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	 In this study, we investigate the control performance of an adaptive controller using a multilayer 
quaternion neural network.  The control system is a self-tuning controller, the control parameters of 
which are tuned online by the quaternion neural network to track plant output to follow the desired 
output generated by a reference model.  A proportional–integral–derivative (PID) controller is used 
as a conventional controller, the parameters of which are tuned by the quaternion neural network.  
Computational experiments to control a single-input single-output (SISO) discrete-time nonlinear 
plant are conducted to evaluate the capability and characteristics of the quaternion-neural-network-
based self-tuning PID controller.  Experimental results show the feasibility and effectiveness of the 
proposed controller.

1.	 Introduction

	 The use of hypercomplex-valued neural networks, such as complex neural networks and 
quaternion neural networks, to overcome classically hard-to-treat intractable problems has been 
investigated.(1,2)  Quaternion neural networks have been demonstrated to perform better than 
real-number neural networks, because the former can cope with multidimensional issues more 
efficiently by employing quaternions directly.  Many studies have successfully used quaternion 
neural networks in applications requiring multidimensional signal processing, for example, colour 
image processing,(3,4) signal processing,(5,6) filtering,(7) inverse problems,(8) and classification 
problems.(9)  In previous studies, we presented robot control applications of quaternion neural 
networks to solve forward and inverse kinematics of a robot manipulator.(10,11)

	 In this study, we investigate the characteristics of an adaptive controller based on a quaternion 
neural network.  The controller is a self-tuning feedback controller, comprising a reference model 
to generate the desired output and a feedback controller, the parameters of which are tuned online 
by the quaternion neural network.  Moreover, we use a proportional–integral–derivative (PID) 
controller as the feedback controller.  We conducted computational experiments for controlling a 
single-input single-output (SISO) discrete-time nonlinear plant to evaluate the feasibility of the 
proposed quaternion-neural-network-based self-tuning PID controller.
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2.	 Self-tuning PID Controller Using Quaternion Neural Network

2.1	 Quaternion neural network

	 A quaternion forms a class of hypercomplex number that consists of a real number and three 
imaginary numbers.  A quaternion q is defined as

	 q = q0 + q1i + q2j + q3k ,	 (1)

where qi (i = 0, 1, 2, 3) is the real number parameter.  The real number unit is 1 and the three 
imaginary units are i, j, and k.  They are orthogonal spatial vectors.  Quaternion algebra is not 
commutative and satisfies the following Hamilton rules:

	 i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j .	

The conjugate of a quaternion q* is defined as

	 q∗ = q0 − q1i − q2j − q3k ,	 (2)

and the multiplication between one quaternion and its conjugate is defined as

	 q ⊗ q∗ = q2
0 + q2

1 + q2
2 + q2

3.	 (3)

The addition and subtraction of two quaternions, q1 and q2, are defined as

	 q1 ± q2 = (q01 ± q02) + (q11 ± q12)i + (q21 ± q22)j + (q31 ± q32)k.	 (4)

The multiplication between a real number a and a quaternion q is given as

	 aq = aq0 + aq1i + aq2j + aq3k ,	 (5)

while the multiplication between two quaternions q1 and q2 is given as

	 q1 ⊗ q2 = q01q02 − −→q1 · −→q2 + q02
−→q1 + q01

−→q2 +
−→q1 × −→q2 ,	 (6)

where

	 −→qi =
[

q1i q2i q3i

]T
	

(i = 1, 2); · and × represent scalar and vector products, respectively.  The norm of the quaternion is 
defined as

	 |q| =
√

q ⊗ q∗ ,	 (7)
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and the inverse of the quaternion is given as

	 q−1 =
q∗

q ⊗ q∗.	 (8)

	 To describe the training algorithm of the multilayer quaternion neural network, a multilayer 
quaternion neural network was considered.  In the input layer of the quaternion neural network, the 
l-th neuron input xl is a quaternion:

	 xl = x0l + x1li + x2lj + x3lk .	 (9)

In the hidden layer connected with the input layer, the output from the m-th neuron unit z(h1)
m  is 

defined as

	 z(h1)
m = f (

∑
l

w(h10)
ml ⊗ xl + φ

(h1)
m ) ,	 (10)

where w(h10)
ml  is the weight between the l-th neuron of the input layer and the m-th neuron of the 

hidden layer, φ(h1)
m  is the threshold of the m-th neuron in the hidden layer, and f(·) is an activation 

function of the neuron.  In the p-th hidden layer, the output from the n-th neuron unit z(hp)
n  is 

defined as

	 z(hp)
n = f (

∑
m

w(hp p−1)
nm ⊗ z(hp−1)

m + φ
(hp)
n ) ,	 (11)

where w(hp p−1)
nm  is the weight between the m-th neuron of the (p − 1)-th hidden layer and the n-th 

neuron of the p-th hidden layer, and φ(hp)
n  is the threshold of the n-th neuron in the p-th hidden 

layer.  In the output layer, the output from the s-th neuron unit z(o)
s  is defined as

	 z(o)
s = f (

∑
n

w(o0p)
sn ⊗ z(hp)

n + φ(o)
s ) ,	 (12)

where w(o0p)
sn  is the weight between the n-th neuron of the p-th hidden layer and the s-th neuron of 

the output layer, and φ(o)
s  is the threshold of the s-th neuron in the output layer.  Here, the weights 

and thresholds are quaternions and the activation function is a quaternion function.
	 The training of the quaternion neural network was conducted to minimise the cost function J :
 

	 J =
1
2

∑
P

∑
s

ε s ⊗ ε∗s ,	 (13)

where ε s is the output error defined by ε s = ds − z(o)
s , ds is the desired output of the s-th neuron in 

the output layer, and P indicates the index of training pattern.  According to the steepest descent 
method applied to quaternion function,(12,13) the parameters of the multilayer quaternion neural 
network are given as

	 ω(k + 1) = ω(k) − η ∂J
∂ω∗(k)

,	 (14)
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where k is the iteration number, η is the learning factor, and ω(k) is composed of network 
parameters such as weights and thresholds.
	 In this study, the activation function was split(14) as

	 f (q) = f0(q0) + f1(q1)i + f2(q2)j + f3(q3)k ,	 (15)

where

	 fi(x) =
1

1 + e−x ,	

(i = 0, 1, 2, 3) is a real-valued function.  This activation function is not analytic in the quaternion 
number domain; however, we use it for computational convenience to derive the training algorithm 
of the quaternion neural network.  A back-propagation algorithm of the quaternion neural network 
can be obtained by calculating the gradient of the cost function with respect to the quaternion 
neural network’s parameters as

	 w(o0p)
sn (k + 1) = w(o0p)

sn (k) + η
∑

P

z(hp)
n ⊗ δ(o0p)∗

s ,	 (16)

	 φ(o)
s (k + 1) = φ(o)

s (k) + η
∑

P

δ
(o0p)∗
s ,	 (17)

where

	 δ
(o0p)
s = ε s � f ′(

∑
n

w(o0p)
sn ⊗ z(hp)

n + φ(o)
s ).	

� denotes the component-by-component product and

	 w(hp p−1)
nm (k + 1) = w(hp p−1)

nm (k) + η
∑

P

z(hp−1)
m ⊗ δ(hp p−1)∗

n ,	 (18)

	 φ
(hp)
n (k + 1) = φ(hp)

n (k) + η
∑

P

δ
(hp p−1)∗
n ,	 (19)

where

	 δ
(hp p−1)
n =


∑

t

δ
(hp+1 p)
t ⊗ w(hp p−1)

tn

 � f ′(
∑

m

w(hp p−1)
nm ⊗ z(hp−1)

m + φ
(hp)
n ).	

2.2	 Self-tuning controller

	 Figure 1 shows a schematic of a self-tuning feedback controller, where u is the control input 
synthesized by a conventional controller, the parameters of which are tuned online by a quaternion 
neural network, y is the plant output, yd is the desired plant output generated by a reference model, 
and r is the reference input.  To simplify the controller design, we assume a linear SISO discrete-
time plant as
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	 y(k + d) = b0u(k) +
m+d−1∑

i=1

αuiu(k − i) +
n∑

i=1

αyiy(k − i + 1),	 (20)

where k is sampling number, y(k) is plant output, u(k) is plant input, n and m are plant orders, d 
is plant dead time, and αui, αyi, and b0 are plant parameters.  Using a digital PID controller, the 
following control input u(k) is provided

u(k) = u(k − 1) + g1(k)∆e(k) + g2(k)e(k) + g3(k) (∆e(k) − ∆e(k − 1)) 	
= u(k − 1) + ξT(k)g(k),		

(21)

where

	 ξ(k) =
[
∆e(k) e(k) ∆e(k) − ∆e(k − 1)

]T
,	

e(k) is the output error defined as the difference between the desired and actual plant outputs, ∆e(k) 
is the time difference of the output error, and

	 g(k) =
[

g1(k) g2(k) g3(k)
]T

,	

is the gain parameter vector.
	 Consider the condition lim

k→∞
e (k + d) = 0 using an auxiliary parameter,(15) expressed as

	 g(k) =
1
b0

{
ξ(k)ξT(k) + e0E

}−1
ξ(k)αTI(k),	 (22)

where e0 is a constant that ensures the regularity of the matrix, E is an identity matrix, and

	 α =
[

1 −αy1 · · · −αyn −b0 − αu1 −αu2 · · · −αum+d−1

]T
,	

and

	 I(k) =
[

yd(k + d) y(k) · · · y(k − n + 1) u(k − 1) u(k − 2) · · · u(k − m − d + 1)
]T

.	

Quaternion
Neural Network

Plantu yConventional
controller

yd +
-

eReference
Model

r

controller tuning

Cost function

network training

Fig. 1.	 Schematic of quaternion-neural-network-based self-tuning feedback controller.
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	 In this design, the output of the quaternion neural network is used as the gain parameter.  By 
representing the mapping function of the quaternion neural network as Fqnn(·), we describe the 
input-output relationship of the quaternion neural network as

	 z(o)(k) = Fqnn (ω(k), x(k)),	 (23)

	 By comparing Eqs. (22) and (23), an input to the quaternion neural network x(k) should be 
composed of the elements of the vectors I(k) and ξ(k).  The output of the quaternion neural 
network z(o)(k) = z(o)

0 (k) + z(o)
1 (k)i + z(o)

2 (k)j + z(o)
3 (k)k is set as the gain parameter: g1(k) = z(o)

1 (k), 
g2(k) = z(o)

2 (k), and g3(k) = z(o)
3 (k).

	 Considering the dead time of the plant, the multilayer quaternion neural network of the self-
tuning PID controller was trained to minimize the cost function J(k) online as

	 ω(k + 1) = ω(k − d) − η ∂J(k)
∂ω∗(k − d)

,	 (24)

where η is the learning factor and the cost function is defined by the output error:

	 J(k) =
1
2

e2(k).	 (25)

	 The gradient of the cost function with respect to the quaternion neural network’s parameters 
can be calculated using the chain rule as

	
∂J(k)

∂ω∗(k − d)
=
∂J(k)
∂e(k)

∂e(k)
∂y(k)

∂y(k)
∂u(k − d)

∂u(k − d)
∂g(k − d)

∂z(o)(k − d)
∂ω∗(k − d)

,	

where 
∂y(k)
∂u(k − d)

 is the Jacobian of the plant, 
∂u(k)
∂g(k)

 is the Jacobian of the controller, and the gradient 

∂z(o)(k)
∂ω∗(k)

 can be calculated using the back-propagation algorithm extended to the quaternion 

described in Sect. 2.1.
	 Convergence analysis of the quaternion neural network is important and several studies have 
been conducted.(7,13,16)  In this study, the difference in the cost function ∆J (k) is derived as

	 ∆J(k) = J(k + 1) − J(k − d) 	

	 = {ω(k + 1) − ω(k − d)} ⊗ J(k + 1) − J(k − d)
ω(k + 1) − ω(k − d)

	

	 ≈ −η ∂J(k)
∂ω∗(k − d)

⊗ ∂J(k)
∂ω(k − d)

	

= −η
∣∣∣∣∣
∂J(k)
∂ω(k − d)

∣∣∣∣∣
2
≤ 0,	

where the learning factor η is nonnegative and the gradient of the cost function with respect to 
the quaternion neural network’s parameter is approximated by the finite difference of the cost 
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function and the parameters.  This condition indicates the stability of the quaternion neural 
network’s training; however, it is difficult to guarantee the stability of the quaternion neural 
network throughout the training process, because the finite-difference approximation of the 
gradient is not satisfied when the quaternion neural network’s parameters significantly change in 
the initial training stage or when they hardly change in the final training stage.  Furthermore, the 
learning factor η has an upper limit because the finite-difference approximation of the gradient 
is not satisfied for a relatively large learning factor.  It is difficult to analyze the upper limit of 
the learning factor due to the close relationship between the gradient and the plant dynamics; 
accordingly, we use numerical simulations to determine the learning factor that guarantees the 
stability of the quaternion neural network.

3.	 Computational Experiments of Adaptive Controller

	 To investigate the feasibility of the quaternion-neural-network-based self-tuning PID controller, 
we performed computational experiments using the following SISO discrete-time nonlinear plant 
with a dominant second-order system:(17)

	 y(k + 1) =
2∑

i=1

αyiy(k − i + 1) + b0u(k) +
1∑

i=1

αuiu(k − i) + αaddy(k − 2) + cnony2(k),	 (26)

where αadd is the coefficient of the parasitic term and cnon is the coefficient of the nonlinear term.  
Because the plant was assumed to be a linear, second-order plant (n = 2, m = 1, and d = 1) for 
designing the quaternion neural network, the input vector of the quaternion neural network was 
defined as

	


x1(k) = yd(k + 1) + y(k)i + y(k − 1)j + u(k − 1)k

x2(k) = ξ1(k)i + ξ2(k)j + ξ3(k)k
.	

	 In the computational experiments, the network topology was 2 − M1 − M2 − 1, where Mi (i = 1, 
2) denotes the number of quaternion neurons in the i-th hidden layer.  To calculate the gradient of 
the cost function, the Jacobian of the plant was assumed to be 1 and its magnitude and sign were 
adjusted using the learning factor η.  The Jacobian of the controller was derived from Eq. (21):
 

	 ∂u(k)
∂g(k)

= [ ∆e(k) e(k) ∆e(k) − ∆e(k − 1) ].	

	 The initial values of the network parameters were selected randomly from the interval [−0.1, 0.1].  
The learning factor was η = 0.1.  The reference model was a linear, first-order system:

	 yd(k + 1) = 0.7yd(k) + 0.3r(k),	 (27)

and the reference input r(k) was a rectangular wave, where the number of samples within one wave 
period was 100 and the amplitude of the wave was ±0.5.
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	 Figure 2 shows an example of plant response when controlling the plant using the developed 
quaternion-neural-network-based self-tuning PID controller.  Here, the number of quaternion 
neurons in the hidden layers is M1 = M2 = 4, and the plant is linear; the plant parameters are αy1 
= 1.3, αy2 = 0.3, αadd = 0, b0 = 1, αu1 = 0.7, and cnon = 0.  Figure 3 shows an example of the plant 
response for a nonlinear plant (αadd = 0.03 and cnon = 0.2).  As shown in Figs. 2 and 3, the controller 
can achieve the control task of ensuring that the plant output follows the desired plant output by 
tuning the gain parameters using the output from the quaternion neural network, as its training 
progresses with the sampling number.  Figure 4 shows the relationship between the number of 
quaternion neurons in the hidden layers and the normalized cost function averaged within one 
period of the desired plant output.  Here, the plant is nonlinear and the normalized cost function 
is calculated with respect to the 10th period of the desired plant output and is averaged using 
100 results for each number of quaternion neurons in the hidden layers.  As shown in Fig. 4, the 
normalized cost function decreases as the number of quaternion neurons in the hidden layers 
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Fig. 2.	 Experimental result of controlling linear plant using the developed quaternion-neural-network-based self-
tuning PID controller (top: plant output, where the black line indicates the desired output yd(k) and the grey line 
indicates the plant output y(k); bottom: control input from PID controller).

Fig. 3.	 Experimental result of controlling nonlinear plant using the developed quaternion-neural-network-based 
self-tuning PID controller (top: plant output, where the black line indicates the desired output yd(k) and the grey 
line indicates the plant output y(k); bottom: control input from PID controller).
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increases.  To accurately control the plant output using the quaternion-neural-network-based self-
tuning PID controller, a sufficient number of quaternion neurons are required in the hidden layers 
of the quaternion neural network.  As a reference to compare the result of the quaternion neural 
network, we designed a self-tuning PID controller with a conventional real number neural network 
of 7-8-8-3 network topology.  The topology of the real number neural network was defined so that 
the number of parameters, such as weights and thresholds, corresponded to that in the quantum 
neural network.  The experimental conditions were the same as those shown in Fig. 3.  Figure 5 
shows the normalized cost functions of the self-tuning PID controllers.  As shown in Fig. 5, the 
normalized cost function of the quaternion neural network is smaller than that of the real number 
neural network.  This result indicates the effectiveness of the proposed quaternion-neural-network-
based self-tuning PID controller.
	 Figure 6 shows an example of the plant response wherein the plant is nonlinear and random 
noise generated in the interval [−0.01, 0.01] is added to the control input and the plant output.  
Figures 7 and 8 show examples of plant response for the variation of the desired plant output 
wherein the reference input r(k) changes from the rectangular wave to the sine wave in Fig. 7 and 
the amplitude of the reference input r(k) changes randomly in Fig. 8.  Here, the plant is nonlinear 
and affected by random noise. Figure 9 shows an example of plant response when a disturbance 
is added to the plant output in the interval [350, 650].  Here, the amplitude of the disturbance is 
0.5 and the plant is affected by random noise. As shown in Figs. 6–9, the plant output follows the 
desired plant output using the learning capability of the quaternion neural network.  These results 
indicate the robustness of the quaternion-neural-network-based self-tuning PID controller.
	 Figure 10 shows an example of the plant response wherein the plant parameter αyi is time 
variant as follows:

	


αy1 = 1.3 (1 + 0.3 sin(0.01πk))

αy2 = −0.3 (1 + 0.3 sin(0.005πk + 0.25π))
.	
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Fig. 4.	 Relationship between the normalized cost 
function and the number of quaternion neurons in 
hidden layers when controlling the nonlinear plant 
using the quaternion-neural-network-based self-
tuning PID controller.
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obtained by the self-tuning PID controllers.



708	 Sensors and Materials, Vol. 29, No. 6 (2017)

0

0.8

-0.8

O
ut

pu
t

0

0.8

-0.8

In
pu

t

0 200 400 600 800 1000

y
d

y

Sampling number

0

0.8

-0.8

O
ut

pu
t

0

0.8

-0.8

In
pu

t

0 200 400 600 800 1000

y
d

y

Sampling number

Fig. 6.	 Experimental result of controlling nonlinear plant using the developed quaternion-neural-network-based 
self-tuning PID controller, in which random noise is added to control input and plant output (top: plant output, 
where the black line indicates the desired output yd(k) and the grey line indicates the plant output y(k); bottom: 
control input from PID controller).

Fig. 7.	 Experimental result of controlling nonlinear plant (in which random noise is added to control input 
and plant output) using the developed quaternion-neural-network-based self-tuning PID controller, wherein 
the reference input changes from the rectangular wave to the sine wave (top: plant output, where the black line 
indicates the desired output yd(k) and the grey line indicates the plant output y(k); bottom: control input from PID 
controller).
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Fig. 8.	 Experimental result of controlling nonlinear plant (in which random noise is added to control input 
and plant output) using the developed quaternion-neural-network-based self-tuning PID controller, wherein the 
reference input amplitude changes randomly (top: plant output, where the black line indicates the desired output 
yd(k) and the grey line indicates the plant output y(k); bottom: control input from PID controller).
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Fig. 9.	 Experimental result of controlling nonlinear plant (in which random noise is added to control input and 
plant output) using the developed quaternion-neural-network-based self-tuning PID controller, wherein the constant 
disturbance is added to the plant in the interval [350, 650] (top: plant output, where the black line indicates the 
desired output yd(k) and the grey line indicates the plant output y(k); bottom: control input from PID controller).

Fig. 10.	 Experimental result of controlling nonlinear plant using the developed quaternion-neural-network-based 
self-tuning PID controller, wherein the plant parameter αyi is time variant (top: plant output, where the black line 
indicates the desired output yd(k) and the grey line indicates the plant output y(k); bottom: control input from PID 
controller).

	 Using the learning capability of the quaternion neural network, the controller can achieve the 
control task of ensuring that the plant output follows the desired plant output even if the plant has 
time variant parameters.
	 Figure 11 shows an example of the plant response to controlling the other nonlinear plant(18) 
that is based on the plant used by Narendra and Parthictsarathy(19) and we add a parasitic term as 
follows:

	 y(k + 1) =
2.5y(k)y(k − 1)

1 + y2(k) + y2(k − 1) + y2(k − 2)
+ u(k) + 0.8u(k − 1) .	 (28)

	 In this experiment, the output from the quaternion neural network was converted from [0, 1] to 
[0, 0.5].  Using the learning capability of the quaternion neural network, the plant output follows 
the desired plant output even though little residual vibration was observed in the plant output.  
These results indicated the effectiveness of the quaternion-neural-network-based self-tuning PID 
controller.
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4.	 Conclusions

	 In this study, we investigated the capability of a quaternion neural network and explored its 
application to control systems.  A self-tuning PID controller, the control parameters of which were 
tuned online by the multilayer quaternion neural network, was designed and its characteristics were 
evaluated.  Computational experiments were conducted to control a discrete-time nonlinear plant, 
and the simulation results confirmed the feasibility and effectiveness of the proposed quaternion-
neural-network-based self-tuning PID controller.
	 All experiments conducted in this work are computational simulations.  Therefore, the 
application of the quaternion-neural-network-based self-tuning PID controller into hardware should 
be a future work.  One of the applicable control applications is gas/air flow control in gas-sensing 
systems.(20)  The gas-sensing system, namely, electronic nose, which can detect and discriminate 
aroma/odor, is expected in various fields, such as food and beverage evaluation, environmental 
monitoring, and chemical quality control.  In the gas-sensing system, gas sensors with broad and 
partially overlapping selectivity are used to detect a wide range of gases, and the sensor responses 
to various gases under modulating gas flow conditions such as flow profile, velocity, temperature, 
and humidity, are utilized to discriminate gas samples.(21,22)  A servo valve is usually used to 
modulate the gas flow; however, the static and dynamic characteristics of the valve should be 
compensated by a feedback controller to achieve the gas flow modulation precisely.  As the valve 
has several nonlinear characteristics caused by mechanical and electromagnetic effects: the self-
tuning PID controller presented in this paper can be applied to the control problem in the gas-
sensing system.
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