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 In this work, a digital image correlation technique in combination with laser hole drilling to 
measure the residual thermal strain is presented.  The significant potential benefits of this work are 
non-contact, high speed, and on-line measurement.  The ring-core based groove in the surface of a 
specimen was drilled concentrically to induce thermal stresses inside the core.  These deformations 
can be measured by a digital image correlation technique for measuring relieved strains.  We also 
investigated the size of the reference areas on the specimens and tracked these areas after the laser 
hole drilling process.  The proposed method was applied to characterize the thermal effect produced 
by laser milling for aluminum alloy Al5052 under plane strain tension conditions, and the results 
were compared with four assisted laser milling approaches.

1. Introduction

 Digital image correlation (DIC) is a non-contact optical technique used to measure 
displacements on the surface of an object by performing correlation analysis of random patterns on 
surfaces created by spraying with an airbrush gun.  A critera for quantitative evaluation of random 
patterns and the characterization of effectiveness of DIC algorithm implementation and pattern 
printing on the surfaces of interest are introduced.(1)  A practical approach for use in a mechanical 
testing laboratory to optimize the performance of DIC was proposed.(2)  This approach allowed 
estimation of the average speckle size, as well as the scatter of speckle sizes, to maximize spatial 
resolution.  Two-dimensional (2D) DIC provides full-field displacements to sub-pixel accuracy 
and full-field strains by comparing the digital images of a test object surface acquired before and 
after deformation.(3)  Therefore, stress can be identified based on the application of the 2D DIC 
technique.  The analysis of the stress release is achieved by DIC applied to load state SEM images 
captured in a combination of scanning electron microscopy (SEM) and focused ion beam (FIB) 
equipment.(4)  The FIB micro-hole milling was combined with 2D finite-element analysis (FEA) to 
model the resulting relaxation displacements on the specimen surface based on the DIC analysis.(5)  
The measurement of the displacement field based on the digital image correlation originating when 
a slot is milled into the material was presented.(6)  DIC for determining the coefficient of thermal 
expansion (CTE) of films was investigated.(7)  Hence, DIC has been established as a practical and 
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effective deformation measurement technique.  To the authors’ knowledge, measurement of the 
residual thermal strain using a DIC method has not been previously reported.  The measurement 
of thermal stress is important because it alters mechanical and functional performance.  Thermal 
stress and strain fields are developed during laser milling processes.  2D DIC can be used directly 
to quantitatively determine the deformation field thermal strain.  The ring-core method is a partially 
destructive test method for measuring uniform and non-uniform residual stresses.  The major 
advantages of the ring-core method is its greater sensitivity.  For residual stress measurements, 
the ring-core method using the strain gauge enables the profile of residual stresses in materials to 
be determined up to a depth of 5 mm.(8)  However, a strain gauge uses a pointwise technique; but 
the drawback of applying a strain gage rosette is that the machining axis must be aligned with the 
center of the strain gage rosette.  The aim of this study was to use different assisted laser-hole-
drilling mechanisms based on the ring-core method to characterize the induced residual thermal 
strain by DIC.

2. DIC Method and Hole-Drilling

 In the DIC method, two speckle images are compared.  The initial (reference) image with the 
calculation area (region of interest, i.e., ROI) is divided into evenly spaced subsets.  The ROI is the 
reference region in which the displacement/deformation field is determined.  The subset is a square 
matrix of pixels used as the basis of the image correlation technique.  Matching each initial subset 
to the respective calculated subset in the deformed image is carried out by defining the maximum 
value of the correlation coefficient.  The image is transformed into grey scale.  Specimens are 
cut from an aluminum sheet (i.e., Al 5052) 6 mm thick, and the area of the specimens is 20 × 70 
mm2.  A digital camera JAI BM-500GE (5 megapixel matrix) and a camera lens (focal length 105 
mm, aperture f/2.8−32) are used to register the working surface of the patterned specimens during 
testing.  The camera’s optical axis is adjusted to be orthogonal to the studied surfaces, which are 
illuminated with red light.  The area of the pattern captured was approximately 20 × 16 mm2.  
Digital image correlation was performed on a selected (160 × 160 pixels) sub-image of the surface 
captured by a digital camera with 122 pixel/mm resolution.  Figures 1(a) and 1(b) show a schematic 
illustration of the experimental setup and the actual experimental system using an optical imaging 
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Fig. 1. (Color online) (a) Schematic illustration of the experimental setup and (b) actual experimental setup.
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device for the 2D DIC method, respectively.  These images were analyzed by the DIC technique 
to extract the induced strains after milling.  The arrangement used for studying the effect of the 
induced residual thermal strain is shown in Fig. 2 and Table 1.  The entire experimental system 
used was established on a micro-precision electrical discharge machining (EDM) machine (Sodick 
AP1L).  A fixture connected the holders of the optical components (a mirror and a lens) to the 
column of the EDM machine.  The mirror and focal lens were positioned in each precision stage 
to tune the laser direction and adjust the focal point of the laser.  The mirror reflected the laser to 
the sample while a lens with a z-axis stage focused the laser on the workpiece.  A lens with a focal 
length of 120 mm was used for the focusing.  The laser beam was focused negatively (i.e., −0.3 
mm) below the material’s surface, providing a beam spot approximately 12.9 μm in diameter.  The 
laser source was a Nd:YAG laser (LOTIS LS-2134UTF) providing a Gaussian laser beam and four 
harmonic modes, i.e., four different wavelengths.  The maximum beam diameter of the output was 
6 mm, and the beam divergence was typically below 0.8 mrad.  A 532-nm wavelength with pulse 
mode was used in all experiments.  The maximum energy of a single pulse was 200 mJ, and the 
maximum frequency was 15 Hz.  The pulse width was approximately 6 ns for Nd:YAG lasers.
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Fig. 2. (Color online) (a) Schematic illustration of the laser milling setup and (b) actual experimental setup.

Table 1
Laser machining parameters.
Item Parameter
Wavelength 532 nm
Frequency 15 Hz
Pumping lamp energy 21 J
Radiation energy 200 mJ
Focal length 120 mm
Milling speed 2 mm/min
Processing time 40 min
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3. Experiments and Discussion

 The laser milling of a surface slot on a specimen induces a local thermal strain release that 
generates a displacement field in the direction perpendicular to the slot plane.  The implementation 
of the 2D DIC method consists of the following three consecutive steps: 
(1) Specimen and experimental preparation for the reference image: The speckle pattern sprayed 

by an airbrush was made on the test specimen surface as a carrier of deformation information.  
Figure 3 shows the speckle image of the specimen surface after being painted with white and 
black paint.  During the DIC analysis of the captured images, a square area with a size of 160 × 
160 pixels in the middle of the specimen was chosen to be the region of interest.

(2) Recording images of the planar surface of the specimen before and after machining: in the 
first step, a DIC image of the reference area to be analyzed was captured by the camera.  The 
dimensions of the scanned area were determined.  After capturing the DIC reference image, 
different assisted laser milling methods were used to induce residual thermal strain by milling 
a slot on the region of interest.  The DIC image of the area around the milled zone was then 
captured and analyzed.

(3) Processing the acquired images using a DIC program to obtain the desired displacement and 
strain information: The DIC program compared grey level intensity patterns of a matrix of 
pixels of both images at sub-pixel locations and established where the reference matrix has to 
be shifted, from the first to the second image, to find the best matching pattern.

 Figure 4 shows photographs of the different assisted laser milling equipment.  Four different 
assisted configurations—no gas jet, swirling gas jet (25 °C),(9) swirling gas jet (0 °C), and straight 
gas jet (0 °C)(10) for enhancing thermal efficiency—were investigated for their effect on the 
thermal strain of percussion drilling of 6 mm thick aluminum sheets.  Strain range is defined as 
the difference between maximum and minimum displacement values between the reference and 
the deformed images after DIC calculation.  Figures 5–8 show the displacement field in the x and 
y directions obtained by the correlation of two images under four different assisted configurations.  
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Fig. 3. (Color online) Surface speckle images of the specimen (a) before and (b) after machining.  The area inside 
the blue rectangle is the calculation area.
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Fig. 5. (Color online) The displacement field in the x and y directions for the no-gas jet configuration.  (a) The 
displacement field in the x direction and strain range of 4.53 μm.  (b)  The displacement field in the y direction and 
strain range of 4.70 μm.

Fig. 4. (Color online) Experimental setup: (a) swirling gas jet and (b) straight gas jet for the residual thermal 
strain observation for different assisted laser percussion drilling configurations.
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Fig. 7. (Color online) The displacement field in the x and y directions for the swirling gas jet (0 ºC) configuration.  (a) 
The displacement field in the x direction and strain range of 2.51 μm.  (b) The displacement field in the y direction 
and strain range of 2.08 μm.

Fig. 6. (Color online) The displacement field in the x and y directions for the swirling gas jet (25 °C) configuration.  (a) 
The displacement field in the x direction and strain range of 3.99 μm.  (b) The displacement field in the y direction 
and strain range of 4.50 μm.
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The laser induced thermal strain was smallest for the swirling gas jet (0 °C) and straight gas jet 
(0 °C) as the thermal energy produced was conducted efficiently.  The swirling gas jet (25 °C) 
produced less thermal strain than the no-gas jet assisted configuration because the assisted gas could 
remove much more thermal energy.  The no-gas jet assisted configuration produced the most strain, 
as expected, due to the thermal effect of the laser.

4. Conclusions

 This work presents a new method for mapping in-plane applied residual thermal strain 
incrementally as a function of depth based on hole drilling.  Full-field in-plane deformation 
fields associated with the machining change were measured by the DIC technique.  Al 5052 was 
employed as a reference sample to verify the feasibility and effectiveness of the proposed method.  
The swirling gas jet (0 °C) and straight gas jet (0 °C) assisted laser drilling can remove the most 
thermal energy; the swirling gas jet (25 °C) outperformed the no-gas jet assisted laser drilling 
because the latter produced the most thermal strain produced, as expected.

Fig. 8. (Color online) The displacement field in the x and y directions for the straight gas jet (0 °C) configuration.  (a) 
The displacement field in the x direction and strain range of 2.27 μm.  (b) The displacement field in the y direction 
and strain range of 1.97 μm.
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