
699Sensors and Materials, Vol. 29, No. 6 (2017) 699–711
MYU Tokyo

S & M 1361

*Corresponding author: e-mail: katakaha@mail.doshisha.ac.jp
http://dx.doi.org/10.18494/SAM.2017.1468

ISSN 0914-4935 © MYU K.K.

Design of Quaternion-Neural-Network-Based
Self-Tuning Control Systems

Kazuhiko Takahashi,* Yusuke Hasegawa, and Masafumi Hashimoto1

Information Systems Design, Doshisha University,
1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0321, Japan

1Intelligent Information Engineering and Science, Doshisha University,
1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0321, Japan

(Received September 12, 2016; accepted January 5, 2017)

Keywords:	 quaternion neural network, self-tuning controller, PID controller, nonlinear plant, reference
model

	 In this study, we investigate the control performance of an adaptive controller using a multilayer
quaternion neural network. The control system is a self-tuning controller, the control parameters of
which are tuned online by the quaternion neural network to track plant output to follow the desired
output generated by a reference model. A proportional–integral–derivative (PID) controller is used
as a conventional controller, the parameters of which are tuned by the quaternion neural network.
Computational experiments to control a single-input single-output (SISO) discrete-time nonlinear
plant are conducted to evaluate the capability and characteristics of the quaternion-neural-network-
based self-tuning PID controller. Experimental results show the feasibility and effectiveness of the
proposed controller.

1.	 Introduction

	 The use of hypercomplex-valued neural networks, such as complex neural networks and
quaternion neural networks, to overcome classically hard-to-treat intractable problems has been
investigated.(1,2) Quaternion neural networks have been demonstrated to perform better than
real-number neural networks, because the former can cope with multidimensional issues more
efficiently by employing quaternions directly. Many studies have successfully used quaternion
neural networks in applications requiring multidimensional signal processing, for example, colour
image processing,(3,4) signal processing,(5,6) filtering,(7) inverse problems,(8) and classification
problems.(9) In previous studies, we presented robot control applications of quaternion neural
networks to solve forward and inverse kinematics of a robot manipulator.(10,11)

	 In this study, we investigate the characteristics of an adaptive controller based on a quaternion
neural network. The controller is a self-tuning feedback controller, comprising a reference model
to generate the desired output and a feedback controller, the parameters of which are tuned online
by the quaternion neural network. Moreover, we use a proportional–integral–derivative (PID)
controller as the feedback controller. We conducted computational experiments for controlling a
single-input single-output (SISO) discrete-time nonlinear plant to evaluate the feasibility of the
proposed quaternion-neural-network-based self-tuning PID controller.

700	 Sensors and Materials, Vol. 29, No. 6 (2017)

2.	 Self-tuning PID Controller Using Quaternion Neural Network

2.1	 Quaternion neural network

	 A quaternion forms a class of hypercomplex number that consists of a real number and three
imaginary numbers. A quaternion q is defined as

	 q = q0 + q1i + q2j + q3k ,	 (1)

where qi (i = 0, 1, 2, 3) is the real number parameter. The real number unit is 1 and the three
imaginary units are i, j, and k. They are orthogonal spatial vectors. Quaternion algebra is not
commutative and satisfies the following Hamilton rules:

	 i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j .	

The conjugate of a quaternion q* is defined as

	 q∗ = q0 − q1i − q2j − q3k ,	 (2)

and the multiplication between one quaternion and its conjugate is defined as

	 q ⊗ q∗ = q2
0 + q2

1 + q2
2 + q2

3.	 (3)

The addition and subtraction of two quaternions, q1 and q2, are defined as

	 q1 ± q2 = (q01 ± q02) + (q11 ± q12)i + (q21 ± q22)j + (q31 ± q32)k.	 (4)

The multiplication between a real number a and a quaternion q is given as

	 aq = aq0 + aq1i + aq2j + aq3k ,	 (5)

while the multiplication between two quaternions q1 and q2 is given as

	 q1 ⊗ q2 = q01q02 − −→q1 · −→q2 + q02
−→q1 + q01

−→q2 +
−→q1 × −→q2 ,	 (6)

where

	 −→qi =
[

q1i q2i q3i

]T
	

(i = 1, 2); · and × represent scalar and vector products, respectively. The norm of the quaternion is
defined as

	 |q| =
√

q ⊗ q∗ ,	 (7)

Sensors and Materials, Vol. 29, No. 6 (2017)	 701

and the inverse of the quaternion is given as

	 q−1 =
q∗

q ⊗ q∗.	 (8)

	 To describe the training algorithm of the multilayer quaternion neural network, a multilayer
quaternion neural network was considered. In the input layer of the quaternion neural network, the
l-th neuron input xl is a quaternion:

	 xl = x0l + x1li + x2lj + x3lk .	 (9)

In the hidden layer connected with the input layer, the output from the m-th neuron unit z(h1)
m is

defined as

	 z(h1)
m = f (

∑
l

w(h10)
ml ⊗ xl + φ

(h1)
m) ,	 (10)

where w(h10)
ml is the weight between the l-th neuron of the input layer and the m-th neuron of the

hidden layer, φ(h1)
m is the threshold of the m-th neuron in the hidden layer, and f(·) is an activation

function of the neuron. In the p-th hidden layer, the output from the n-th neuron unit z(hp)
n is

defined as

	 z(hp)
n = f (

∑
m

w(hp p−1)
nm ⊗ z(hp−1)

m + φ
(hp)
n) ,	 (11)

where w(hp p−1)
nm is the weight between the m-th neuron of the (p − 1)-th hidden layer and the n-th

neuron of the p-th hidden layer, and φ(hp)
n is the threshold of the n-th neuron in the p-th hidden

layer. In the output layer, the output from the s-th neuron unit z(o)
s is defined as

	 z(o)
s = f (

∑
n

w(o0p)
sn ⊗ z(hp)

n + φ(o)
s) ,	 (12)

where w(o0p)
sn is the weight between the n-th neuron of the p-th hidden layer and the s-th neuron of

the output layer, and φ(o)
s is the threshold of the s-th neuron in the output layer. Here, the weights

and thresholds are quaternions and the activation function is a quaternion function.
	 The training of the quaternion neural network was conducted to minimise the cost function J :

	 J =
1
2

∑
P

∑
s

ε s ⊗ ε∗s ,	 (13)

where ε s is the output error defined by ε s = ds − z(o)
s , ds is the desired output of the s-th neuron in

the output layer, and P indicates the index of training pattern. According to the steepest descent
method applied to quaternion function,(12,13) the parameters of the multilayer quaternion neural
network are given as

	 ω(k + 1) = ω(k) − η ∂J
∂ω∗(k)

,	 (14)

702	 Sensors and Materials, Vol. 29, No. 6 (2017)

where k is the iteration number, η is the learning factor, and ω(k) is composed of network
parameters such as weights and thresholds.
	 In this study, the activation function was split(14) as

	 f (q) = f0(q0) + f1(q1)i + f2(q2)j + f3(q3)k ,	 (15)

where

	 fi(x) =
1

1 + e−x ,	

(i = 0, 1, 2, 3) is a real-valued function. This activation function is not analytic in the quaternion
number domain; however, we use it for computational convenience to derive the training algorithm
of the quaternion neural network. A back-propagation algorithm of the quaternion neural network
can be obtained by calculating the gradient of the cost function with respect to the quaternion
neural network’s parameters as

	 w(o0p)
sn (k + 1) = w(o0p)

sn (k) + η
∑

P

z(hp)
n ⊗ δ(o0p)∗

s ,	 (16)

	 φ(o)
s (k + 1) = φ(o)

s (k) + η
∑

P

δ
(o0p)∗
s ,	 (17)

where

	 δ
(o0p)
s = ε s � f ′(

∑
n

w(o0p)
sn ⊗ z(hp)

n + φ(o)
s).	

� denotes the component-by-component product and

	 w(hp p−1)
nm (k + 1) = w(hp p−1)

nm (k) + η
∑

P

z(hp−1)
m ⊗ δ(hp p−1)∗

n ,	 (18)

	 φ
(hp)
n (k + 1) = φ(hp)

n (k) + η
∑

P

δ
(hp p−1)∗
n ,	 (19)

where

	 δ
(hp p−1)
n =


∑

t

δ
(hp+1 p)
t ⊗ w(hp p−1)

tn

 � f ′(
∑

m

w(hp p−1)
nm ⊗ z(hp−1)

m + φ
(hp)
n).	

2.2	 Self-tuning controller

	 Figure 1 shows a schematic of a self-tuning feedback controller, where u is the control input
synthesized by a conventional controller, the parameters of which are tuned online by a quaternion
neural network, y is the plant output, yd is the desired plant output generated by a reference model,
and r is the reference input. To simplify the controller design, we assume a linear SISO discrete-
time plant as

Sensors and Materials, Vol. 29, No. 6 (2017)	 703

	 y(k + d) = b0u(k) +
m+d−1∑

i=1

αuiu(k − i) +
n∑

i=1

αyiy(k − i + 1),	 (20)

where k is sampling number, y(k) is plant output, u(k) is plant input, n and m are plant orders, d
is plant dead time, and αui, αyi, and b0 are plant parameters. Using a digital PID controller, the
following control input u(k) is provided

u(k) = u(k − 1) + g1(k)∆e(k) + g2(k)e(k) + g3(k) (∆e(k) − ∆e(k − 1)) 	
= u(k − 1) + ξT(k)g(k),		

(21)

where

	 ξ(k) =
[
∆e(k) e(k) ∆e(k) − ∆e(k − 1)

]T
,	

e(k) is the output error defined as the difference between the desired and actual plant outputs, ∆e(k)
is the time difference of the output error, and

	 g(k) =
[

g1(k) g2(k) g3(k)
]T

,	

is the gain parameter vector.
	 Consider the condition lim

k→∞
e (k + d) = 0 using an auxiliary parameter,(15) expressed as

	 g(k) =
1
b0

{
ξ(k)ξT(k) + e0E

}−1
ξ(k)αTI(k),	 (22)

where e0 is a constant that ensures the regularity of the matrix, E is an identity matrix, and

	 α =
[

1 −αy1 · · · −αyn −b0 − αu1 −αu2 · · · −αum+d−1

]T
,	

and

	 I(k) =
[

yd(k + d) y(k) · · · y(k − n + 1) u(k − 1) u(k − 2) · · · u(k − m − d + 1)
]T

.	

Quaternion
Neural Network

Plantu yConventional
controller

yd +
-

eReference
Model

r

controller tuning

Cost function

network training

Fig. 1.	 Schematic of quaternion-neural-network-based self-tuning feedback controller.

704	 Sensors and Materials, Vol. 29, No. 6 (2017)

	 In this design, the output of the quaternion neural network is used as the gain parameter. By
representing the mapping function of the quaternion neural network as Fqnn(·), we describe the
input-output relationship of the quaternion neural network as

	 z(o)(k) = Fqnn (ω(k), x(k)),	 (23)

	 By comparing Eqs. (22) and (23), an input to the quaternion neural network x(k) should be
composed of the elements of the vectors I(k) and ξ(k). The output of the quaternion neural
network z(o)(k) = z(o)

0 (k) + z(o)
1 (k)i + z(o)

2 (k)j + z(o)
3 (k)k is set as the gain parameter: g1(k) = z(o)

1 (k),
g2(k) = z(o)

2 (k), and g3(k) = z(o)
3 (k).

	 Considering the dead time of the plant, the multilayer quaternion neural network of the self-
tuning PID controller was trained to minimize the cost function J(k) online as

	 ω(k + 1) = ω(k − d) − η ∂J(k)
∂ω∗(k − d)

,	 (24)

where η is the learning factor and the cost function is defined by the output error:

	 J(k) =
1
2

e2(k).	 (25)

	 The gradient of the cost function with respect to the quaternion neural network’s parameters
can be calculated using the chain rule as

	
∂J(k)

∂ω∗(k − d)
=
∂J(k)
∂e(k)

∂e(k)
∂y(k)

∂y(k)
∂u(k − d)

∂u(k − d)
∂g(k − d)

∂z(o)(k − d)
∂ω∗(k − d)

,	

where
∂y(k)
∂u(k − d)

 is the Jacobian of the plant,
∂u(k)
∂g(k)

 is the Jacobian of the controller, and the gradient

∂z(o)(k)
∂ω∗(k)

 can be calculated using the back-propagation algorithm extended to the quaternion

described in Sect. 2.1.
	 Convergence analysis of the quaternion neural network is important and several studies have
been conducted.(7,13,16) In this study, the difference in the cost function ∆J (k) is derived as

	 ∆J(k) = J(k + 1) − J(k − d) 	

	 = {ω(k + 1) − ω(k − d)} ⊗ J(k + 1) − J(k − d)
ω(k + 1) − ω(k − d)

	

	 ≈ −η ∂J(k)
∂ω∗(k − d)

⊗ ∂J(k)
∂ω(k − d)

	

= −η
∣∣∣∣∣
∂J(k)
∂ω(k − d)

∣∣∣∣∣
2
≤ 0,	

where the learning factor η is nonnegative and the gradient of the cost function with respect to
the quaternion neural network’s parameter is approximated by the finite difference of the cost

Sensors and Materials, Vol. 29, No. 6 (2017)	 705

function and the parameters. This condition indicates the stability of the quaternion neural
network’s training; however, it is difficult to guarantee the stability of the quaternion neural
network throughout the training process, because the finite-difference approximation of the
gradient is not satisfied when the quaternion neural network’s parameters significantly change in
the initial training stage or when they hardly change in the final training stage. Furthermore, the
learning factor η has an upper limit because the finite-difference approximation of the gradient
is not satisfied for a relatively large learning factor. It is difficult to analyze the upper limit of
the learning factor due to the close relationship between the gradient and the plant dynamics;
accordingly, we use numerical simulations to determine the learning factor that guarantees the
stability of the quaternion neural network.

3.	 Computational Experiments of Adaptive Controller

	 To investigate the feasibility of the quaternion-neural-network-based self-tuning PID controller,
we performed computational experiments using the following SISO discrete-time nonlinear plant
with a dominant second-order system:(17)

	 y(k + 1) =
2∑

i=1

αyiy(k − i + 1) + b0u(k) +
1∑

i=1

αuiu(k − i) + αaddy(k − 2) + cnony2(k),	 (26)

where αadd is the coefficient of the parasitic term and cnon is the coefficient of the nonlinear term.
Because the plant was assumed to be a linear, second-order plant (n = 2, m = 1, and d = 1) for
designing the quaternion neural network, the input vector of the quaternion neural network was
defined as

	


x1(k) = yd(k + 1) + y(k)i + y(k − 1)j + u(k − 1)k

x2(k) = ξ1(k)i + ξ2(k)j + ξ3(k)k
.	

	 In the computational experiments, the network topology was 2 − M1 − M2 − 1, where Mi (i = 1,
2) denotes the number of quaternion neurons in the i-th hidden layer. To calculate the gradient of
the cost function, the Jacobian of the plant was assumed to be 1 and its magnitude and sign were
adjusted using the learning factor η. The Jacobian of the controller was derived from Eq. (21):

	 ∂u(k)
∂g(k)

= [∆e(k) e(k) ∆e(k) − ∆e(k − 1)].	

	 The initial values of the network parameters were selected randomly from the interval [−0.1, 0.1].
The learning factor was η = 0.1. The reference model was a linear, first-order system:

	 yd(k + 1) = 0.7yd(k) + 0.3r(k),	 (27)

and the reference input r(k) was a rectangular wave, where the number of samples within one wave
period was 100 and the amplitude of the wave was ±0.5.

706	 Sensors and Materials, Vol. 29, No. 6 (2017)

	 Figure 2 shows an example of plant response when controlling the plant using the developed
quaternion-neural-network-based self-tuning PID controller. Here, the number of quaternion
neurons in the hidden layers is M1 = M2 = 4, and the plant is linear; the plant parameters are αy1
= 1.3, αy2 = 0.3, αadd = 0, b0 = 1, αu1 = 0.7, and cnon = 0. Figure 3 shows an example of the plant
response for a nonlinear plant (αadd = 0.03 and cnon = 0.2). As shown in Figs. 2 and 3, the controller
can achieve the control task of ensuring that the plant output follows the desired plant output by
tuning the gain parameters using the output from the quaternion neural network, as its training
progresses with the sampling number. Figure 4 shows the relationship between the number of
quaternion neurons in the hidden layers and the normalized cost function averaged within one
period of the desired plant output. Here, the plant is nonlinear and the normalized cost function
is calculated with respect to the 10th period of the desired plant output and is averaged using
100 results for each number of quaternion neurons in the hidden layers. As shown in Fig. 4, the
normalized cost function decreases as the number of quaternion neurons in the hidden layers

0

0.8

-0.8

O
ut

pu
t

0

0.8

-0.8

In
pu

t

0 200 400 600 800 1000

y
d

y

Sampling number

0

0.8

-0.8

O
ut

pu
t

0

0.8

-0.8

In
pu

t

0 200 400 600 800 1000

y
d

y

Sampling number

Fig. 2.	 Experimental result of controlling linear plant using the developed quaternion-neural-network-based self-
tuning PID controller (top: plant output, where the black line indicates the desired output yd(k) and the grey line
indicates the plant output y(k); bottom: control input from PID controller).

Fig. 3.	 Experimental result of controlling nonlinear plant using the developed quaternion-neural-network-based
self-tuning PID controller (top: plant output, where the black line indicates the desired output yd(k) and the grey
line indicates the plant output y(k); bottom: control input from PID controller).

Sensors and Materials, Vol. 29, No. 6 (2017)	 707

increases. To accurately control the plant output using the quaternion-neural-network-based self-
tuning PID controller, a sufficient number of quaternion neurons are required in the hidden layers
of the quaternion neural network. As a reference to compare the result of the quaternion neural
network, we designed a self-tuning PID controller with a conventional real number neural network
of 7-8-8-3 network topology. The topology of the real number neural network was defined so that
the number of parameters, such as weights and thresholds, corresponded to that in the quantum
neural network. The experimental conditions were the same as those shown in Fig. 3. Figure 5
shows the normalized cost functions of the self-tuning PID controllers. As shown in Fig. 5, the
normalized cost function of the quaternion neural network is smaller than that of the real number
neural network. This result indicates the effectiveness of the proposed quaternion-neural-network-
based self-tuning PID controller.
	 Figure 6 shows an example of the plant response wherein the plant is nonlinear and random
noise generated in the interval [−0.01, 0.01] is added to the control input and the plant output.
Figures 7 and 8 show examples of plant response for the variation of the desired plant output
wherein the reference input r(k) changes from the rectangular wave to the sine wave in Fig. 7 and
the amplitude of the reference input r(k) changes randomly in Fig. 8. Here, the plant is nonlinear
and affected by random noise. Figure 9 shows an example of plant response when a disturbance
is added to the plant output in the interval [350, 650]. Here, the amplitude of the disturbance is
0.5 and the plant is affected by random noise. As shown in Figs. 6–9, the plant output follows the
desired plant output using the learning capability of the quaternion neural network. These results
indicate the robustness of the quaternion-neural-network-based self-tuning PID controller.
	 Figure 10 shows an example of the plant response wherein the plant parameter αyi is time
variant as follows:

	


αy1 = 1.3 (1 + 0.3 sin(0.01πk))

αy2 = −0.3 (1 + 0.3 sin(0.005πk + 0.25π))
.	

M1

M2

1
2

3
4

5 1 2 3
4 5

0

0.005

N
or

m
al

iz
ed

 c
os

t f
un

ct
io

n

Fig. 4.	 Relationship between the normalized cost
function and the number of quaternion neurons in
hidden layers when controlling the nonlinear plant
using the quaternion-neural-network-based self-
tuning PID controller.

N
or

m
al

iz
ed

 c
os

t f
un

ct
io

n

0

0.01

Quaternion
neural network

Real number
neural network

Fig. 5.	 Comparison of the normalized cost function
obtained by the self-tuning PID controllers.

708	 Sensors and Materials, Vol. 29, No. 6 (2017)

0

0.8

-0.8

O
ut

pu
t

0

0.8

-0.8

In
pu

t

0 200 400 600 800 1000

y
d

y

Sampling number

0

0.8

-0.8

O
ut

pu
t

0

0.8

-0.8

In
pu

t

0 200 400 600 800 1000

y
d

y

Sampling number

Fig. 6.	 Experimental result of controlling nonlinear plant using the developed quaternion-neural-network-based
self-tuning PID controller, in which random noise is added to control input and plant output (top: plant output,
where the black line indicates the desired output yd(k) and the grey line indicates the plant output y(k); bottom:
control input from PID controller).

Fig. 7.	 Experimental result of controlling nonlinear plant (in which random noise is added to control input
and plant output) using the developed quaternion-neural-network-based self-tuning PID controller, wherein
the reference input changes from the rectangular wave to the sine wave (top: plant output, where the black line
indicates the desired output yd(k) and the grey line indicates the plant output y(k); bottom: control input from PID
controller).

0

0.8

-0.8

O
ut

pu
t

0

0.8

-0.8

In
pu

t

0 200 400 600 800 1000

y
d

y

Sampling number

Fig. 8.	 Experimental result of controlling nonlinear plant (in which random noise is added to control input
and plant output) using the developed quaternion-neural-network-based self-tuning PID controller, wherein the
reference input amplitude changes randomly (top: plant output, where the black line indicates the desired output
yd(k) and the grey line indicates the plant output y(k); bottom: control input from PID controller).

Sensors and Materials, Vol. 29, No. 6 (2017)	 709

0

0.8

-0.8

O
ut

pu
t

0

0.8

-0.8

In
pu

t

0 200 400 600 800 1000

y
d

y

Sampling number

Fig. 9.	 Experimental result of controlling nonlinear plant (in which random noise is added to control input and
plant output) using the developed quaternion-neural-network-based self-tuning PID controller, wherein the constant
disturbance is added to the plant in the interval [350, 650] (top: plant output, where the black line indicates the
desired output yd(k) and the grey line indicates the plant output y(k); bottom: control input from PID controller).

Fig. 10.	 Experimental result of controlling nonlinear plant using the developed quaternion-neural-network-based
self-tuning PID controller, wherein the plant parameter αyi is time variant (top: plant output, where the black line
indicates the desired output yd(k) and the grey line indicates the plant output y(k); bottom: control input from PID
controller).

	 Using the learning capability of the quaternion neural network, the controller can achieve the
control task of ensuring that the plant output follows the desired plant output even if the plant has
time variant parameters.
	 Figure 11 shows an example of the plant response to controlling the other nonlinear plant(18)
that is based on the plant used by Narendra and Parthictsarathy(19) and we add a parasitic term as
follows:

	 y(k + 1) =
2.5y(k)y(k − 1)

1 + y2(k) + y2(k − 1) + y2(k − 2)
+ u(k) + 0.8u(k − 1) .	 (28)

	 In this experiment, the output from the quaternion neural network was converted from [0, 1] to
[0, 0.5]. Using the learning capability of the quaternion neural network, the plant output follows
the desired plant output even though little residual vibration was observed in the plant output.
These results indicated the effectiveness of the quaternion-neural-network-based self-tuning PID
controller.

0

0.8

-0.8

O
ut

pu
t

0

0.8

-0.8

In
pu

t

0 200 400 600 800 1000

y
d

y

Sampling number

710	 Sensors and Materials, Vol. 29, No. 6 (2017)

4.	 Conclusions

	 In this study, we investigated the capability of a quaternion neural network and explored its
application to control systems. A self-tuning PID controller, the control parameters of which were
tuned online by the multilayer quaternion neural network, was designed and its characteristics were
evaluated. Computational experiments were conducted to control a discrete-time nonlinear plant,
and the simulation results confirmed the feasibility and effectiveness of the proposed quaternion-
neural-network-based self-tuning PID controller.
	 All experiments conducted in this work are computational simulations. Therefore, the
application of the quaternion-neural-network-based self-tuning PID controller into hardware should
be a future work. One of the applicable control applications is gas/air flow control in gas-sensing
systems.(20) The gas-sensing system, namely, electronic nose, which can detect and discriminate
aroma/odor, is expected in various fields, such as food and beverage evaluation, environmental
monitoring, and chemical quality control. In the gas-sensing system, gas sensors with broad and
partially overlapping selectivity are used to detect a wide range of gases, and the sensor responses
to various gases under modulating gas flow conditions such as flow profile, velocity, temperature,
and humidity, are utilized to discriminate gas samples.(21,22) A servo valve is usually used to
modulate the gas flow; however, the static and dynamic characteristics of the valve should be
compensated by a feedback controller to achieve the gas flow modulation precisely. As the valve
has several nonlinear characteristics caused by mechanical and electromagnetic effects: the self-
tuning PID controller presented in this paper can be applied to the control problem in the gas-
sensing system.

References

	 1	 T. Nitta (ed.): Complex-Valued Neural Networks—Utilizing High-Dimensional Parameters— (Information
Science Reference, Hershey PA, 2009).

	 2	 A. Hirose (ed.): Complex-Valued Neural Networks—Advances and Applications— (IEEE Press, Piscataway
NJ, 2013).

	 3	 H. Kusamichi, T. Isokawa, N. Matsui, Y. Ogawa, and K. Maeda: Proc. 2nd ICARA (2004) pp. 101–106.

Fig. 11.	 Experimental result of controlling nonlinear plant [Eq. (28)] using the developed quaternion-neural-
network-based self-tuning PID controller (top: plant output, where the black line indicates the desired output yd(k)
and the grey line indicates the plant output y(k); bottom: control input from PID controller).

0

0.8

-0.8

O
ut

pu
t

0

0.8

-0.8

In
pu

t

0 200 400 600 800 1000

y
d

y

Sampling number

Sensors and Materials, Vol. 29, No. 6 (2017)	 711

	 4	 N. Matsui, T. Isokawa, H. Kusamichi, F. Peper, and H. Nishimura: J. Intell. Fuzzy Syst. 15 (2004) 149.
	 5	 P. Arena, R. Caponetto, L. Fortuna, G. Muscato, and M. G. Xibilia: IEICE Trans. Fundamentals E79-A (1996)

1682.
	 6	 S. Buchholz and N. Le Bihan: Proc. 14th EUSIPCO (2006) pp. 1–5.
	 7	 B. C. Ujang, C. C. Took, and D. P. Mandic: IEEE Trans. Neural Netw. 22 (2011) 1193.
	 8	 T. Iura and T. Ogawa: Proc. SICE Annual Conf. 2012 (2012) pp. 1802–1805.
	 9	 F. Shang and A. Hirose: IEEE Trans. Geosci. Remote Sens. 52 (2014) 5693.
	10	 Y. Cui, K. Takahashi, and M. Hashimoto: Proc. SICE Annual Conf. 2013 (2013) pp. 1381–1386.
	11	 Y. Cui, K. Takahashi, and M. Hashimoto: Proc. IEEE/SICE SII 2013 (2013) pp. 527–532.
	12	 D. P. Mandic, C. Jahanchahi, and C. C. Took: IEEE Signal Process. Lett. 18 (2011) 47.
	13	 T. Isokawa, H. Nishimura, and N. Matsui: Information 3 (2012) 756.
	14	 P. Arena, L, Fortuna, G. Muscato, and M. G. Xibilia: Neural Netw. 10 (1997) 335.
	15	 T. Yamada, T. Yabuta, and K. Takahashi: Proc. IECON ’91 (1991) pp. 1389–1394.
	16	 E. Hitzer: Math. Methods Appl. Sci. 36 (2013) 1042.
	17	 T. Yamada: Artif. Life Robot. 15 (2010) 413.
	18	 K. Takahashi, H. Kizaki, and M. Hashimoto: Proc. IFAC MIM ’2013 (2013) pp. 1003–1008.
	19	 K. S. Narendra and K. Parthictsarathy: IEEE Trans. Neural Netw. 1 (1990) 4.
	20	 T. Nakamoto: Sens. Mater. 17 (2005) 365.
	21	 K. Arshak, E. Moore, G. M. Lyons, F. Harris, and S. Clifford: Sens. Rev. 24 (2004) 181.
	22	 S. Lakkis, R. Younes, Y. Alayli, and M. Sawan: Sens. Rev. 34 (2014) 24.

