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	 In this paper, we present a newly adapted machine vision method and a practical low-cost 
machine vision sensor for defect classification of the air bearing surfaces (ABSs) of a hard disk 
drive, which controls the flying height of the recording heads moving above a disk in operation.  A 
defective ABS can cause poor reading and writing performance; hence, it is necessary to verify 
its integrity before assembling it into the final product.  The proposed sensor system was designed 
and implemented to detect defects by an effective combination of image segmentation and block 
matrix techniques as well as classifying them using an expert system under dark- and bright-field 
conditions.  Our system processes subregions of interest and sub-blocks in parallel so that they 
can take advantage of multiple processor cores.  From the trial runs, the small fractional error and 
low average processing time suggested that our proposed system is effective and can be used in an 
industrial assembly line.

1.	 Introduction

	 In a hard disk drive (HDD), the air bearing surface (ABS) is a small but important part of a 
slider, which is a part of a head gimbal assembly (HGA) that holds recording heads.  The location 
of the ABS on an HGA is illustrated in Fig. 1.  The ABS controls the flying height of the slider 
above a magnetic disk.  For a very high density HDD, the recording head on a slider flies extremely 
close to the magnetic disk with a clearance of only a small fraction of a microinch.(1)  Figure 2 
shows a schematic of a flying slider over a spinning disk.  In its flight, the ABS is lifted by the 
passive pressure provided by disk platter rotation.  The design of a slider has to take into account 
its weight, flying velocity, and actuator arm skew in order to achieve a uniform flying height.  The 
quality of an HDD is as good as the quality of its ABS; hence, an effective defect detection process 
is necessary.  The types of defects of an ABS focused on in this paper are stains, contaminating 
particles, and metal scratches.  An effective defect detection method is detection by image 
processing, but a major problem with an image processing system is the inconsistent quality of 
acquired images in terms of intensity, contrast, and resolution.
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	 Currently, offline nanocontamination detection is carried out by automatic force microscopy 
(AFM) or scanning electron microscopy (SEM).  AFM was first introduced in 1996 by Bining 
et al.(2)  There are two types of AFM: contact mode and noncontact mode.  AFM is not suitable 
for the inline monitoring of defects because it requires highly skilled human operators to work 
around the clock as well as lengthy operation time and high operating costs.  SEM is usually 
employed to inspect very small machine parts.  The advantages of SEM are high magnification, 
high resolution, and large depth of field (DOF).  The device can achieve a resolution of better than 
1 nm.  However, its major disadvantage is that it destroys the surface of the scanned object.  Thus, 
SEM is also not suitable for automated inline detection.  Other techniques for detecting particulate 
contamination are based on light scattering, which relies on established laser detector and optics 
technologies.  Most techniques are used for particle counting, as reported in Ref. 3.  As for the 
development of particle counters, Blesener(3) invented a nonimaging laser particle counter, and 
Bhushan and Chandra(4) proposed a laser particle counter (LPC) and a sampling technique for 
detecting the size of contaminating particles on a rigid disk drive. Koshevar et al.(5) proposed a 
new nanocontamination monitoring device. None of these light scattering techniques, however, can 
determine the type of material of the contaminating particles.  As for inline detection of other types 
of ABS defects such as stains, scratches, cracks, or chips, the conventional method is detection 
by a human operator observing ABSs through a high-magnification microscope.  The two major 
disadvantages of using a human operator are unpredictable human error and slow detection speed.  
	 A good detection method that has been widely used for the inline monitoring of numerous 
products and processes is a machine vision sensor.  Even though machine vision sensor systems 
have long been utilized in HDD factories for purposes such as QR code checking and mainboard 
integrity checking, they have not been used for ABS defect detection.  At the time of the 
development of our proposed system, we considered that using a machine vision sensor to detect 
ABS defects would eliminate human error and increase the number of units processed per hour.
	 Various defect detection algorithms have been proposed.  They can be categorized into four 
main groups: statistical, structural, spectral and filtering, and model-based algorithms.  Examples 
of applications of these algorithms are shown in Table 1.  In this work, a simple yet practical 

Fig. 1.	 (Color online) Air bearing surface on an 
HGA compared with the size of a one Thai baht coin.

Fig. 2.	 (Color online) Schematic for recording head 
flying.
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approach for constructing a low-cost machine vision sensor for detecting three types of ABS 
defects was designed and implemented.  
	 This paper is organized as follows.  In Sect. 2, we explain the design of the imaging system.  
The hybrid defect detection algorithm for our sensor system is discussed in Sect. 3.  In Sect. 4, we 
report the tested detection and classification performances of the sensor.  In Sect. 5, we provide 
conclusions.

2.	 Imaging System

	 In this section, the system used for capturing images during inspection is introduced.  Because 
the defects are usually very small, the captured image must collect all of details of the ABS while 
minimizing noise.  A high-resolution industrial CCD camera was used for capturing high-quality 
images.  Our camera selection criteria were a minimum resolution threshold and a maximum lens 
focal length threshold.  The minimum resolution threshold was based on the size of the smallest 
defect that we wanted to detect.  This threshold was calculated using Eq. (1):

	 #pixel = 2 × dFOV

Res
,	 (1)

where #pixel is the minimum resolution, and dFOV is the width or height of the field of view (FOV).  
The area of the ABS was around 1 × 0.8 mm2 and we aimed to detect a defect as small as 1 μm, so 
according to Eq. (1), the minimum pixel dimension of the camera should be at least 1600 × 2000 

Table 1
Machine vision algorithms for industrial defect detection. 
Approach Processing algorithm Industrial defect detection

Statistical algorithm

Gray-level statistic (histogram) Textile,(6) Texture(7)

Co-occurrence matrix Textile(8)

Principle component analysis Wood(9)

Mean shift Solar wafer(10) 

Weibull Synthetic aperture radar (SAR) 
image(11)

Structural algorithm Edge detection PZT,(12) Ceramic(13), 
Flash thermography (FT)(14)

Morphological operation Textile,(15–17) Ceramic(18)

Spectral and filtering algorithm

Fourier transform IC Wafer,(19) Textile,(20) Metal(21) 

Gabor wavelet Texture(22)

Gabor filter Textile(23,24)

Wavelet transform Textile(25–27)

Discrete cosine transform Textile(28)

Model-based algorithm

Neural network Textile(29)

Generic algorithm Metallic surface(30) 
Support vector machine Metallic surface(21)

Independent component analysis Textile,(31) LCD(32)

Texem model Marble(33)
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pixels.  This specification was met by a commercially available 5 MP CCD camera, which was 
capable of capturing images at a dimension of 2048 × 2594 pixels.
	 On the basis of the designed distance from the lens to the ABS, the focal length of the lens was 
calculated using Eq. (2):

	
f =

dsensor ×WD
dFOV + dsensor

,	 (2)

where f is the focal length of the lens, dsensor is the width of the CCD, which was chosen as 5.70 
× 4.28 mm2, and WD is the distance from the lens to the ABS, which was initially designed to be 
50 mm.  With these values, the lens focal length threshold was calculated to be 42.537 mm.  This 
specification was also met by the same camera, which had a lens of 50 mm focal length.  To be 
able to obtain low-distortion images, we selected a macro lens.  The required magnification of the 
macro lens was calculated using Eq. (3):

	 Mag =
dsensor

dFOV
,	 (3)

where Mag is the maximum magnification.  For our design parameters, the required magnification 
should not be greater than 5.7×.  Thus, we selected a 4× magnification macro lens that produced 
only −0.073489% distortion.  With a 5-mm extension ring, the magnification was increased to 4.3×.  
	 Finally, the illumination for the imaging system was selected.  Because the ABS is very small, 
a wide-length spot light was selected.  Two illumination techniques were used, as the bright and 
the dark field were used to collected images from the ABS for the defect classification.  The closed 
chamber was designed to solve the problem of disturbances by external light.  
	 With the selected imaging system as a CCD camera, lens, and light source, the hardware for our 
low-cost machine vision sensor system was constructed, a photo of which is shown in Fig. 3.  The 
system was inexpensive compared with an AFM or an SEM.  This selected hardware proved to be 
satisfactory because the acquired images were acceptably clear: two sample images are shown in 
Sect. 4.  

Fig. 3.	 (Color online) Inexpensive machine vision sensor system.
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3.	 Defect Detection and Classification

	 In this section, we begin by describing the steps in the defect detection procedure in Sects. 3.1–3.5.  
In the last subsection, Sect. 3.6, we describe the types of defects in our classification scheme and 
the classification algorithm.

3.1	 Extraction of region of interest (ROI) 

	 First, an ABS image was captured by the CCD camera.  Then, the captured image was 
extracted in order to find the ROIs.  A well-known extraction method is the Chan–Vese algorithm, 
which finds a geometric active contour via a level set method.  We tried to apply the level set 
method with our system, but it was not satisfactory owing to not only its low speed and high CPU 
load for the high-resolution image used in this work but also to the imperfect extraction.  The 
fast level set method, proposed by Y. Li et al.(34) and H. Lu and colleagues,(35,36) improved the 
performance of the level set method and increased the speed of the algorithm.  We tried to use this 
algorithm with our system, but choosing and tuning parameters to satisfy our case were not easy 
to implement in due time.  However, it will be interesting to simplify and integrate the method for 
further investigation in the future work.  Hence, we devised techniques that worked, its function 
was inspired from the “wand” tool in Photoshop software, and we found it to be satisfactory for our 
defect detection scheme.  The implemented technique was very easy with low complexity.  This 
technique generated the extraction mask by the Euclidean distance function between the reference 
value and each pixel.
	 Let us brief ly review the Chan–Vese algorithm.  This algorithm employs a geometric 
segmentation approach to minimizing the fitting energy of the input image and the level set 
function that defines the segmentation.  The variational calculus method was used to evolve the 
level set function.  The Chan–Vese model was defined according to the fitting energy function, 
shown in Eq. (4):

	 F (ϕ) = µ
(∫
Ω

|∇H (ϕ)| dx
)p
+ ν

∫
Ω

H (ϕ) dx + λ1

∫
Ω

|I − c1|2H (ϕ) dx

	 +λ2

∫
Ω

|I − c2|2 (1 − H (ϕ)) dx,	 (4)

where F(φ) is the fitting energy function; μ, v, λ1, λ2, and p are the user-selected fitting parameters 
for a particular class of images; H is the Heaviside function; I is the input image; Ω is the domain 
of the input image.  The terms c1 and c2 are the average pixel values of the foreground and 
background, μ and v are the weights of the total length of the edge contour (boundary) and the 
total area of the region obtained from segmentation (if the region has a smooth boundary, the 
weight μ will be large), and λ1 and λ2 are the weights of the distance terms and are proportional 
to the variances of the foreground and background of the image, respectively.  The terms 

λ1

∫
Ω

|I − c1|2 H(ϕ)dx  and λ2

∫
Ω

|I − c2|2 (1 − H(ϕ))dx were used to represent the uniformity of the 

region in terms of pixel intensity.  Minimizing the sum of these two terms made the foreground 
and background of the segmentation region as uniform as possible.  
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	 We attempted to use this method to extract ROIs.  However, after trial runs, it was found to be 
not suitable for processing our ABS images because it used too much computation time and too 
many resources.  Hence, we developed a simpler algorithm, the procedure of which is described 
below.  
	 Our algorithm for ROI extraction: 
Input:	(i)	 I(x, y, z): the intensity of a pixel at coordinate (x, y) on a color plane z in the color image 

of M × N pixels, where z takes a value of 1, 2, or 3, representing red, green, or blue, 
respectively; and 

		  (ii)	x', y', w, h: x' and y' are the coordinates of the upper left hand corner of the user’s selected 
reference area and w and h are its width and height.

Step 1:	 Determine the reference intensity values (R(z)) and tolerance (T) value:
	 the reference intensity is an intensity value that is used in the process of screening a pixel 

in or out of the extracted ROI—a pixel with an intensity value not farther away from the 
reference intensity than the tolerance value is included in the ROI.  It is determined as the 
statistical mode of all intensity values in each color plane of the reference area.  Tolerance 
value is determined as the average value of the three standard deviations of all intensity 
values in each of the three color planes of the reference area.  

Step 2:	 Create a binary mask B(x, y) for ROI extraction using the following steps:
	 Step 2a: Calculate the Euclidean distance d(x, y) between I(x, y, z) and R(z),
	 Step 2b: Generate a binary mask B(x, y) according to the following criteria:

	 d2(x, y) ≤ T,    B(x, y) = 1,

	 d2(x, y) > T,    B(x, y) = 0.

Step 3:	 Obtain the ROI by masking the image with B(x, y).  

3.2	 Fuzzy dynamic histogram equalization 

	 In the scheme of image contrast enhancement, the histogram equalization is a well-known 
technique.  Contrast enhancement for images in turbid water(37) is a contrast enhancement method, 
which is presented the method for correcting the illumination lost by propagation of an underwater 
image, whereas this work focused on light reflecting, scattering, and light distribution.  Then, the 
fuzzy dynamic histogram equalization(38) was used to enhance the ABS image and minimize the 
pixel fluctuation without removing defects and noise.  This technique consists of the following four 
steps.

3.2.1	 Creation of a fuzzy histogram

	 A fuzzy histogram is smoother than a crisp histogram and was much more suitable for our 
application.  It is a sequence of real numbers: h(i), i ∈ {0, 1, ..., L−1} where h(i) is the occurrence 
frequency of gray level i.  Assuming a gray level I(x, y) at the coordinate I(x, y) and a fuzzy number 
Ĩ(x, y), the fuzzy histogram was computed using Eq. (5):

	 h (i)← h (i) +
∑

x

∑
y
µĨ(x,y)i, k ∈ [a, b] ,	 (5)
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where µĨ(x,y)i is a triangular fuzzy membership function defined as µĨ(x,y)i = max
(
0.1 − |I(x, y) − i|

4

)
 

and [a, b] is the support of the membership function.

3.2.2	 Partitioning of the histogram

	 The histogram obtained was partitioned into multiple subhistograms that were individually 
equalized in the next step.  Partitioning was carried out by finding the first- and second-order 
derivatives of the fuzzy histogram using Eqs. (6) and (7), respectively:

	 ḣ (i) =
dh (i)

di
∆
=

h (i + 1) − h (i − 1)
2

,	 (6)

	 ḧ (i) =
d2h (i)

di2
∆
= h (i + 1) − 2h (i) + h (i − 1),	 (7)

where ḣ (i) and ḧ (i) are the first- and second-order derivatives of the fuzzy histogram h(i), 
respectively, corresponding to the ith intensity level.  Then, the partition points were the intensities 
(m0, m1, ..., mn+1) of all of the local maximum frequencies, which were calculated using Eq. (8),

	 imax = i∀
{
ḣ (i + 1) × ḣ (i − 1) < 0, ḧ (i) < 0

}
.	 (8)

In the range [Ĩmin, Ĩmax] of the original fuzzy histogram, the subhistograms [Ĩmin, m1], [m1+1, m2], ..., 
[mn+1, Ĩmax] were partitioned with these points.

3.2.3	 Dynamic histogram equalization of the subhistogram from the previous stage 

	 The new intensity level can be expressed in the form

	 y ( j) = mi−1 + (mi − mi−1)
j∑

k=mi−1

h (k)
Mi

,	 (9)

where y( j) is the new intensity level corresponding to the jth  intensity level on the input image, mi 
is the ith local maxima in the original fuzzy histogram and i = [1, 2, ..., n+1], h(k) is the histogram 
value at the kth  intensity on the fuzzy histogram, and Mi =

∑mi
k=mi−1

h(k) is the total number of 
pixels contained in the ith partition of the fuzzy histogram.  

3.2.4	 Normalization of the equalized histogram

	 We then normalized histogram equalization as

	 g (x, y) =
µi

µo
f (x, y) ,	 (10)

where μi and μo are the mean brightness values of the input image and the equalized image ( f(x, y)), 
respectively, obtained from the previous stage.  
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3.3	 Generation of a block matrix

	 The block matrix proposed in Ref. 39 was generated in the form of a two-dimensional array 
from the tilling process.  The tilling process divided the M × N image into m × n image blocks of 
size p × q.  Each member in the m × n image block represented an average intensity of each sub-
block, calculated using Eqs. (11) and (12).

	 Y(i, j) =
p(i+1)−1∑

k=pi

q( j+1)−1∑
l=q j

I(k, l) ,	 (11)

	 B(i, j) =


1 i f 0 ≤ Y(i, j) < X̄ − 10
2 i f X̄ − 10 ≤ Y(i, j) < X̄ + 10
3 i f X̄ + 10 ≤ Y(i, j),

,	 (12)

where Y(i, j) is a tile image generated with a block of size p × q, B(i, j) is the m × n block matrix 
represented by two-bit quantization values between levels 1 (01) and 3 (00), and X̄  is the mean 
intensity of the equalized image from the previous stage.
	 By using Eqs. (11) and (12) , the input image was resized by the tilling process and the block 
matrix corresponding to the tilling version was obtained.  Note that the tilling process has an 
outstanding advantage for noise removal because the average intensity of the block is employed to 
represent the value of the block.

3.4	 Extraction of defect features 

	 The block matrix B from the previous step can be represented as a function that assigns a 
quantization level to each block in the domain of the image: I: Lr × Lc → Q.  The terms Lr = {0, 1, ..., 
Nr−1} and Lc = {0, 1, ..., Nc−1}are the spatial domains of row and column dimensions, and Q = {1, 2, 
3} is the domain of quantization levels.
	 To extract defect features, we used a texture analysis technique called the gray-level co-
occurrence matrix (GLCM).(40)  It is based on repeated intensities of pixels in the image and can be 
defined using Eqs. (13) and (14)

	

P(i, j; d, 0◦) = #
{

((r, c), (r′, c′)) ∈ (Lr × Lc) × (Lr × Lc)
r′ − r = 0, |c′ − c| = d, I(r, c) = i, I(r′, c′) = j

}
,

P(i, j; d, 45◦) = #


((r, c), (r′, c′)) ∈ (Lr × Lc) × (Lr × Lc)
(r′ − r = d, c′ − c = d) or (r′ − r = −d, c′ − c = −d)
I(r, c) = i, I(r′, c′) = j

 ,

P(i, j; d, 90◦) = #
{

((r, c), (r′, c′)) ∈ (Lr × Lc) × (Lr × Lc)
|r′ − r| = d, c′ − c = 0, I(r, c) = i, I(r′, c′) = j

}
,

P(i, j; d, 135◦) = #


((r, c), (r′, c′)) ∈ (Lr × Lc) × (Lr × Lc)
(r′ − r = d, c′ − c = −d) or (r′ − r = d, c′ − c = −d)
I(r, c) = i, I(r′, c′) = j

 ,

	 (13)

where the distance matrix can be explicitly defined as 
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	 d
(
(r, c), (r′, c′)

)
= max

{|r − r′|, |c − c′|}.	 (14)

	 Next, the correlation feature used to identify the defected ABS or nondefected ABS was 
calculated using Eq. (15):

	 Corr =
Ng∑
i=1

Ng∑
j=1

(i − µi)( j − µ j) ·C(i. j)
σiσ j

,	 (15)

where μi is defined as µi =
∑M

i=1 i
∑N

j=1 C(i. j), μj is defined as µ j =
∑N

j=1 j
∑M

i=1 C(i. j), σi is defined 
as σi =

∑M
i=1 (i − µi)2∑N

j=1 C(i. j), and σj is defined as σ j =
∑N

j=1 ( j − µ j)2∑M
i=1 C(i. j).  Note that 

the index Corr measures the linear dependence of the elements in the matrix between the specified 
elements relative to each other.

3.5	 Detection of defect

	 Defects on the ROIs were detected on the basis of the characteristics of the block matrix, which 
was generated from the previous step.  As mentioned previously, the algorithm began with an 
image that was partitioned into N sub-ROI regions and then the procedure was repeated in Sects. 3.1, 
3.2, 3.3, and 3.4.  The search for the defects in each sub-ROI ran in parallel architecture and was 
synchronized.  
	 In order to identify the defects inside the ROIs, we used Euclidean distance and the selection 
threshold using the method of the minimum summation of two types of errors, namely, false 
acceptance (e1) and false rejection (e2), from the threshold set.  The threshold is defined as 

	 η = min(e1 + e2).	 (16)

The defective and nondefective ABS were classified by means of the training data set as

	
Nondefect ‖ f ‖ ≥ η,
Defect ‖ f ‖ < η, 	 (17)

where || || is the Euclidean distance, and f is the feature parameter obtained from the co-occurrence 
matrix of the block matrix.

3.6	 Classification of defect

	 In this work, three types of defects—stains, contaminating particles, and metal scratches—
were identified.  Each defect type had strong physical illumination characteristics, as shown in 
Table 2; the expert system was designed for classification based on the reflection characteristics.  A 
flow chart of the expert system is shown in Fig. 4.
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4.	 Results and Discussion

	 In order to test the designed system, the ABS images were first captured from the designed 
machine vision system as shown in Fig. 5.  The figure shows Quadrants #1 and #2 on the 
ABS images.  The results of Sect. 3.1 are shown in Figs. 6 and 7.  In Fig. 6, the results of the 
corresponding ROIs on the ABS using the level set method based on the Chan–Vese model(34–36) 
are presented.  The specific values used herein for Eq. (4) were λ1 = λ2 = 1, µ = 0.1 × 2552, and v = 0.  
As can be seen, the extracted ROIs were not perfectly removed from the background of the original 
image.  Some unwanted background is shown as something protruding at the bottom right in Fig. 
6(a) of the images appeared.  Likewise, some unwanted background also appears at the bottom left 
of Fig. 6(b).  The unwanted background indicates that the algorithm suggested in Refs. 34–36 may 
not suitable for this case.  Otherwise, the values of the parameters need to be optimized.  Perhaps 
numerical steps for the integral parts of Eq. (4) need to be fine-tuned until satisfactory results are 
finally achieved.  It takes time to proceed with the fine tuning.  In order to cope with this difficulty, 

Fig. 4.	 Designed expert system.

Table 2 
Physical illumination characteristics of the defect on the ABS.

Defect Type Illumination techniques
Bright field Dark field

Stain Rainbow Not shown
Particle Unshiny Brighter at the edge of the defect
Metal scratch Shiny Shiny at the edge of the defect
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Fig. 5.	 (Color online) Some parts of the ABS image 
captured from the designed system: (a) Quadrant #1 
of the ABS and (b) Quadrant #2 of the ABS.

Fig. 6.	 (Color online) Extraction of ROI using 
the level set method(34) in Sect. 3.1: (a) results on 
Quadrant #1 and (b) results on Quadrant #2.  

Fig. 7.	 (Color online) Extraction of ROI using the proposed method in Sect. 3.1: (a) results on Quadrant #1 and (b) 
results on Quadrant #2. 

the proposed algorithm presented in Sect. 3.1 was presented as an alternative method.  Figure 
7 shows the results obtained from using the proposed method.  As one can see, the extracted 
ROIs are clearer and better than the ROIs from the level set method.  Unwanted background was 
removed.  In addition, the proposed method had a better processing time, as shown in Table 3.  The 
processing time for using the Chan–Vese model was 6.15 s vs 1.62 s for the proposed method.  The 
ROI was extracted from the image size of 1942 × 2590 pixels with the pre-defined reference area 
for the size of 40 × 40 pixels.  
	 Figures 8(a) and 8(c) show the results for Sect. 3.3 without processing through the fuzzy 
dynamic histogram equalization, as described in Sect. 3.2.  There is still noise in those figures; 
however, Figs. 8(b) and 8(d) show that the fluctuations due to noise were removed by using the 
procedure in Sect. 3.2.  The images in the subfigures are clearer than those obtained without using 
the procedure in Sect. 3.2.  Note that the support membership function used in this procedure is a 
triangular one in the form [0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0].  Note also that, in Sect. 3.3, the tiled image 
was generated from the ROI image with the block size containing 30 × 30 pixels.  Figure 9 shows 
the zoom version of Fig. 8(d), whereas Fig. 10 shows the corresponding numbering values of the 
block matrix (shown in the red box of Fig. 9) calculated from Eqs. (5) and (6).  Numbers 2 and 3 in 

(a) (b) (a) (b)

(a) (b)
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Fig. 10 indicate the defect areas.  For Sect. 3.4, the GLCM features were calculated from the co-
occurrence matrices with the distance d = 1 with θ = 0, 45, 90, and 135°.  Figure 11 shows the plots 
of the defect detection using the Euclidean distance of the correlation features and the selected 
threshold presented in Sect. 3.5.  These thresholds were calculated automatically and adaptively 
because the errors had been dynamically changed.  The results from this procedure are presented 
in Tables 3 and 4.  
	 Table 4 shows the results for the three classified types obtained from defect detection, which 
were stains, contaminating particles, and metal scratches.  Two types of error, false rejection and 
false acceptance, are shown in the table.  False rejection means that the expert system identifies 
the perfect ABS as the defected ABS.  On the other hand, false acceptance means that the expert 

Fig. 8.	 Results for Sect. 3.3: (a), (c) without Sect. 3.2 and (b), (d) with Sect. 3.2 (better images).

Fig. 9.	 (Color online) Zooming results from Sect. 3.3 in Fig. 8(d).

(a) (b) (c) (d)

Table 3
Processing time.
Procedure Algorithm Average processing time (s)

Extraction of ROI (Sect. 3.1) Chan–Vase(34–36) 6.15
Proposed 1.62

Histogram equalization (Sect. 3.2) Fuzzy DHE 0.36
Block matrix (Sect. 3.3) Block matrix 0.51

Extraction of defect feature (Sect. 3.4) GLCM without block matrix 9.58
GLCM with block matrix 1.01

Detection of defect (Sect. 3.5) Euclidean distance and threshold 3 × 10−6

Classification of defect (Sect. 3.6) Expert system 7.000006
Human expertise Visual inspection using human eyes 5–15
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Fig. 10.		 Sample values of the block matrix (red box in Fig. 9).

Fig. 11.	  (Color online) Euclidean distances and thresholds of defect detection with the correlation feature on the 
selected ROIs: (a) stains, (b) particles, and (c) metal scratches.

(a) (b)

(c)
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system identifies the defected ABS as a perfect one.  Over-rejection may not cause as much trouble 
as over-acceptance.  This is because over-acceptance may accept the defective parts that will be 
delivered to customers.  A defective sample found by a customer would cause the rejection of the 
whole lot of the product shipment, and the products would be returned to the factory, creating a 
bad reputation for the company.  This is serious since it is necessary to completely prevent false 
acceptance errors.  In Table 4, all of the results were acceptable, except for the case of the false 
acceptance for metal scratches.  Hence, false acceptance in the case of metal scratches is a concern.  
More rule bases for the case of metal scratches need to be adjusted or added, which would be a 
challenging classification enhancement for future work.  Nevertheless, for defect detection only 
(regardless of classification), the method works very well, as it can reject all defect types.
	 In Table 3, the total run time for all procedures was around 7 s, which was in an acceptable 
operation range compared with using human operators (around 5–15 s).  The computer used in this 
test was an Intel Core i7 CPU with 4 GB RAM.  For speed performance comparison, if we used the 
proposed inspection without the procedure in Sect. 3.3, the run time was around 13 s, which was 2 
times higher than that with the procedure in Sect. 3.3.  This is why the procedure in Sect. 3.3 was 
introduced and included.  As one can see, the advantage of the proposed method not only speeded 
up the process but also performed as well as human visualization.  If the defect can be seen in an 
image, the detection result is still accurate, even though the lighting environment has changed.  
Note that one may conjecture about the robustness of the method over the lighting conditions.  
However, for a well-developed industrial line, the lighting conditions can be completely 
controllable.  In our case, we set up the image acquisition procedure using an industrial camera 
inside the well-designed lighting chamber, and there was no need to check for other lighting 
conditions in this situation.

5.	 Conclusions

	 A practical machine vision design and implementation have been illustrated in this paper.  A 
simple yet effective method was proposed to identify the defects on the ABS of a HGA.  The 
six simple procedures suggested in this paper were ROI extraction, fuzzy dynamic histogram 
equalization, block matrix generation, extraction of defect features, defection detection, and 
classification of the defects.  The key idea for speeding up automatic inspection was to divide the 
area of investigation into each block matrix.  In doing so, searching areas can be divided as desired 
by the designer.  The concept of using sub-blocks and sub-ROI processing in parallel was revealed 

Table 4
Classification results. 
Error type Number of samples Error
False rejection (stain) 24 2
False acceptance (stain)   7 0
False rejection (particle) 25 0
False acceptance (particle)   6 0
False rejection (metal scratch) 25 1
False acceptance (metal scratch)   6 1
Group missing 19 3
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to be effective, as demonstrated by the results, because the concept markedly helps to reduce the 
size of the input matrix before feeding to the feature extraction procedure.  As the size of the 
matrix is reduced, the run time for extracting the features of the blocks is also reduced.  
	 Finally, the expert system for classification was designed from the illumination characteristics 
on the ABS.  The system was tested by using normal samples and samples containing three 
types of defects: microcontamination with stains, contaminating particles, and metal scratches.  
The results were seen to be satisfactory for defect detection and classification.  However, for 
the classification, the rules bases for classification may need to be modified in the case of metal 
scratches owing to the existence of false acceptances in the test.  In general, the results can be 
verified by the proposed expert system, indicating that they were good as these visualized by the 
human eye.  However, this process is an automatic operation in the production line, which can 
replace human operators.  The human operators can then perform more intelligent and healthier 
tasks.  Further work needs to be carried out on the classification system in order to classify more 
types of defects in the manufacturing system.  The searching algorithm itself can also be enhanced 
by using an intelligent search, such as chaotic path, pheromone tracking, or other combinations of 
heuristic and analytic approaches.  These topics may be viewed as subregional searches inside the 
blocks for fine tuning and are still a challenge.
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