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	 In this study, a series of Li0.058(Na0.535K0.480)0.966(Nb0.90Ta0.10)O3 (LNKNT) + (x)ZnO + (y)LiF 
(x = 0, 0.4, and 0.6 wt%; y = 0 and 0.2 wt%) lead-free piezoelectric ceramics were fabricated by 
a conventional solid-state reaction method.  The codoping of ZnO and LiF could significantly 
improve the sintering ability of LNKNT ceramics by reducing the optimal sintering temperature 
from 1090 to 990 °C.  The crystal phases and microstructures were analyzed by X-ray diffraction 
(XRD) and scanning electronic microscopy (SEM), respectively.  The dielectric characteristics, 
electromechanical coupling factors, piezoelectric constants, and P–E curves were also measured 
and investigated.  From the results, as 0.6 wt% ZnO and 0.2 wt% LiF were added into pure LNKNT 
ceramics, uniform and condensed grains can be obtained easily, and thus the sintering temperature 
can be decreased from 1090 °C (pure LNKNT) to 990 °C.  Compared with pure LNKNT, ZnO/
LiF codoped LNKNT has better orthorhombic and tetragonal coexistence phases.  In this study, the 
optimal d33 values were improved from 279 pC/N (pure LNKNT) to 304 pC/N (LNKNT-6Z2LF), 
and kp were improved from 0.46 (LNKNT) to 0.48 (LNKNT-6Z2LF).  Hence, the codoping of ZnO 
and LiF can improve the sintering ability of the LNKNT ceramics effectively.

1.	 Introduction

	 Lead-free piezoelectric materials that are environmentally friendly from the viewpoint of 
sustainable development have attracted attention in recent years.(1,2)  Among them, (K0.5Na0.5)
NbO3 (KNN)-based piezoelectric ceramics are considered promising candidates because of their 
markedly enhanced piezoelectric properties.(3–5)  An important key approach for improving the 
electrical properties of KNN ceramics is to lower the tetragonal–orthorhombic phase transition (TO-T), 
producing a coexistence of the tetragonal and orthorhombic phases at low temperature.  In addition, 
Matsubara et al.(6,7) reported that, for KNN ceramics, the partial substitution of Li for A site ions and 
Ta for B site ions enhances their dielectric and piezoelectric properties considerably.  Recently, by 
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introducing LiNbO3 into the KNN ceramics with the nominal optimal K:Na ratio of 0480:0.535, an 
exact morphotropic phase boundary (MPB) separating orthorhombic and tetragonal phases has been 
determined, in which a d33 of 314 pC/N has been obtained in the nonstoichiometric composition of 
Li0.058(Na0.535K0.480)0.942NbO3.(8) 
	 Furthermore, some dopants such as ZnO, SnO2, and Yb2O3 were found to promote densification 
as well.(9,10) An ideal sintering aid should effectively lower the sintering temperature while 
maintaining the piezoelectric properties as best as possible.  Caballero et al.(11) and Kim et al.(12) 
reported that ZnO has been successfully used to reduce the dielectric losses in different materials.  
It has been shown that the addition of ZnO helps to increase the density of the material and avoids 
deliquescence.  
	 Because LiF exhibits a low melting point of 845 °C, it is commonly used in the synthesis of 
molten salts.  The low melting point of LiF indicates that it may form a liquid phase during the 
sintering process, which may promote densification and grain growth of KNN-based piezoceramics.  
Hence, in this study, to improve the sintering ability and piezoelectric characteristics of 
Li0.058(Na0.535K0.480)0.966(Nb0.9Ta0.1)O3 (denoted as LNKNT) piezoceramics, small amounts of ZnO 
and LiF were added to LNKNT piezoceramics at the same time and with the composition of 
Li0.058(Na0.535K0.480)0.966(Nb0.9Ta0.1)O3 + (x)ZnO + (y)LiF (denoted as LNKNT-xZyLF).  The effect of 
codoped LiF/ZnO on the phase structure as well as the microstructure of LNKNT ceramics was 
systematically investigated.

2.	 Experimental Procedure

	 From the composition of Li0.058(Na0.535K0.480)0.966(Nb0.9Ta0.1)O3 and by the conventional solid-state 
reaction method, proportional high-purity (>99.5%) raw materials (Na2CO3, K2CO3, Li2CO3, Nb2O5, 
and Ta2O5) were used.  After mixing, grinding, and 850 °C / 2 h calcination, commercially available 
ZnO and LiF (>99.5%) sintering promoters were then introduced into LNKNT with the formula 
of LNKNT + (x)ZnO + (y)LiF (x = 0, 0.4, and 0.6 wt%; y = 0 and 0.2 wt%), mixed, ball-milled for 
10 h in ethanol, and dried.  After adding 5 wt% polyvinyl alcohol (PVA) as binder, the resulting 
powders were ground again, dried, and pressed into pellets 12 mm in diameter under a pressure of 
150 MPa.  Finally, these samples were debindered and sintered in air between 950 and 1120 °C for 
2 h.  The crystal structure of the sintered samples was analyzed by X-ray diffraction (XRD) using 
CuKα radiation (2θ = 20–60°), and their microstructures were characterized by scanning electron 
microscopy (SEM).  After painting the electrodes and polarizing (3.5 kV/mm) in 140 °C silicon 
oil for 30 min, the piezoelectric constant (d33) was measured using a d33 meter, and by using the 
impedance analyzer (HP4294A), the electromechanical coupling factors (kp) were determined by the 
resonance and antiresonance method according to IEEE standards.  The polarization–electric field 
(P–E) hysteresis loops were measured using a ferroelectric tester, and the remanent polarizations (Pr) 
and coercive fields (Ec) were then obtained.

3.	 Results and Discussion

	 Figure 1 shows the XRD patterns (2θ = 20–60° and 44–47°) of the LNKNT + (x)ZnO + (y)LiF (x 
= 0, 0.4, and 0.6 wt%; y = 0 and 0.2 wt%) ceramics sintered at 990 °C for 2 h.  The SEM images of 
the LNKNT-xZyLF (sintered at 990 °C for 2 h) ceramics are shown in Fig. 2.  It can be seen that the 
peaks of ZnO and LiF are not clear owing to their small concentrations.  No clear second phases can 
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be found, and all specimens reveal pure perovskite structures with cubic-type grains.  Furthermore, 
from the 44–47° figure presented, we can observe that, compared with the pure LNKNT, the ZnO/
LiF codoped LNKNT reveals better orthorhombic and tetragonal coexistent phases.
	 Figure 3 shows the relative dielectric constants and dielectric loss variations of the LNKNT-
xZyLF ceramics as a function of sintering temperature.  From the relative dielectric constants 
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Fig. 1.	 XRD patterns of the LNKNT-xZyLF ceramics sintered at 990 °C for 2 h.  (a) 2θ = 20–60° and (b) 2θ = 
44–47°.

Fig. 2.	 SEM images of LNKNT-xZyLF sintered at 990 °C.  (a) 6Z0LF, (b) 4Z2LF, (c) 6Z2LF, (d) 4Z0LF, (e) 
0Z2LF, and (f) pure LNKNT.
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shown, it can be observed that pure LNKNT reveals lower relative dielectric constants than the 
others.  Moreover, as the sintering temperature increases from 950 to 1120 °C, all the relative 
dielectric constants increase to a maximum value gradually and then decrease.  However, except 
for the pure LNKNT specimens (obtained at 1090 °C) and LNKNT-6Z2LF specimens (obtained 
at 990 °C), all the maximum dielectric constants are obtained at 1020 °C.  The maximum relative 
dielectric constants are about 1200 for pure LNKNT and 1800 for LNKNT-6Z2LF.  This means that 
the additions of ZnO and LiF have obvious effects, i.e., (1) increasing the dielectric constant and 
(2) decreasing the sintering temperature.  However, the dielectric loss variation shown in Fig. 3(b) 
decreases to a minimum value and then increases with increasing sintering temperature for all the 
specimens, and all the minimum dielectric losses occur at 1020 °C.  In particular, for the LNKNT-
0Z2LF specimens, the dielectric loss reveals a lower value (<0.02) than those of the others, and 
LiF-doped specimens reveal larger dielectric constants and lower dielectric losses.  This means that 
LiF dopants can improve the dielectric properties of LNKNT ceramics effectively.
	 Two P–E curves of the LNKNT-4Z2LF and LNKNT-6Z2LF specimens for different sintering 
temperatures are plotted in Fig. 4.  In addition, Fig. 5 shows the remanent polarization (Pr) and 
coercive field (Ec) variations of the LNKNT-xZyLF ceramics.  As the sintering temperature 
increases from 950 to 1120 °C, both the Pr and Ec values become maximums at first, and then 
decrease gradually.  For the LNKNT-4Z2LF specimens, at a sintering temperature of 1020 °C, we 
obtain maximum Pr and Ec values of 13.52 μC/cm2 and 2.22 kV/mm, respectively.  However, for 
the LNKNT-6Z2LF specimens, at a sintering temperature of 990 °C, we obtain maximum Pr and Ec 
values of 11.42 μC/cm2 and 2.22 kV/mm, respectively.  
	 The variations of piezoelectric constants (d33) and electromechanical coupling factors (kp) of 
the LNKNT-xZyLF ceramics are presented in Fig. 6.  It is clear that, for all the specimens, the d33 
values first increased, reached a maximum value, and then decreased gradually.  The maximum 
d33 value of LNKNT-6Z2LF is 304 pC/N and its sintering temperature is only 990 °C.  However, 
for pure LNKNT, the maximum d33 value is only 279 pC/N and it is sintered at 1090 °C.  Hence, it 
is clear that, owing to the addition of ZnO and LiF liquid-phase sintering promoters, the optimal 
sintering temperature of 1090 °C can be reduced significantly to 990 °C by ZnO/LiF codoping, and 

Fig. 3.	 (a) Relative dielectric constants and (b) dielectric losses of LNKNT-xZyLF ceramics. 
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Fig. 4.	 P–E curves of LNKNT-xZyLF ceramics: (a) 4Z2LF and (b) 6Z2LF.

Fig. 5.	 (a) Remanent polarizations and (b) coercive fields of LNKNT-xZyLF ceramics.

Fig. 6.	 (a) Piezoelectric constants and (b) electromechanical coupling factors of LNKNT-xZyLF ceramics.
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the piezoelectric characteristics (d33 values) can be improved from 279 to 304 pC/N.  Furthermore, 
for the electromechanical coupling factors (kp) of the LNKNT-xZyLF ceramics shown in Fig. 6(b), 
as the sintering temperature increased from 950 to 1090 °C, all the kp values reveal a trend similar 
to the d33 values.  Moreover, except for the pure LNKNT specimens (obtained at 1090 °C) and 
LNKNT-6Z2LF specimens (obtained at 990 °C), all the maximum kp values are obtained at 1020 
°C.  For the pure LNKNT specimens sintered at 1090 °C, the maximum kp value is 0.46.  However, 
for LNKNT-6Z2LF specimens sintered at 990 °C, the maximum kp value is 0.48.  
	 Previously, Safari and Akdogan (13) illustrated the relationship among Pr, d33, and εr values as

	 d33 = 2Kε0εrPr,	 (1)

where K is a constant between 0.05 and 0.1 m4/C2 for different materials, εr is the relative 
permittivity, and ε0 is the permittivity of vacuum.  Therefore, in Fig. 7, as we choose K as 0.085 
m4/C2 for the LNKNT-6Z2LF ceramic, we reveal a comparison of its measured d33 values, 
theoretical d33 values [calculated from Eq. (1)], and measured Pr values.  It is clearly found that, as 
the sintering temperature increased from 950 to 990 °C, these three values (measured d33, theoretical 
d33, and measured Pr) reveal the same variation tendency (increase to a maximum and then decrease 
gradually), which also confirms the relationship between the d33 values and the Pr values in Eq. (1).
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Fig. 7.	 (Color online) Comparison of measured d33 values, theoretical d33 values, and measured Pr values of 
LNKNT-6Z2LF ceramics.

Table 1
Optimal characteristics of LKNNT-xZyLF ceramics.

d33

(pC/N) kp tanδ εr
Density 
(g/cm3)

Sintering temperature
(°C)

LNKNT 279 0.46 0.019 1203 4.421 1090
LNKNT-0Z2LF 285 0.45 0.016 1561 4.334 1020
LNKNT-4Z0LF 265 0.43 0.022 1263 4.467 1020
LNKNT-6Z0LF 272 0.44 0.021 1349 4.448 1020
LNKNT-4Z2LF 290 0.45 0.020 1721 4.422 1020
LNKNT-6Z2LF 304 0.48 0.020 1801 4.453   990
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4.	 Conclusions

	 The influences of ZnO and LiF codoped on the phase structure and the dielectric and 
piezoelectric properties of LNKNT ceramics were investigated.  As concluded in Table 1, the 
optimal sintering temperature was improved from 1090 (pure LNKNT) to 990 °C (LNKNT-6Z2LF) 
owing to the codoping of ZnO and LiF sintering promoters.  Even though the sintering temperature 
was only 990 °C, the optimal d33 values were improved from 279 pC/N (pure LNKNT) to 304 pC/
N (LNKNT-6Z2LF), and kp was improved from 0.46 (LNKNT) to 0.48 (LNKNT-6Z2LF).  Finally, 
ZnO and LiF are suitable as sintering promoters of KNN-based piezoelectric ceramics for future 
applications.
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