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Mi-So Lee, Kyung-Won Kim, Mun-Ho Ryu,'?* and Je-Nam Kim?

Department of Healthcare Engineering, Chonbuk National University,
567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-756, Republic of Korea
'Division of Biomedical Engineering, Chonbuk National University,

567 Bacekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-756, Republic of Korea
*Research Center of Healthcare & Welfare Instrument for the Aged, Chonbuk National University,
567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-756 Republic of Korea
3R&D Division, Chonbuk National University Automobile-parts & Mold Technology Innovation Center,
67 Yu-Sang-ro, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-844, Republic of Korea

(Received February 28, 2015; accepted February 29, 2016)
Keywords: gesture recognition, inertial sensor, magnetometer

Due to their low cost and compact size, micro-electromechanical system-based inertial sensors
have been utilized to detect human motion. This study presents a hand gesture recognition
method with a three-axis accelerometer, gyroscope, and magnetometer attached to a wrist. First,
sensor signals were applied to calculate the sensor’s orientation with a Kalman filter. These data
were used to convert the sensor-frame acceleration signal to a global-frame acceleration signal
(orientation calculation). Acceleration of motion was calculated by subtracting gravity from the
global acceleration signal. The start and end of hand motion was detected by motion acceleration
(motion segmentation). Segmented hand motion was recognized by gesture (gesture recognition).
Six gestures (up, down, left, right, click, and double-click) were selected for implementation of the
system, and the performance was evaluated.

1. Introduction

Recently, interest in human—computer interaction (HCI) has increased. Consequently, systems
to identify user intentions have been actively studied within the proactive computing field,
where information is provided actively. In particular, among such studies, a focus has been on
gesture recognition applications.( Studies on gesture-based user interfaces have been carried out
globally to support a natural and comfortable interface between users and various devices.? In
the gesture recognition field, a wide variety of expressions available with hand gesture recognition
has potentially unlimited power.®) Gesture recognition is an important part of sign language, and
it is the basis of communication, remote medical systems, various electronic devices, interface
configuration, and the control of the motion of robots.®

There are two methods of gesture recognition: non-contact and contact.®) The non-contact
method ensures natural movements by eliminating unnecessary equipment from the user experience.
However, with this method it is difficult to track the features of the user’s movement because of the

*Corresponding author: e-mail: mhryu@jbnu.ac.kr

ISSN 0914-4935 © MYU K.K.



656 Sensors and Materials, Vol. 28, No. 6 (2016)

influence of light, surrounding objects, distance limitations, and other variables.® Cheap products
such as Kinect v2 from Microsoft were recently launched. This is very advantageous in terms of
cost. However, images obtained from kinect2 are unclear in the visual aspect, because the depth of
the images becomes inaccurate over time. Kinect v2 fails in both accuracy and resolution.?”

On the other hand, a magnetometer and an inertial-sensor-based gesture recognition system uses
acceleration and angular velocity. This system is not affected significantly by the environment, and
its processing speed is faster than other systems. However, in most studies of gesture recognition
using inertial sensors, gestures are made in a plane. This limits three dimensional motional
operations, making it difficult to configure the interface to a variety of challenging motions.®

This study presents a gesture recognition system not limited to a plane. The system discerns
three dimensional orientation in a global coordinate system.®? Knowing the direction, the system
can recognize gestures in any plane or at any angle to a plane regardless of the gesture. This
even includes gestures for configuring a mouse, which is a common interface between computer
and human. Six gestures (up, down, left, right, click, and double-click) were selected for
implementation of the system, and the system’s performance was evaluated.

2. Materials and Methods
2.1 Sensor

The device is composed of a two-part sensor and a microcontrol unit (MCU) consisting of an
inertial sensor and a magnetometer (Fig. 1). A three-sensor three-axis accelerometer, a three-axis
magnetometer, and a three-axis gyroscope (L3GD20, STMicroelectronics) were used to develop the
device. For communication, an integrated circuit communicator was implemented with an MCU at
400 kHz. The MCU used (STM32F103C8, STMicroelectronics) transmitted mainly sensor data via
a universal synchronous/asynchronous receiver transmitter between the PC and the MCU. Sensor
data was transmitted at 100 Hz with a timer interrupt function.

2.2 Host application

All data was converted to the correct format: acceleration units for gravity, Gauss measurements
for magnetic field units, and degrees per second for gyroscope units. Next, sensor data were
calibrated, as each sensor axis in the sensor device was different from that in host application.
Finally, the data were processed by applying a moving average filter whose window size was set to
20 units.
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Fig. 1. (Color online) Sensor device and three-axis coordinate system.
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A Kalman filter was used to improve function by sensor fusion; in this case, we conflated
accelerometer and gyroscope sensors. Using the trade-off characteristics of the accelerometer
and the gyroscope, the sensor mixture compensated for the gyroscope by using the accelerometer
if required. Because only the quaternion can be used for Kalman filtering, data from the
accelerometer and gyroscope were converted to a quaternion that was a state variable and able to be
used in Kalman filtering. Estimations were calculated by subtracting predicted values multiplied by
the Kalman gain from measured values. Estimated data were accurate data for position information
(Fig. 2).001D

2.3 Gesture recognition

The method for recognizing a gesture is composed of three steps. Acceleration data in the
sensor frame was coordinated to data in the global-frame. The system had one viewpoint through
this calculation because different viewpoints disappear (Fig. 3).

The first step was segmentation. To separate acquired movement periods from the total data,
segmentation used a threshold to detect movement. The threshold was calculated from the norm of
normalized acceleration data and was set to 0.15.

The second step was to determine the most significant activation axis because an activated axis
is fixed. An activated axis was detected using the gap between minimum and maximum values. If
the Z-axis was detected, then the system would check the percentage difference between the Y-axis
and the Z-axis. Then, if the percentage difference exceeded 50%, the system would detect that the
Y-axis was an activated axis; otherwise, the system would detect the Z-axis as an activated axis.

Finally, the system used template matching to recognize hand gestures. In the detected
movement period, the system found the middle point and then calculated the average between 10%
of the period on the basis of the middle point. When the X-axis was detected as an activated axis,
the positive average was right or left. The same goes for the Z-axis: positive was up or down. In
the Y-axis, the system counted the peak point and then the gesture was separated on the basis of
the count number. If the count number was lower than three, then the gesture was recognized as a
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Fig. 2. Host application. Fig. 3. Gesture recognition.
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click. Alternatively, if the count number was more than three, then the gesture was recognized as a
double-click (Fig. 4).

2.4 Experimental protocol

Eight healthy subjects aged 22-24 participated in the experiment. Subjects included four
females and four males. An experimental set was composed of five trials of one gesture and had
two parts: 90 and 45°. The subjects carried out six gestures, i.e., up, down, left, right, click, and
double-click (Fig. 5). The gesture was performed by moving the forearm about 20 cm. Before the
experiment, every subject was checked to confirm understanding of the procedure. The period for
an experimental set was 10 s, and each motion proceeded for about 1.5 s. Break time between the
gestures was about 0.5 s.

3. Results

The experimental results are shown in Table 1. Six gestures were performed a total of 60 times
(90°-5 times, 45°-5 times). Recognition rates for the subjects were 100, 98.33, 100, 100, 100, 95,
100, and 98.33%. For an average recognition rate of 98.75%. In addition, the recognition rate for
each gesture was 100, 100, 98.75, 100, 98.75, and 96.25%.

Table 2 shows the results for Subject 6, who showed the largest error. Double-clicking is a
gesture of quickly clicking two times. The Subject 6 began the second click before the end of the
first click. For this reason, the gesture was not recognized correctly.

ation

Acceleration(g)

(a) (b)

Fig. 4. (Color online) Acceleration for (a) double-click and (b) gesture recognition.
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Fig. 5.  Six gestures.
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Table 1
All results for recognized gestures (%).
. . Double

Up Down Left Right Click click Total
Subject 1 100 100 100 100 100 100 100
Subject 2 100 100 100 100 90 100 98.33
Subject 3 100 100 100 100 100 100 100
Subject 4 100 100 100 100 100 100 100
Subject 5 100 100 100 100 100 100 100
Subject 6 100 100 90 100 100 80 95.00
Subject 7 100 100 100 100 100 100 100
Subject 8 100 100 100 100 100 90 98.33
Total 100 100 98.85 100 98.75 96.25

Table 2
Confusion matrix for Subject 6.

Recognized
Actual Up  Down  Left  Right Click Douwk

click

Up 10 0 0 0 0 0
Down 0 10 0 0 0 0
Left 0 0 9 1 0 0
Right 0 0 0 10 0 0
Click 0 0 0 0 10 0
Double click 0 0 0 0 2 8

4. Conclusions

This report presented a hand gesture recognition system using an inertial sensor. The system
consisted of an inertial sensor board and a host application. The sensor board acquired hand
acceleration data, and the host application analyzes the data. Six gestures were applied in an
experiment to test the system. The test involved eight healthy subjects, and experimental results
show a gain in recognition rate from 96.25 to 100%.

The main contribution of this study is the conclusion that there is no limitation on dimension.
In the system, sensor-frame data was converted to global-frame data. Therefore, the system uses
acceleration data in global-frame coordinates to acquire a unified viewpoint to monitor gesture
information. With no limitations on dimension for this system, users are given the convenience of
being free to perform any gesture.
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