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	 In this study, a single camera has been used to capture images of the road in front of a moving 
vehicle.  Image processing algorithms identify the location of pedestrians in the images, calculate 
the direction and rate of movement of each one, and issue safety warnings.  The pedestrian motion 
vector detection and warning system presented here has three components: The first serves to 
identify, locate, and mark the positions of pedestrians in images using the Fisher classifier.  The 
follow-up image processing is confined to the labeled images, and this significantly reduces 
the image postprocessing load.  The second component involves the calculation of pedestrian 
motion vectors using the Lucas–Kanade optical flow method.  Finally, the vehicle’s future zone of 
movement is established, and judgment is made as to whether any pedestrians will be in this zone 
or not.  This is determined from the pedestrian movement vectors and a warning can be triggered 
to alert the driver in time for any necessary avoidance action to be taken.  This can improve road 
safety and reduce the number of accidents involving pedestrians, which result from driver fatigue, 
negligence or careless driving, and the number of such accidents can be reduced.

1.	 Introduction

	 According to a World Health Organization (WHO) report in 2013, more than 270000 
pedestrians lose their lives on the world’s roads each year, accounting for 22% of a total of 1.24 
million road accident deaths.  WHO has called on governments and automobile companies to take 
concrete action to improve pedestrian safety.  In recent years, many advanced driver assistance 
systems (ADAS) have been developed for vehicles to improve both driving and safety.  Safety 
features include collision avoidance technologies that alert the driver to potential problems, or 
take action to avoid collisions by implementing safeguards or even taking control of the vehicle.  
Some features of ADAS, including a pedestrian protection system,(1–3) a lane departure warning 
system,(4,5) a blind spot monitor,(6) automatic parking, and driver drowsiness detection,(7,8) have 
become the focus of accident avoidance.  In these studies, the acquisition of information about the 
traffic environment is obtained by a computerized network of cameras.   In some cases, sensing 
elements such as radar, ultrasound, and infrared have also been used.  For example, Mercedes-
Benz has developed the “PRE-SAFE with Pedestrian Recognition System”, which uses radar 
and stereoscopic cameras to determine the direction in which pedestrians are moving to avoid 
collisions.  Volvo has proposed a “Pedestrian Detection with Full Auto Brake (PDFAB)” for 2020, 
which will enhance driving safety and achieve a “zero accident” vision.  The PDFAB system will 
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use computer-vision algorithms to identify pedestrians 80 cm in height or more, who are within 
50 m of the front of the vehicle and within a 45° fan-shaped area.  Auxiliary radar will measure 
the distance and detect the direction of the pedestrian’s movement.   Mazda announced their 
i-ACTIVSENSE security system in November 2012.  This can automatically detect obstacles in 
front of the vehicle (called Forward Obstruction Warning, FOW), and uses warning lights and 
audio signals to alert the driver to ensure early reaction.  In November 2013, Ford announced a 
brand new obstacle avoidance system (OAS).  Should a vehicle in the front, or to the side, suddenly 
brake or change direction as a reaction to an emergency, the driver will be warned.  If the driver 
does not take immediate action, the OAS will actively intervene by braking or steering the car to 
avoid the obstacles and prevent a collision.
	 Pedestrians and obstacles are the most important factors in traffic accidents.   Lin et al.(9) 
proposed a monocular-vision-based obstacle detection algorithm for parking assistance applications 
in an advanced safety vehicle that uses a rear view camera.  The corner features of rear obstacles 
are first estimated using features that presented in accelerated segment test (FAST) corner 
detection method.(10)  An inverse perspective mapping (IPM) image is then used to determine 
whether all the detected features are obstacle candidates.  This system is only usable in typical 
urban parking lots.  
	 Langer and Jochem(11) described an integrated millimeter wave radar and vision sensor system 
for autonomous on-road navigation.  It has a range of approximately 200 m and uses a linear array 
of receivers and wave front reconstruction to compute the range and bearings of objects within 
the field of view.  It is integrated with a vision-based lane-keeping system to accurately detect and 
classify obstacles with respect to the danger they pose to the vehicle and to execute any required 
avoidance maneuvers.  The combination of radar sensors and visual detection allows road obstacles 
to be more accurately identified, but also results in higher cost.
	 Keller and Dang(12) presented a novel active pedestrian safety system that combines sensing, 
situation analysis, decision making, and vehicle control.  The sensing component is based on 
stereo vision, and it fuses two complementary approaches for added robustness: (1) motion-based 
object detection and (2) pedestrian recognition.  The highlight of the system is its ability to decide 
whether it will perform automatic braking or evasive steering, and reliably execute this maneuver at 
relatively high vehicle speed (up to 50 km/h).  In this study, a stereoscopic camera is used to obtain 
6D-Vision information, which is a combination of 3D information with additional information 
about the movement of the object(s).  The 3D position is accompanied by a series of 3D positions of 
the object, which allows tracking.  At the same time, the Kalman Filter, which combines space and 
time messages, can provide an estimate of the 3D motion path.  The disadvantages of this system 
are the high cost of the stereoscopic visual sensors and the time-consuming calculations.  
	 Alonso et al.(13) have proposed a safety assistant system for dynamically monitoring overtaking 
from the rear of a vehicle.  Rear road status information from side mirror cameras mounted 
outside the vehicle is acquired, and calculations are made of the dynamic driving status using the 
Lucas–Kanade optical flow method.  In addition, the author has proposed a template filtering and 
compensation perspective formula method, which can quickly obtain vehicle position.  Although it 
is not as accurate as inverse perspective transformation, it has the advantage of fast execution.
	 In these previous studies, the use of image processing technology to identify objects (including 
pedestrians) is consistent, and a combination with radar is often used to accurately calculate object 
distance.  However, the use of multiple cameras to build stereoscopic or panoramic images incurs 
substantial equipment cost and also increases the amount of visual algorithm computation.  In our 



Sensors and Materials, Vol. 29, No. 6 (2017)	 715

study, a single camera has been used to capture road images and there was no need for enormous 
amounts of stereoscopic image data processing.  The system’s real-time processing capability was 
enabled and the processing load was much lower because an oversized n × n detection window was 
not used and only specific image areas, regions of interest (ROI), were processed.  The pedestrian 
motion vector detection and warning system presented here has three components: The first serves 
to identify, locate and mark the positions of pedestrians in images using the Fisher classifier.  The 
follow-up image processing is confined to the labeled images, and this significantly reduces the 
image postprocessing load.  In the second part, the Lucas–Kanade optical flow method was used 
to calculate the pedestrian movement vectors so that their forward moving rate and direction could 
be determined.  The last step is the establishment of the area into which the vehicle will move in 
the future.  Judgment is then made as to whether a pedestrian will move into the driving area of the 
vehicle or not.  A signal can then be generated to alert the driver to such an eventuality.

2.	 Pedestrian Detection and Estimation of Pedestrian Movement

2.1	 Pedestrian detection

	 In our previous work, the pedestrian detection procedure is accelerated using a two-layer 
cascade of classifiers.(14)  At the front end, the Fisher classifier using Haar-like features(15–17) can 
rapidly select candidate regions in the image where pedestrians may be present.  At the back end, 
the Fisher classifier using a covariance matrix descriptor(18) can accurately determine if pedestrians 
are positioned in the candidate regions.  If a region is determined as positive by the two-layer 
cascade classifiers, images that might include pedestrians are captured and delineated by a 
rectangular frame.  Image processing is only carried out on the marked area and the computational 
load is kept to a minimum.

2.2	 Estimation of pedestrian movement

2.2.1	 Pedestrian corner features

	 After a pedestrian has been identified by a frame, the Harris corner detection algorithm(19) is 
applied to find the corners of the pedestrian’s contour.  It tests each pixel in the rectangular frame 
that contains a pedestrian image to see if a corner is present.  Harris corner detection is developed 
based on the Moravec algorithm.   The basic principle is taking a small window of size n × n 
centering on a target pixel, moving the window separately along every 45 degrees (horizontal, 
vertical, and on the two diagonals), and calculating the gradation change of the window in eight 
directions.  The degree of gradation change between two nearby windows in the image I that 
centered on (u, v) and (u + ∆x, v + ∆y)  respectively, is then measured, and denoted in Eq. (1).

	 S (∆x,∆y)u,v =
u v

w(u, v)(I(u + ∆ x, v + ∆y) − I(u, v))2
	 (1)

w(u, v) is a weighted function, and a 2D Gaussian function is generally adopted.  Next, I(u + ∆x, v 
+ ∆y) can be approximated by a Taylor expansion, and Eq. (1) can be rearranged as 
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	 S (∆x,∆y)u,v ≈ [∆x ∆y]A[∆x ∆y]T,	 (2)

	 A =
u v

w(u, v) I2
x IxIy

IxIy I2
y

.	 (3)

Ix and Iy are the partial derivatives of I in x- and y-directions, respectively.  A corner is 
characterized by a large variation of S(∆x, ∆y)u,v in all directions, which means that the matrix A 
will have two large eigenvalues λ1 and λ2.
	 Since the calculation of the eigenvalues of matrix A in Eq. (3) is computationally expensive, 
Harris and Stephens(19) suggest Eq. (4) to verify a corner and make the computation more efficient.  
The algorithm does not have to actually compute the eigenvalue decomposition of the matrix A; it 
is sufficient to evaluate the determinant and the trace of A to find a corner.  Mc is positive in the 
corner region, negative in the edge regions, and small in the flat region.

	 Mc = λ1λ2 − κ(λ1 + λ2)2 = det(A) − κ · trace2(A)	 (4)

Here, the value selection of κ will affect the composition of corners, and the empirical values 
are generally between 0.04 and 0.06.  Corner detection is only carried out for the area within the 
rectangular frame, in other words, the region with pedestrians.  As for the images of the contour 
area, the horizontal and vertical gradient values Ix and Iy, respectively, are higher.  To speed up the 
corner feature calculations, corner detection is concentrated mainly on the image area with higher 
Ix and Iy values.  
	 The results of the calculations are corner characteristics that are distributed over the head, 
hands, body, and feet, as shown in Fig. 1(a).  Since the hands and feet move back and forth rather 
much as a person walks or runs and the magnitude and direction of their movement are not 
consistent, they are not representative of a pedestrian moving at a steady speed.  The head and 
body swing less and their movement vectors are a better choice for calculation.  Again, significant 
computation time can be saved when calculation is confined to the characteristic data of the 
head alone.  Therefore, in the actual tests, we only calculated the motion vectors using corner 
characteristic data from a quarter of the upper part of the rectangular frame, as shown in Figs. 1(b) 
and 1(c).

(a) (b) (c)

Fig. 1.	 (Color online) Results of corner feature detection.
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2.2.2	 Optical flow algorithm

	 After selecting the corner characteristics of the pedestrian’s head contour to represent their 
movement characteristics, the Lucas–Kanade optical flow algorithm(20,21) was used to calculate 
the movement vectors of the corner features.  The Lucas–Kanade method can be used with two 
consecutive image frames, I(t) and I(t + 1), to calculate the movement vectors of an object based on 
the following three assumptions.  Assumption 1: There is no marked difference in the brightness 
of the two consecutive images.  For example, if one image was acquired in bright sunlight and the 
other in the shade, the variation of brightness may be too large for a vector calculation.  Assumption 2: 
The distance moved between successive images cannot be too large.  Where a fixed n × n detection 
window is used, the object must remain within the window to be tracked.  If motion displacement 
takes the object outside the window area, tracking will fail.  Assumption 3: The detected pixels and 
the adjacent pixels move in the same direction.
	 Thus, the Lucas–Kanade optical flow method is assumed to hold for all pixels within an n × 
n window centered at p in image I(t) for calculating pedestrian movement.  The local image flow 
(velocity) vector d = [vx vy]T must satisfy

	 d = vx
vy

= B−1C ,	 (5)

where

	 B = i wiIx(qi)2
i wiIx(qi)Iy(qi)

i wiIy(qi)Ix(qi) i wiIy(qi)2

−1
,	

	 C = − i wiIx(qi)It(qi)
− i wiIy(qi)It(qi)

.	

q1, q2, ..., qn2  are the pixels inside the n × n window.  Ix(qi), Iy(qi), and It(qi) are the partial 
derivatives of the image I in the x-direction, y-direction, and time t, evaluated at the point qi and 
at the current time.  In practice, the weight wi is usually set to a Gaussian function of the distance 
between qi and p.
	 However, if the pedestrian moves too fast, they might be outside the n × n window by the time 
the next image is captured.  A larger window is one solution but that would increase computation 
by O(n2).   The pyramid Lucas–Kanade optical flow method(22) shrinks the image into several 
layers where the width and height of each layer is half that of the preceding one.  The same n × n 
window can detect the characteristic displacement values in the shrunken images.  Assuming that 
the shrunken width/height of each image is half that of the original, and the original image is layer 
0, the displacement velocity of each layer is as shown in Eq. (6), where d is the displacement value, 
L is the layer number, and Lmax is the maximum scalable layer.
	 Define the pyramid representation of the original image as I of size N × M.  Let I0 = I be the 
image at level 0.  The width and height of the image I0 at that level are defined as N0 = N and M0 = 
M, respectively.  Then, NL and ML, the width and height of the image IL at level L, respectively, can 

be computed as NL =
N0

2L
 and ML =

M0

2L
.  The image IL can be computed from IL−1 in a recursive 
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fashion, where L = 1, 2, ..., Lmax.  Recall the goal of affine feature tracking, for a given point p in 
image IL(t) at level L, and find its corresponding location q = p + d in image IL(t + 1).  Image IL(t + 
1) is the subsequent frame of image IL(t) in time.  dL = [vx

L vy
L]T is the optical flow vector of point p 

in image IL.  The optical flow vector dL = [vx
L vy

L]T is found in Eq. (5).  Then, the optical flow d0 in 
image I0 is estimated as

	 d0 = 2LdL.	 (6)

	 Take the coordinates of the characteristic point p to be (xL, yL) for the IL(t)  image, and then the 
optical flow value of dL = [vx

L vy
L]T can be obtained for the n × n window through the pyramid 

Lucas–Kanade optical flow method.  This means that the coordinates of the next image IL(t + 1) 
have reflected a movement to the coordinate of (xL + vx

L, yL + vy
L).  Next, use the residual equation 

as Eq. (7) to determine if the tracking of the characteristic point p is valid.  The residual formula 
calculates such characteristic point differences (including the neighboring area of n × n) between 
successive images, performing a similar calculation.  A low residual differential value indicates 
that the characteristic point of the next movement can be tracked in the next image.  This means 
that the calculated optical flow value dL is correct.  Ideally, the residual values should approach 
zero.  On the other hand, larger residual values are an indication that the characteristic points have 
not been correctly tracked.  In such a case, the calculated optical flow value means nothing.  If 
we cannot correctly track the characteristic points because the pedestrian has moved too fast or 
has moved out of the n × n window, the remedy would be to shrink the images and recalculate 
the optical flow and residual differential values, using the results to decide if the optical flow 
values are meaningful.  The images should be repeatedly shrunk until the displacements of the 
characteristic points can be tracked.  The optical values dL of the characteristic points from IL 
images have been successfully tracked when the calculations show sufficiently small residual 
differential values.  We can then use Eq. (6) to get d0, and in turn obtain the movement vectors in 
image I0.  Of course, it may be possible that the objects move so fast so that correct optical flow 
values cannot be obtained from the ILmax    images.  In our study, we have chosen a setting of Lmax = 2 
and consider this to be a reasonable moving speed suitable for normal pedestrian tracking.  

	 ε(dL) = ε(vx
L vy

L) =
vL

x + n
2

x=vL
x− n

2

vL
y + n

2

y=vL
y− n

2

{IL(x + vL
x , y + vL

y , t + 1) − IL(x, y, t)}2	 (7)

2.2.3	 Focus expansion

	 The cameras used in this study were mounted on the front windshield of the vehicles and 
commanded an unobstructed view of the road ahead.  However, as a vehicle moves forward, 
focal expansion takes place (as shown in Fig. 2).  Objects such as trees, buildings, posts, and 
other immovable objects expand from the focal point and move outwards.  In other words, even 
pedestrians who are standing still will appear to move in successive frames.  This is reflected 
by changes in the coordinates, which are dependent on the relative speed of the vehicle vc.  
Particularly, the optical flow vf acquired from the images does not represent actual pedestrian 
movement vectors.  The real pedestrian movement vectors should be vp = vf − vc.  The pedestrian 
shown in Fig. 3 is standing still, and when the vehicle travels forward at a speed vc, the (x1, y1) 
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position coordinate of the pedestrian from I(t) images is as shown in Fig. 3(a), where the position 
coordinate in the I(t + ∆t) image moves to (x2, y2), as shown in Fig. 3(b).  During this time (∆t), the 
coordinate changes in the subsequent images are due to the forward movement of the vehicle at 
speed vc.

3.	 Vehicle Driving Areas

	 The lane model plays a very important role in our pedestrian warning system, as shown in Fig. 
4.  As already mentioned, a single CCD camera was installed behind the front windshield of the 
vehicle to capture images of the road ahead.   In the image, the horizontal axis (u) represents the 
direction of deviation (left or right) and the vertical axis (v) represents the driving direction of the 
car.  
	 We can use road configurations and settings as well as driving habits (for example, some 
drivers tend to favor the right or the left side of the lane) to analyze the statistical results and 
construct a lane model.  The lane model describes possible paths that might be taken by a vehicle.  
This lane model is constructed using the location of the lane markings on both the left and right 
sides, namely, uli  and uri.  A covariance matrix that describes the potential range of fluctuation is 
also used in the lane model.
	 We referred to the specifications for main roads in Taiwan(23) and other statistical data relating 
to road design and used five parameters to describe the locations of the lane markings in the 

Fig. 2.	 (Color online) Focal point expansion.(26)

(a) (b)

Fig. 3.	 (Color online) (a) Coordinate of a standing pedestrian in image I(t).  (b) Coordinate of a standing pedes-
trian in image I(t + 1).



720	 Sensors and Materials, Vol. 29, No. 6 (2017)

image:(24) (1) the camera inclination angle α, which is the angle of the camera as installed in the 
car; (2) the vehicle steering angle ψ; (3) the lateral curve Cl; (4) the road width L; and (5) vehicles 
on the carriageway in the transverse position x0, as shown in Fig. 5 and Table 1.  An equation was 
then established corresponding to the locations of the lane markings in the image:

	 ui = eu[
−evz0

2(vi − evα)
Cl − ψ −

du

2
+

vi − evα − dv
2

evz0
(x0 +

γL
2

)] .	 (8)

When γ = 1, uli = ui.
When γ = −1, uri = ui.
eu = f/du and ev = f/dv.
f = camera focal length.
du, dv = number of vertical and horizontal pixels of the captured image.
z0 = height of the installed camera.
Cl = lateral curve of the lane.
vi = vertical location in the image, which presents the distance away from the moving vehicle.

	 Mean values taken for the five parameters from Table 1 were input into Eq. (8) where γ = 
1.  We then input vi (i = 1, ..., N) into the equation to obtain N number of ui (at this time, uli = ui).  
These are scalar values, and a collection of N number of scalar-valued parameters is known as the 
parameter vector X = [u1, u2, ..., uN]1×N.  The parameter vector X describes the average location 
of the lane markings in a typical road image, that is, the location where the lane markings most 
commonly appear.  We then find the first-order derivative for these five parameters to obtain the 
Jacobian matrix, as shown in Eq. (9).

Fig. 4.	 Lane model construction.
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	 J g =


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...
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...
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
N×5

i = 1, · · · ,N 	 (9)

	 We multiply the Jacobian matrix obtained in Eq. (9) by the Cp matrix, where Cp is the diagonal 
matrix obtained from the standard deviations of the five parameters listed in Table 1.  A covariance 
matrix Cx (an error covariance matrix) can be obtained, as shown in Eq. (10).

   Cx = (J gCpJT
g) =


J g



σ2
α 0 0 0 0

0 σ2
ψ 0 0 0

0 0 σ2
Cl

0 0
0 0 0 σ2

L 0
0 0 0 0 σ2

x0


JT

g


=



σ2
1
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...
...

...
...
...
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...

...
... σ2

i
...
...

...
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...
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...

...
...
...
... σ2

N


N×N

i = 1, · · · ,N	 (10)

	 Lastly, we construct our lane model using the parameter vector X and the covariance matrix 
Cx, as shown in Fig. 4.  uli and uri are calculated on the basis of Eq. (10), the parameter vector X.  
uli − σli, uli + σli, uri − σri, and uri + σri are calculated on the basis of the diagonal elements σ of the 
covariance matrix Cx and the parameter vector X.  We define the range enclosed by uli − σli and uri 
+ σri as a dangerous zone for pedestrians through which a car might drive.
	 The pedestrian collision warning system will alert the driver when a pedestrian is within the 
danger zone, or if a previously obtained pedestrian movement vector shows them to be heading for 

Table 1
Lane location parameters.

α (°) ψ (°) Cl (m−1) L (m) x0 (m)
Mean value 3 0 0 3.6 0
Standard deviation    0.5 3        0.017 0.3    1.8

(a) (b)

Fig. 5.	 (a) Location of the camera installed in the car.  (b) Relationship between the car and the lane.
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the danger zone, as shown in Fig. 6(a).  When the vector indicates movement away from the danger 
zone, the path ahead of the moving vehicle is considered to be safe, as shown in Fig. 6(b).

4.	 Experimental Results and Discussion

	 In this article, the tests have been performed mainly on urban roads during daytime and using 
a single camera mounted in the center of the dash in front of the windshield of an ordinary car to 
capture images of the road ahead.  The specifications of the camera used in this study are listed in 
Table 2.  The experimental results and analysis are presented in three parts: pedestrian detection, 
pedestrian movement vector, and danger zone warning.

4.1	 Pedestrian detection

	 The pedestrian image database was taken from The National Institute for Research in Computer 
Science and Control (INRIA),(25) where there are 2416 positive and 1218 negative samples in the 
training set, and 1126 positive and 453 negative samples in the test set.  The first step was the use of 
positive samples from the INRIA person training dataset to train the classifiers.  Random samples 
selected from the negative sample training set were also used.  Up to 2000 images were randomly 
selected from a positive sample training set as well as an equal number of negative samples.  With 
2000 samples, the true negative of the Haar-like characteristics from the front end of the Fisher 
classifier was 1.3%, and the false positive was 45.6%.  At the back end of the Fisher classifier data, 
based on covariance matrix descriptors, the true negative was 7% and the false positive was 6.6%.

(a) (b)

Fig. 6.	 (Color online) (a) Pedestrian moving into the danger zone.  (b) Pedestrian moving out of the danger zone.

Table 2
Camera specifications.
Item Specifications
Optical sensing element CMOS
Focal length 29 mm
Resolution 640 × 360
Camera setup height 120 cm
Camera tilt angle 1°
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	 The advantage of using Haar-like characteristics for identification is its fast computation speed.  
It can very quickly search for areas that may contain pedestrians.  The experimental results show 
that smaller true negative values correspond to lower false pedestrian identification.  Relatively 
false positive corresponds to almost 50% of false judgments.  In other words, nonpedestrians could 
be mistaken as pedestrians.  To reduce the number of misidentifications, we used cascaded front- 
and back-end classifiers to reidentify the image areas filtered by the front-end classifier.  The use 
of the back-end classifier significantly reduced the false positive ratio.  Incidentally, the images 
used for testing included both stationary and moving pedestrians.  Some experimental results 
obtained with this pedestrian detection system are presented in Fig. 7.

4.2	 Pedestrian movement flow

	 After the pedestrian positions have been delineated by rectangular frames, the follow-up image 
processing algorithms need only take care of the upper quarter of these frames, i.e., the ROI, and 
the amount of computation is relatively small.   The sequence of ROI computation is as follows: 
	 To start with, Harris corner detection is used to find the corner feature points of the head 
outline.  Next, the movement vectors vf are calculated from the corner point data using the 
pyramid optical flow method.  The vehicle forward moving speed vc is then used to correct for 
focal expansion and to determine the actual movement vectors vp of the pedestrian(s).  In our 
experiments, the vehicle forward moving speed vc is limited at 40 km/h for the consideration of 
testing safety.  Some experimental results of the pedestrian movement estimation are shown in 
Fig. 8, and the pedestrian movement vectors are indicated in the figure.  In Fig. 9, the danger zone 
in the vehicle driving forward path is specified on the basis of the lane model.  When a pedestrian 
is within the danger zone, or the pedestrian motion vectors indicate possible movement into the 
danger zone, the system will alert the driver to this eventuality by generating a visual or audible 
driver warning.

Fig. 7.	 (Color online) Results of pedestrian detection.



724	 Sensors and Materials, Vol. 29, No. 6 (2017)

4.3	 Discussion

	 In this study, we have used a number of available technologies to devise a simple ADAS 
system to improve the safety of pedestrians and the drivers of motor vehicles, more particularly 
passenger cars.  Pedestrians are often very seriously hurt in road accidents, and in this study, 
we focused on protection and the prevention of such eventuality.  Computer visual technology 
is widely used nowadays for all types of object identification, but the differences between 
pedestrians and rigid, mostly immovable objects, have been difficult to determine on the basis 
of singular characteristic data.  Most previous studies used multiple characteristics to identify 
a pedestrian, and this approach makes it necessary to use a huge database to train the learning 
classifiers.  The image algorithms consume a correspondingly large amount of computing power 
and time.  The pedestrian identification algorithms presented in our study consist of two cascaded 
classifiers.  The front end uses singular Haar-like characteristic data for the rapid identification of 
possible pedestrians.  Although the back-end classifier needs to take care of multi-characteristic 
data to make classification decisions, the computational load is quite light because only image 
areas that have been prefiltered by the front-end classifier are processed.  For the calculation of 

Fig. 9.	 (Color online) Danger zone warning experimental results.

Fig. 8.	 (Color online) Results of pedestrian movement estimation.
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pedestrian movement vectors, only the corner feature points of the heads of pedestrians are used, 
which provides overall moving velocities and directions.  This is both effective and workable.  
This method simplifies image processing computation on the premise that the effectiveness of 
identification shall not be adversely affected in any way.  However, each image shown in Table 3 
would take about 0.5 s to process using a PC with an Intel Core i5 CPU and 4 GB RAM executing 
the algorithms coded with Matlab.  Even if the requirements of a real-time operation could be 
satisfactorily carried out using hardware circuitry, the cost will still be relatively high.  We will 
continue our efforts to find even simpler image algorithm alternatives and also investigate the use 
of parallel processing.  

5.	 Conclusions

	 In this study, we utilized a visual image processing method to estimate pedestrian movement 
vectors and issue anticollision warnings.  Two steps are involved, pedestrian detection and 
pedestrian movement vector estimation, each of which could be established as independent 
modules.  Pedestrian identification is made by two-layered cascaded classifiers.  The front-end 
classifier uses Harr-like characteristic data for rapid classification and the back-end classifier 
uses covariance descriptor characteristics to reclassify the prefiltered image zone and reach 
correct identification with 96% certainty.  In addition, the postprocessing algorithm of pedestrian 
movement vectors focuses only on the ROI, and this raises the system processing speed 
significantly.  The pyramid movement vector algorithm is even more efficient for estimating 
pedestrian movement.  Since the speed at which pedestrians move is not very high, a two-
layer pyramid optical flow algorithm and 5 × 5 tracking window are sufficient.  The pedestrian 
movement vector estimation and safety warning system designs easily cope with the real-time 
processing applications.  The design of this visual image processing system takes both quantitative 
calculations and time into consideration.  
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