with feed-forward friction compensation based on the proposed nonlinear friction model 
and a disturbance observer was applied to solve a typical circular contouring control 
problem.  Comparative experiments with several different friction compensations at both 
lower and higher motion velocities were conducted, and it was shown that the proposed 
controller was effective, particularly for higher velocity control applications, where the 
maximum contour error is reduced by 58% compared with that with a conventional static 
friction model.  The contouring performance may be further improved by a combination 
of a dynamic friction model, such as the LuGre model, and the proposed nonlinear static 
friction model.  This extension of this idea is left for future research.
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