
387Sensors and Materials, Vol. 29, No. 4 (2017) 387–395
MYU Tokyo

S & M 1331

*Corresponding author: e-mail: rshsiao@ntut.edu.tw
http://dx.doi.org/10.18494/SAM.2017.1520

ISSN 0914-4935 © MYU K.K. 

Improving Radio Frequency Identification-Based 
Localization Accuracy Using Computer-Vision-Assisted 

Sensor Deployment Technology

Rong-Shue Hsiao,* Chun-Hao Kao, Hsin-Piao Lin, and Kai-Wei Ke1

Department of Electronic Engineering, National Taipei University of Technology, 
No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, R.O.C.

1Department of Computer Science and Information Engineering, National Taipei University of Technology, 
No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, R.O.C.

(Received August 30, 2016; accepted January 6, 2017)

Keywords:	 sensor deployment, computer vision, indoor localization, RFID, genetic algorithm

	 Radio frequency identification (RFID) technology is one of the promising technologies enabling 
the realization of the Internet of Things.  However, the current major application is limited to using 
its identification ability.  The number of applications will be increased if we can enable RFID 
technology to have the capability of accurate localization.  In this paper, we propose a new sensor 
deployment method for improving the passive RFID localization accuracy.  The proposed method 
integrates computer vision technology while employing a genetic algorithm to find the appropriate 
locations to deploy RFID reader antennas.  The proposed method was applied to a fingerprinting-
based indoor localization system.  The result showed that the localization accuracy can be 
effectively improved by selecting the appropriate deployment locations of RFID reader antennas.  

1.	 Introduction

	 Radio frequency identification (RFID) is a wireless identification technology that can transfer 
the identity information stored in RFID tags (transponders) to RFID readers.  The passive RFID 
technology with no battery guarantees the lifelong functioning of the tag.  It is also easily attached 
to objects, which is the most widely used method in a variety of applications.(1,2)  The passive 
ultrahigh-frequency (UHF) RFID tag has distinctive advantages of low cost, long reading range, 
and identification capability, which is one of the most promising solutions for Internet of Things (IoT) 
realization.(3)  
	 Since indoor location is the most important aspect of context for mobile users, such as locating 
objects and people, wireless indoor localization technology is highly in demand in context-aware 
applications.(4)  In recent years, wireless indoor localization has become one of the promising 
technologies.  In Refs. 5–7, the authors provide a review of wireless indoor localization with a 
comprehensive comparison of different technologies.  Among the wireless indoor localization 
techniques, the received-signal-strength (RSS)-based technique is very popular.  Since RSS 
measurement is readily available in wireless communication without additional cost, many 
researchers have recently utilized passive UHF RFID tags for indoor localization.(8–10)  However, 
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RSS-based indoor localization suffers significantly from multipath fading, shadowing, and radio 
interferences in indoor environments.(11)  In addition, the limitations of passive RFID arise from 
the need for these tags to absorb sufficient power from the reader to transmit the stored tag data 
in complex indoor environments.  The main factors affecting the performance of a tag response 
include tag/reader location and orientation, impedance mismatch between tag antenna and chip, 
communication blind spot, and interference (i.e., tag-to-tag, reader-to-tag, and reader-to-reader 
interferences).(12)  Hence, localization accuracy may drop considerably in indoor environments.
	 Several researchers have attempted to model the dependence of the RSS uncertainty to improve 
the accuracy of location estimation.(13,14)  However, even though they continuously try all possible 
ways of minimizing the error, the accuracy of RSS-based distance measurement can be easily 
affected by complex indoor environments.  Hence, with the traditional radio propagation model, 
it is difficult to fulfill the requirements of accurate localization.  Instead of relying on accurate 
estimations of angle or distance to derive the location with geometry, the location fingerprinting 
technique associates location-dependent RSS signatures to infer a location.  This method has been 
proved to be very accurate for indoor localization.(15,16)  Therefore, location fingerprinting has 
become one of the most popular and extensive techniques applied to RSS-based indoor localization 
systems.
	 For localization systems, accuracy and precision are the two most important metrics of 
performance evaluation.  The localization accuracy is determined from the error in the distance 
from the actual location, while the localization precision is determined from the percentage of 
location information which is within the error distance.(17)  These two metrics need to be considered 
in an indoor localization system.  Actually, improving the localization accuracy means increasing 
the percentage of localization results within the error distance.  In the localization system of 
location fingerprinting, the location fingerprints are collected by performing a site survey of the RSS 
from multiple sensor nodes.  The entire target area is divided into a set of rectangular grid points.  
The RSS is measured to create a database of predetermined RSS values on the points of the grids.  
The localization accuracy depends on the grid spacing, which is closely tied to the application 
requirements.  The localization precision depends on the number of sensor nodes.  However, as the 
localization accuracy increases (error distance is reduced), the localization precision may decrease.(18)  
Thus, there exists a trade-off between accuracy and precision of localization.  Another parameter 
affecting localization precision is the deployment location of sensor nodes.  In Refs. 19 and 20, the 
authors show that the larger the RSS Euclidean distance between the sensor nodes, the stronger the 
system tolerance to signal fluctuation and the smaller the probability of fault location in the wireless 
indoor localization system.  We can adjust the deployment of the sensor nodes to increase the RSS 
Euclidean distance between the neighboring sensor nodes, so that the localization accuracy can be 
improved.  Therefore, the deployment location of sensor nodes is a key issue for the fingerprinting-
based indoor localization.
	 Finding the ideal deployment locations for a set of sensors in a given area is a difficult problem, 
which has been proven to be NP-complete.(21)  The genetic algorithm is a computational model that 
mimics the process of natural selection and genetics in biological evolution.  The genetic algorithm 
has been widely used to solve the combinatorial optimization problems with complex constraints.  
The computation of the genetic algorithm is an iterative process that achieves the global optimum.(21–23) 
	 In this paper, we focus on the investigation of a sensor deployment strategy for improving 
indoor localization accuracy.  We proposed a novel deployment method, which exploits computer 
vision technology and a genetic algorithm to find the appropriate locations for sensor node (RFID 
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Fig. 1.	 (Color online) Framework of the proposed sensor deployment method.

reader antenna) deployment.  The error of location estimation can be decreased and the localization 
accuracy can be improved.  To solve this problem, a genetic algorithm is presented.  
	 The remainder of the paper is organized as follows.  In Sect. 2, we present our proposed 
sensor deployment method.  The experimental setup and results are presented in Sects. 3 and 4, 
respectively.  Finally, the conclusion is presented in Sect. 5.

2.	 Materials and Methods

	 In fingerprinting-based indoor localization systems, the location fingerprints are collected by 
performing a site survey of the RSS from multiple RFID reader antennas.  Owing to the effects 
of radio frequency propagation, such as multipath fading, shadowing, and other interferences, the 
radio map of the offline phase may not be suitable for the location estimation in the online phase.  
In order to improve the localization accuracy and precision, we propose a computer-vision-assisted 
sensor deployment method to find the appropriate deployment locations of RFID reader antennas 
to build a proper radio map.  The proposed method includes a genetic algorithm to solve the 
optimization problem.

2.1	 Framework of the proposed sensor deployment method

	 The proposed method consists of two main components: a computer vision system and a 
genetic algorithm, as shown in Fig. 1.  The proposed method performs in the offline stage of the 
fingerprinting-based localization system.  The computer vision system can promptly provide 
actual target location.  The actual location is used as ground truth for comparison with the result of 
fingerprinting-based localization.  The comparison of these two locations is consequently used in 
the genetic algorithm for the evaluation of RFID reader antenna deployment.  Then, a set of ideal 
deployment locations for a given number of RFID reader antennas is determined.  The selected 
deployment locations of RFID reader antennas result in an appropriate radio map and localization 
accuracy improvement.  
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Fig. 2.	 (Color online) Image segmentation: (a) color image (the center of the blob is marked) and (b) blob of the 
extracted cross pattern.

2.2	 Computer vision system

	 The computer vision system is used to locate the target tag, which includes two steps: 
image acquisition and image localization.  To locate the target tag in an image with a complex 
background, as shown in Fig. 2(a), the target tag is marked with a colored cross pattern.  While 
conducting image acquisition, a color-depth camera is used to capture color and depth information 
simultaneously.  Image localization includes image segmentation and coordinate transformation.  
Image segmentation extracts candidate blobs from the pattern by the thresholding method on the 
depth and color images.  Depth information represents the distance from the camera to the pattern, 
while color information represents the color of the pattern.  For the depth image, threshold values 
are the range of a given distance; for the color image, the threshold values are the range of given 
color.  Subsequently, morphological image processing is used to extract the blob of the color 
pattern, which is the intersection of the candidate blobs, as shown in Fig. 2(b).  Since the center 
of the blob is the location of the target tag, the location is transformed into physical coordinates.  
Then, the location coordinates are provided to the genetic algorithm.
 
2.3	 Proposed genetic algorithm

	 The goal of the genetic algorithm is to find the ideal deployment locations of RFID reader 
antennas which result in the least localization error.  In the genetic algorithm, a population contains 
several candidate deployment locations of reader antennas.  A candidate set of deployment locations 
of reader antennas is called an individual.  Thus, the size of the population indicates the number 
of individuals.  A chromosome consists of various genes, which indicate the properties of an 
individual, such as the number of reader antennas and the range of deployment location.  The length 
of the chromosome represents the number of genes.  The location of a reader antenna, (x,y), is 
represented by a pair of genes.  The x- and y-coordinates are bounded by the range of deployment, 
namely, the upper and lower boundaries.  In this paper, the real-coded genetic algorithm (RGA) is 
adopted, so every gene is directly represented by a floating number.  Hence, encoding and decoding 

(a) (b)
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processes for genes are not needed.  The fitness value denotes the localization error of an individual 
(deployment locations of reader antennas) for the deployment environment (fitness function).  In 
this study, the localization error was determined by comparing the actual location of the target tag 
with the result of the localization algorithm in the real environment.  It was not just evaluated using 
formulas in the simulated environment.  The genetic algorithm solves the optimization problem, 
which evolves toward a better individual that has a smaller fitness value.  The proposed genetic 
algorithm is shown in Table 1.  
	 To generate next generation of population, there are three genetic operations: selection, 
crossover, and mutation.  The selection operation removes individuals that have low fitness values 
from the population.  After that, the remaining individuals are selected for performing crossover and 
mutation.  The worst individuals are eliminated and replaced by offspring, which are recombined 
from several of the best individuals.
	 The crossover operation produces a new child (offspring) through the recombination of a pair 
of parents.  For the RGA, a chromosome can be treated as an n-dimension real vector.  Thus, the 
candidate individuals form an n-dimension real space (Rn).  According to the searching space, it can 

Table 1
Proposed genetic algorithm.
Input: SizePopulation, LengthChromosome, Ncrossover, Pmutation, Generationmax

Output: Sbest 
Steps:
01: population: Pop ← generate SizePopulation feasible solutions randomly 
02: evaluate fitness of each individual
03: count of iteration: Iter ← 0
04: do
// Selection
05:	 evaluate fitness value of each individual
06:	 pool Poolrecombination ← pick up the best Ncrossover individual
// Crossover
07:	 for i ← 0 to (Ncrossover –1) 
08:	 select two individuals Ic and Ic+1 in Poolrecombination randomly
09:	 produce new individual Ii ← crossover(Ic, Ic+1) using Eq. (3)
10:	 conduct wrapper method Ii ← Ii’
11:	 replace the worst individual by Ii’
12:	 next
// Mutation
13:	 select the best individual Elite in Pop
14:	 number of genes to be mutated: Nmutate ← SizePopulation * LengthChromosome * Pmutation 
15:	 for j ← 0 to (Nmutate − 1) 
16:	 do while(true)
17:	 if (select randomly a gene gj ∉ Elite) then
18:	 σ ← standard deviation of the normal distribution
19:	 update the gene: gj′ ← mutation(gj, σ)
20:	 break
21:	 end if
22:	 loop
23:	 next
24:	 Iter ← Iter + 1
25: loop while(Iter < Generationmax)
26: return the best individual Sbest from Pop
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be categorized by line crossover and box crossover.  The line crossover searches offspring along a 
vector, which is a line segment between two parents, whereas the box crossover searches offspring 
in a box.  To produce better offspring by selecting superior parents, the conventional crossover 
performs the inside search method, shown in Eq. (1).

	 pnew = β × pmn + (1 − β) × pdn,	 (1)

where β = a random number in [0, 1], pmn = nth gene from parent pm, and pdn = nth gene from parent 
pd.
	 However, the range of the bounded searching space is limited by the parents.  It may cause 
premature convergence due to lower population diversity, which results in local optima.(22)  Another 
method, in contrast, is to search outside away from the parents, but the searching range is still 
limited by the parents, as follows:

	 pnew = β × (pmn − pdn) + pmn.	 (2)

	 Hence, some research studies extend the searching space toward the outside of parents, including 
extended-line crossover and extended-box crossover.  In comparison with the conventional RGA 
searching method, the proposed bidirectional searching method combines an inside search [Eq. (1)] 
and an outside search [Eq. (2)], as shown in Eq. (3).

	 pnew = SIGNDirection × β × (pmn − pdn) + pmn,	 (3)

where SIGNDirection ∈ {−1, +1}: searching direction, −1: search inside, and +1: search outside.
	 However, the range of gene values is discontinuous near the boundary in the bidirectional 
searching method.  To make the searching space continuous, the value space is wrapped.  Thus, the 
upper bound and the lower bound are glued together as a glued space (or adjunction space, quotient 
space).  According to previous studies,(24,25) performing crossover in a glued space can avoid the 
bias of offspring toward the center of the searching space.  The bias of offspring may result in a 
boundary problem.  To overcome the boundary problem, the wrapper method is performed, as 
shown in Table 2.

Table 2
Wrapper method.
Input: UB, LB, pnew

Output: p′new 
Steps:
01: if (pnew > UB) then
02:	 ∆over = pnew – UB
03:	 p′new = LB + ∆over

04: if (pnew < LB) then
05:	 ∆over = LB − pnew

06:	 p′new = UB − ∆over

07: else
08:	 p′new = pnew

09: end if
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	 If the gene value (pnew) of the offspring exceeds the upper bound (UB) or the lower bound (LB), 
the remainders are wrapped to another boundary.  The commonly used roulette wheel method is 
used to decide the searching direction.  The selection operator is adopted by performing a random 
shuffle.  A larger searching area (inside or outside) is preferred because of a larger area with a 
higher probability.  Using boundary wrapping, the experimental results showed that the higher 
performance of crossover results in a higher probability of finding the optimal solution.
	 The mutation performs a random search between the upper bound and the lower bound of a 
gene.  It explores possible solutions other than the current solution space.  Before performing 
mutation, the elite individual with the best fitness is preserved and is not involved in the mutation.  
Finally, the genetic algorithm terminates when the number of iteration reaches maximum 
generations (Generationmax).

3.	 Experimental Setup

3.1	 Experimental parameters and equipment

	 To verify the effectiveness of the proposed method, we conducted an experiment in our lab, 
as shown in Fig. 3.  In a small area (2 × 1.6 m2), we deployed one RFID reader with 5 antennas 
for RSS measuring and locating the target tag.  The target tag is a UHF passive RFID tag.  For 
the computer vision system, a camera was installed in the center of the ceiling, which is used to 
monitor the whole sensing area to detect the location of a moving target.  The computer vision 
system was used to build the radio map of a target tag with vision-based 2D location.  There are 
15 distinct locations of target tags and 5 candidate locations of antennas.  The radio map was 
constructed in a person and one passive tag environment.  In addition, the location of the target tag 
can be determined by the computer vision system.

Fig. 3.	 (Color online) Experimental setup.
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3.2	 Experimental scenarios

	 The computer vision system is used to provide the actual location of a target during the offline 
stage of localization to find the ideal deployment locations of RFID reader antennas.  For the 
candidate deployment locations of the reader antennas, location fingerprints are recorded as well.  
To find the ideal deployment locations, the genetic algorithm determines the deployment locations 
of reader antennas according to the difference between the localization result of the localization 
algorithm and the actual location of the target.  The best deployment set of locations has minimal 
localization error.  In this study, each individual in the population is a set of 3 antennas that are 
selected randomly from 5 candidate antennas.  Finally, the computer vision equipment can be 
removed after the offline stage of fingerprinting-based localization.

4.	 Experimental Results

	 During the offline stage of localization, the genetic algorithm searches for the locations of 
antenna deployment.  The antenna set is selected if it has the lowest localization error.  As the result 
of evolution (Fig. 4), the antenna set {#1, #3, #4} was selected by the genetic algorithm because 
of its maximum number of selections.  When the genetic algorithm terminates, the remaining 
individuals of the last generation are the survivors.  For an individual, a higher number of selections 
indicates a greater ability to resist RSS fluctuation during the evolution of each generation.  Hence, 
the best of three survivors are fitter individuals (antenna set) among the individuals of each 
generation, as shown in Fig. 4.  Although the worst three individuals in the last generation also have 
low fitness values, their low number of selections indicate a weak ability to resist RSS fluctuations 
in some situations.  Moreover, the localization precision is described as the cumulative distribution 
function (CDF), as shown in Fig. 5.  The probability of the error distance lying within 0.42 m is 
97.4%.  The experimental results show that the proposed sensor deployment method is effective in 
improving the accuracy of wireless indoor localization.

Fig. 4.	 (Color online) Evolution result of antenna 
selection.

Fig. 5.	 (Color online) Localization precision.
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5.	 Conclusions

	 To construct an accurate wireless indoor localization system, the effects of environment and a 
moving human body need be considered.  However, it is difficult to build a radio propagation model 
to duplicate such a complex and variable environment.  In this paper, we proposed a novel sensor 
deployment method that combines computer vision technology and a genetic algorithm to find the 
optimal deployment locations of RFID reader antennas.  Through the appropriate deployment of 
RFID reader antennas, a more realistic radio map can be provided for the use of location estimation 
by the fingerprinting-based localization algorithm.  The proposed sensor deployment method has 
been implemented and evaluated.  The results show that it is effective in improving the accuracy of 
RFID-based indoor localization.  
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