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	 As wireless sensor networks (WSNs) become more advanced, they are gradually applied 
to various fields, such as medical monitoring, and receive increased attention because of their 
great potential.  WSN localization methods are crucial for numerous applications.  To increase 
localization accuracy, a method is proposed that calculates the number of hops between nodes 
using the degree of irregularity model.  The amorphous method is then adopted to calculate the 
average distance, and multidimensional scaling is used to estimate the coordinates of unknown 
nodes.  Finally, boundary correction and multipower transmission techniques are adopted to reduce 
the error of estimation.  This integrated localization method reduces localization errors which may 
occur at each step of distance vector (DV)-hop localization.  The proposed method—boundary-
improved amorphous localization with multipower multidimensional scaling (BIA-MMS)—
substantially improved the localization accuracy compared with other localization methods when 
tested through simulations.

1.	 Introduction

	 Wireless sensor networks (WSNs) were developed two decades ago by the US military 
to detect objects on the battlefield.  The objective of the “smart dust” research project at the 
University of California at Berkeley, in collaboration with the US Department of Defense, was to 
develop miniature sensors and a network that could connect them.(1,2)  This dust could be used to 
reduce the cost of continuous monitoring of hostile environments and prevent accidents.  Micro-
electromechanical systems manufacturing and embedded processor technology have recently been 
used to develop energy-efficient single-chip microcomputers.  Consequently, numerous research 
institutions and industrial companies have become interested in developing applications that use 
WSNs, including the monitoring of oriental fruit flies,(3) air pollution,(4) motor faults,(5) volcanic 
eruptions,(6) and home healthcare.(7)  For some applications, localization accuracy is crucial, and 
has thus been the focus of much research.  Some of the WSNs that can estimate locations most 
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precisely use high-cost nodes, which locate each other using a global positioning system (GPS), 
but these negate the low-cost advantage of WSNs.  Consequently, range-based and range-free 
localization schemes that do not use expensive positioning devices are preferable when cost is a 
concern.  A range-based localization scheme assumes that all nodes are equipped with directional 
antennas to find directions and estimate distances.  A range-free localization scheme does not use 
expensive directional antennas but only omnidirectional ones.  Locations are often estimated by 
range-free devices using the received signal strength indicator (RSSI).  Theoretically, the RSSI 
indicates the distance between the transmitting and receiving nodes.  In practice, however, the 
environment can easily affect the RSSI and the localization results have large errors.  To decrease 
this error, hop counts are used instead.  The distance vector (DV)-hop algorithm(8) is a popular 
hop count localization algorithm.  On the basis of the number of hops between a node and an 
anchor node, location coordinates can be estimated.  However, this approach requires high-density 
deployment to locate node coordinates precisely.  Recently, researchers have proposed variations of 
the DV-hop technique.  The modified DV-hop method(9) entails a weighted hop-distance estimation 
approach.  In the amorphous method,(10,11) the hop count modification was introduced when the 
distances between unknown nodes and anchor nodes were calculated.  Reference 12 introduced a 
twice-weighted DV-hop localization algorithm to more accurately estimate hop distances in which 
the RSSI was not used.  To consider path loss, Ref. 13 improved localization accuracy by using the 
RSSI ratio model to modify hop distance estimation.
	 Although these methods substantially mitigated localization errors, the large errors that 
often occur in the boundary regions of uniformly, randomly deployed networks have rarely been 
addressed.  Similar to the aforementioned methods, the method proposed in this paper uses the hop 
count from node to node to estimate distances and then determine coordinates.  This method, called 
boundary-improved amorphous localization with multipower multidimensional scaling (BIA-
MMS), involves applying the degree of irregularity (DOI) model, the shortest path algorithm, 
multidimensional scaling (MDS), multipower method, and the boundary improvement algorithm 
to estimate distances and reduce localization errors.  Part of preliminary work has been published.(14)  
Compared with other localization methods, simulation results demonstrated that BIA-MMS 
estimated coordinates more accurately than other methods did.

2.	 Preliminaries

2.1	 DV-hop localization method

	 The DV-hop localization algorithm(8) is classified as a range-free localization scheme.  If the 
anchor node cannot send a packet to the target node directly, the redirect hop count is calculated 
and used to estimate the average distance based on the average hop distance.  When distances 
between the target node and more than three anchor nodes are obtained, the coordinates of the 
target node can be estimated.  Assuming that di is the estimated distance of the target node with 
the coordinates (x, y) from the anchor node i with the coordinates (xi, yi), i = 1, …, m,

	 (x1 − x)2 + (y1 − y)2 = d2
1 ,

	 ⁝	 (1)
	 (xm − x)2 + (ym − y)2 = d2

m.	
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Subtracting the final equation in Eq. (1) from the rest of the equations, we have

	 2x (x1 − xm) + 2y (y1 − ym) = d2
m − d2

1 + x2
1 − x2

m + y2
1 − y2

m,	
	 ⁝	 (2)
	 2x (xm−1 − xm) + 2y (ym−1 − ym) = d2

m − d2
m−1 + x2

m−1 − x2
m + y2

m−1 − y2
m .	

Rewriting Eq. (2) in matrix-vector form gives

	 Ax = b,	 (3)

where x = [x y]T, and A =



x1 − xm y1 − ym
...

...

xm−1 − xm ym−1 − ym

, b =



(
d2

m − d2
1 + x2

1 − x2
m + y2

1 − y2
m

)
/2

...(
d2

m − d2
m−1 + x2

m−1 − x2
m + y2

m−1 − y2
m

)
/2


.  

By the projection method, the least-squares solution can be found:

	 x̂ = (AT A)−1 ATb.	 (4)

2.2	 Modified DV-hop localization method

	 The modified DV-hop localization method(9) entails a new calculation of average hop distance 
(hop size), which is composed of two parts: global hop distance and local hop distance.  The local 
distance Ci, j

l  between the anchor nodes i and j is defined as 

	 Ci, j
l =

√(
xi − x j

)2
+
(
yi − y j

)2/
hi j,	 (5)

where hij is the hop count from the anchor node i to the anchor node j.  The global distance Ci
g of 

the anchor node i is defined as

	 Ci
g =
∑
i� j

√(
xi − x j

)2
+ (yi − yi)2

/∑
i� j

hi j.	 (6)

The effective average hop distance is then calculated as a weighted average using

	 Ci, j
ef f = αCi

g + (1 − α) Ci, j
l ,	 (7)

where 0 < α < 1 is a positive weighted coefficient.  Using Eq. (7), the distance from the anchor 
node to the target node can be simply obtained from the product of the hop distance and hop count.

2.3	 DOI model

	 Because of environmental interference, the range of a radio signal is usually not circular.  
This type of irregularity is a common phenomenon in WSNs.  To model this irregularity, Ref. 15 



678	 Sensors and Materials, Vol. 29, No. 6 (2017)

proposed a DOI model.  Assuming that d is the distance between the transmitting and receiving 
nodes, and that d0 is the reference distance, the receiving power Pr(d) can be defined as

	 Pr (d) = Pt − PL (d0) − 10η log10

(
d
d0

)
× Di,	 (8)

where Pt is the transmitting power and η is the exponent of path loss that depends on the 
propagation environment.  The typical range of η is 2 ≤ η ≤ 4 for outdoor environments and 4 ≤ η ≤ 
6 for indoor environments.  Table 1 lists some examples of η in different environments.
	 In Eq. (8), Di is the coefficient that represents the grade of path loss in the direction of degree i, 
which is defined as

	 Di =


1 if i = 0
Di−1 ± Rand × DOI if 0 < i < 360, i is a positive integer

	 (9)

provided |D0 – D359| ≤ DOI, where 0 ≤ DOI ≤ 1 is a pre-specified number to indicate the degree of 
irregularity.  Using Eqs. (8) and (9), the transmission radius in the direction i can be calculated as 

	 φ (i) = d0 × 10(Pt−Pr(d)−PL(d0)/10×η×Di).	 (10)

	 Different DOI values in Eq. (10) reflect the different possible transmission characteristics.  
Figure 1 illustrates the transmission irregularity when DOI is 0.00, 0.05, and 0.07.  When DOI is 0, 
we obtain a perfectly circular transmission.  When the DOI is increased, the degree of transmission 
irregularity increases.

Fig. 1.	 (Color online) Irregular transmission radii found using the DOI model. 

Table 1
Typical values of η.
Environment Exponent of path loss η 
Free space 2
Urban area 2.7–3.5
Suburban area 3–5
Indoor (line-of-sight) 1.6–1.8
Indoor (not line-of-sight) 4–6
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3.	 BIA-MMS Method

	 The purpose of the localization method proposed in this paper is to accurately estimate 
positions in WSNs.  The localization procedure follows the steps of DV-hop localization: (1) 
calculate the hop count, (2) estimate the hop distance, and (3) find the node coordinates.  It differs 
from the traditional DV-hop method in the sense that it adopts a statistical method to find the 
average hop distance,(16,17) the amorphous method(10,11) to calculate average hop count, and the 
MDS method(18,19) to estimate coordinates.  Additionally, boundary improvement and multipower 
transmission techniques are introduced to further improve the localization accuracy.  By using 
fixed anchor nodes, the method estimates the coordinates of ordinary sensor nodes.  To sum up, 
the integration localization method proposed by this work can reduce the localization errors which 
may occur at each step of the DV-hop localization.  Moreover, the boundary correction scheme and 
the multipower method are adopted to further reduce the overall localization error.
	 Initially, the concept of modeling radio irregularity detailed in Ref. 15 is used to establish the 
DOI model and simulate the wireless transmissions of WSNs.  In addition, WSNs are deployed 
randomly to meet the 100% coverage requirement.  After this deployment, the sink sends command 
packets to all anchor nodes and the nodes to be located.  When it receives the packet, each node 
collects the ID numbers of its neighbor nodes and returns them to the sink, which establishes the n 
× n adjacency matrix C.  The element C(i, j) is defined as

	 C(i, j) =



1, if j is a neighbor node of i
0, i = j
∞, otherwise

	 (11)

where i is the ID of the starting node, j is the ID of the destination node (i, j = 1, ..., n), and n is the 
number of nodes in the network.  C(i, j) indicates the connectivity between nodes i and j.  If node j 
lies within the communication range of node i, C(i, j) = 1; if they cannot connect, C(i, j) = ∞.
	 Once C is found, the number of hops can be calculated from the shortest path matrix W (or hop 
count matrix) between all nodes by using the Floyd–Warshall algorithm.(20)  This algorithm uses C 
as an initial structure matrix.  The hop count matrix at step k is denoted by Wk, and W0 = C.  When 
the algorithm proceeds to step k, k is the relay node.  In this case, the hop count information at step 
k is compared with that at step k − 1.  If the hop count at k is larger, let Wk(i, j) = Wk−1(i, j); if the 
hop count at k is smaller, let Wk(i, j) = Wk−1(i, k) + Wk−1(k, j).  Therefore, the updated equation of 
the Floyd–Warshall algorithm is 

	 Wk(i, j) = min{Wk−1(i, j), Wk−1(i, k) + Wk−1(k, j)}.	 (12)

The minimum hop count matrix, denoted by W(i, j) using the Floyd–Warshall algorithm, can be 
obtained by dynamic programming.  
	 To estimate the distance between nodes, the hop count and transmission distance are required.  
Also, the average distance of each hop is essential to calculate the distance accurately.  It is 
assumed that the average network connectivity is known a priori.  Because this work adopts 
random WSN deployment and assumes that the number of nodes within a transmission radius has 
a Poisson distribution,(16) the Poisson distribution method is used to estimate the average number of 
neighboring nodes for each sensor node.  Using this network node density, the method proposed by 
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Kleinrock and Silvester(17) is used to calculate the average distance of each sensing node hop dhop:

	 dhop = R
[
1 + e−N −

∫ 1

−1
e−

N
π (cos−1(t)−t

√
1−t2)dt

]
,	 (13)

where N is the expected number of nodes within the transmission radius R.  
	 Once the expected distance of one hop is obtained, it is possible to update the estimated 
distance between nodes.  Traditionally, the estimated distance between nodes i and j is calculated 
using W(i, j) × R, where W(i, j) is the hop count between the starting node i and the destination 
node j.  From this, it can be concluded that the localization error is due to the multiplication of the 
hop count error by R, which is generally large.  Equation (13) proposed a reasonable estimation of 
the average distance which is usually smaller than R and results in a smaller distance error from 
node i to node j.  To calculate the average number of hops within the network and thus improve the 
accuracy of the estimated location, the amorphous method(12) is used.  In Ref. 11, a 0.5 shift was 
introduced to each element in W.  This updates W to 

	 Ŵ(i, j) =
∑

k∈nbr(i) W(k, j) +W(i, j)
|nbr(i)| + 1

− 0.5, j = 1, 2, . . . , n,	 (14)

where nbr(i) is the set of neighbor nodes of the node i, |nbr(i)| is the number of nodes in nbr(i), 
and Ŵ(i, j) is the element (i, j) of the updated hop count matrix Ŵ.  Consequently, the estimated 
distance can then be updated to Ŵ(i, j) × dhop and the distance matrix L can be found using

 	 L = Ŵ × dhop.	 (15)

	 Instead of the traditional least-squares method, this study proposes the use of the MDS 
method(18) to calculate the coordinates of a node when information about neighboring nodes within 
the communications range is known.  Also, the double-centering method introduces an inner 
product matrix B:

	 B = XXT =
1
2

JL2 J,	 (16)

where J = I −
(
[1 · · · 1]T

1×n × [1 · · · 1]1×n

)
/n.  The new centered matrix X* can be calculated by 

subtracting the column means of X:

	 X∗ = X − HC = X − (HHTX)/n,	 (17)

where H = [1 ∙ ∙ ∙ 1]T and C = (HT X)/n.  Thus, the new inner product matrix B* of the centered 
configuration can be defined as

	 B∗ = X∗X∗T
	 = (X − HC)(X − HC)T 	
	 = (X − HHTX/n)(XT − XTHHT/n) 	
	 = B − BHHT/n − HHTB/n + HHTBHHT/n2.	

(18)
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Using direct matrix manipulation, the elements of B* can be written as

	 b∗i j = bi j −
1
n

n∑
k=1

bik −
1
n

n∑
k=1

bk j +
1
n2

n∑
k=1

n∑
l=1

bkl .	 (19)

Note that b jk =
(
d2

i j + d2
ik − d2

jk

)
/2, and that dij, dik, and djk are restricted by the law of cosines: 

cos θ jik =
(
d2

i j + d2
ik − d2

jk

)
/2di jdik.  Taking the singular value decomposition of B*, we have

	 B∗ = UΣVT,	 (20)

where U and V are normal matrices, and Σ is in the form 

	 Σ =

[
Λr 0
0 0

]

n×n
, Λr =



σ1 0 0

0
. . . 0

0 0 σr


r×r

.	 (21)

Without loss of generality, we assume that σi satisfies σ1 ≥ σ2 ≥ ...  ≥ σr > 0.  Choosing two singular 
values σ1 and σ2 and their associated singular vectors, we can calculate the dissimilarity matrix:

	 E = U ×



σ1 0
0 σ2
...

...

0 0


n×2

.	 (22)

The estimated coordinate of node i corresponds to row i of matrix E.  The element E(i, 1) is the 
estimated x-axis coordinate xi

est, and the element E(i, 2) is the estimated y-axis coordinate yi
est.  The 

method proposed in Ref. 19 to improve localization accuracy by solving the nonlinear equations of 
rotation and translation was adopted.  
	 After the estimated coordinates were found, they were plotted to illustrate the error in the 
estimated position (Fig. 2).  In Fig. 2, dark dots indicate the actual positions of nodes; grey dots 
indicate the estimated positions; white dots indicate the estimated positions near the boundary; 
stars denote the anchor nodes.  The figure demonstrates that the localization error appears to be 
largest near the boundary of the deployment area.  Hence, the following rule is proposed to reduce 
the error: 

	 Ê(i, j) =



NS, if E(i, j) > NS,∀i ∈ {1, . . . , n} ,∀j ∈ {1, 2}
0, if E(i, j) < 0,∀i ∈ {1, . . . , n} ,∀j ∈ {1, 2}
E(i, j), otherwise

	 (23)

where NS is the network size (deployment area).  Note that the reference origin in Fig. 2 is in the 
lower lefthand corner.  If the estimated coordinate is outside the deployment area, it is replaced by 
NS or zero.
	 In general, hop-based localization methods have similar drawbacks.  The estimated distance 
between the node and the anchor node is based on hop count.  If the sensor node is far from the 
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anchor node, the hop count is high and this causes a greater accumulation of error in the distance 
calculation.  Therefore, the nodes that are farther from the anchor node must be located differently.  
Accordingly, multipower localization(21) is employed, within which three transmission powers (with 
correspondingly different transmission ranges) are used to send packets (Fig. 3).  
	 Three hop count matrices WR0, WR1, and WR2, and thus three coordinate matrices ÊR0, ÊR1, and 
ÊR2, are then obtained.  Nodes that are more than three hops from the anchor node are collected from W, 
and the node sequence is rearranged by the hop count in descending order.  By selecting half of the 
sequence with larger hop counts, the coordinates are then modified using the following:

	 Êmp(i, j) =
1
3

(
ÊR0 (i, j) + ÊR1 (i, j) + ÊR2 (i, j)

)
, j = 1, 2.	 (24)

	 For simplicity, in this paper, we denote the proposed boundary-improved amorphous localization 
algorithm with multipower MDS by BIA-MMS.  This method is compared in this paper with two 
methods in which multipower modification is not used: the amorphous MDS (AMDS) method 
(in which boundary improvements are not made), and the boundary-improved MDS (BIA-MDS) 
method (which has no multipower modification).  The normalized error in the estimated location is 
defined as

	 Mi
R =

√(
xi

est − xi
real

)2
+
(
yi

est − yi
real

)2

R
,	 (25)

and the average error of estimation as

	 M(MR) =

n∑
i=1

Mi
R

n
.	 (26)
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Fig. 2.	 (Color online) Indication of the large 
boundary localization error.

Fig. 3.	 (Color online) Multipower transmission.
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	 Comparing AMDS and BIA-MDS revealed that adding boundary improvement resulted in 
a smaller average error of estimation [Fig. 4(a)].  Notably, the unit (round) of the x-axis in Fig. 4 
is the number of simulations and the unit (R) of the y-axis is the transmission range.  Moreover, 
Eqs. (13) and (15) indicate that the transmission radius plays an important role in the calculation 
of localization error, so this paper uses a multipower method to refine the estimated coordinates.  
Compared with AMDS and BIA-MDS, the BIA-MMS method yielded a lower average error 
of estimation [Fig. 4(b)].  In summary, Fig. 5 shows the flowchart of the proposed BIA-MMS 
localization method.  

4.	 Numerical Simulations

	 To demonstrate the effectiveness of the proposed method, other localization methods, namely, 
DV-hop,(8) Im DV-hop,(9) amorphous,(10) grid-scan,(22) and AMDS, were used for comparison.  
Matlab simulation software was used and simulation parameter settings were as follows:
(1) Deployment area = 50 × 50 m2, random deployment;
(2) Number of nodes = 130;
(3) Transmission range (R) = 10 m;
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Fig. 5.	 (Color online) Flowchart of the proposed BIA-MMS localization method.
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(4) DOI = 0.01;
(5) Number of anchor nodes = 20, random deployment;
(6) Grid-scan area = 2 × 2 m2.
	 Figure 6 shows the average error of estimation over 35 rounds of simulations.  In each round, 
the average error of estimation was calculated using the results of 100 deployments.  The proposed 
BIA-MMS localization method outperformed all other methods with respect to the average error 
of estimation.  Table 2 presents ēest, the mean of the 35-round average errors of estimation, when 
various localization methods were used.  The mean found when the proposed method was used 
was ēest = 0.1239 (R), which was the lowest among the compared methods.  Table 3 presents the 
statistics for the error of estimation: median, interquartile range (IQR), number of outliers, and 
maximal outlier.  Errors of estimation were divided into two categories: outliers and nonoutliers, 
defined by whether the error was outside the range (median – 1.5 × IQR, median + 1.5 × IQR).  The 
furthest outliers are considered the maximal outliers.  The statistics for the proposed method are 
superior to those for the other methods, with the exception that the number of outliers is slightly 
more than that for the DV-hop, grid-scan, and amorphous methods.  The BIA-MMS median is 0.119 (R), 
which is 73.1% lower than that for the compared methods.  The corresponding box-and-whisker 
plot of average error of estimation for each method listed in Table 3 is shown in Fig. 7.
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Fig. 6.	 (Color online) Average error of estimation over 35 rounds using various methods.

Table 2
Average error of estimation (unit: R).
Method DV-hop Im DV-hop Grid-Scan Amorphous AMDS BIA-MMS
ēest 0.3602 0.3516 0.5057 0.3516 0.2098 0.1239

Table 3
Statistics for the error of estimation (unit: R).
Item DV-hop Grid-Scan Amorphous AMDS BIA-MMS
Median       0.359        0.507        0.351          0.206        0.119
IQR       0.011      0.21        0.013          0.012        0.015
No. of outliers 1 0 0 36 2
Max outlier       0.384        0.542        0.372          0.335      0.19
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Fig. 7.	 (Color online) Box-and-whisker plot for 
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Table 4
Average error of estimation over different numbers of sensor nodes (unit: R).
Algorithm DV-hop Grid-Scan Amorphous AMDS BIA-MMS Im DV-hop
ēest 0.3598 0.5101 0.331 0.2098 0.1231 0.351
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	 To investigate the effect of node density on the error of estimation, the number of sensor nodes 
was varied from 100 to 200.  Figure 8 illustrates the average errors of estimation calculated over 
100 deployments when the number of sensor nodes was changed.  The proposed method again 
outperformed all the other methods.  Table 4 lists ēest, the mean of the average errors of estimation, 
for various localization methods, and shows that the mean for our method was ēest = 0.1239 (R), 
which was the lowest among the compared methods.  When more nodes were used, the BIA-MMS 
method was more accurate, and the IQR remained as 0.062 (R), which implies a highly uniform 
average error when the number of nodes was changed.
	 How error depended on the number of anchor nodes was investigated next.  Figure 9 depicts 
the average error of estimation calculated over 100 deployments when the number of anchor nodes 
was varied from 3 to 20.  The proposed method yielded smaller average errors than other methods 
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Fig. 9.	 (Color online) Average error of estimation when different numbers of anchor nodes were used.
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for all anchor node numbers, and the mean error when our method was used was ēest = 0.1463, the 
lowest among the compared methods as listed in Table 5.  
	 Finally, the DOI was varied from 0.00 to 0.07, and the numbers of sensor nodes and anchor 
nodes were fixed at 130 and 20, respectively.  Radio irregularity affected localization accuracy 
substantially (Fig. 10), because irregular transmissions affect the determination of internode hop 
count, and the situation occurring in the detoured path leads to less accurate estimated coordinate.  
However, for each DOI, the proposed method still has smaller average errors than those of the other 
methods, as reflected in the mean errors listed in Table 6.

5.	 Conclusion

	 In this paper, we proposed the BIA-MMS method for estimating the coordinates of nodes in 
a uniformly, randomly deployed WSN using the DOI model.  Assuming the network has 100% 
coverage, the method adopts the Floyd–Warshall algorithm to calculate the shortest path between 
nodes and thus the optimal hop count to avoid detour situations.  Hop distance is calculated more 
accurately by assuming a Poisson distribution of nodes in a neighborhood.  The amorphous method 
is also adopted to modify the average hop count.  After the hop count and hop distance are found, 
MDS is used to calculate node coordinates.  Additionally, a boundary improvement rule is used to reduce 
the error of estimation that occur at the boundary, and the multipower technique is introduced to 
further update the coordinates of nodes far from anchor nodes.  Considering long-run simulations, 
different numbers of sensor nodes, different numbers of anchor nodes, and different DOIs, the 

Fig. 10.	 (Color online) Average error of estimation for different DOIs.

Table 5
Average error of estimation when different numbers of anchor nodes were used (unit: R).
Algorithm DV-hop Grid-Scan Amorphous AMDS BIA-MMS Im DV-hop
ēest 0.5716 0.8219 0.4723 0.2530 0.1463 0.553

Table 6
Average error of estimation for different DOIs.
Algorithm DV-hop Grid-Scan Amorphous AMDS BIA-MMS Im DV-hop
ēest 0.3772 0.4807 0.6229 0.2645 0.1493 0.5236
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proposed method obtains the best results in each case as compared with other methods.  On the 
basis of numerical simulations, the use of the BIA-MMS method substantially reduces the average 
and spread of error in the estimated location in the presence of radio irregularities compared with 
other methods.
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