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	 The prediction of deck motion is an effective and potential means of improving the landing/
take-off safety of carrier-based aircraft using current and historical deck-motion measurements 
when deck motion in six degrees of freedom cannot be effectively controlled or restrained.  The 
prediction models of deck motion should have excellent nonlinear fitting ability to cope with the 
deck-motion characteristics of randomness and nonlinearity caused by waves and wind; and should 
not use heavy computation to fulfill the requirement of real-time prediction for deck motion.  It 
is generally believed that classical feed-forward neural networks, such as the back-propagation 
(BP) network, have excellent nonlinear fitting ability but suffer from slow training processes and 
reduced local optimum, thus failing to satisfy the requirements of real-time and high accuracy for 
deck-motion prediction. In addition, the extreme learning machine (ELM) is easy to train but it is 
difficult for ELM to determine the number of hidden layer nodes; an incorrect number of hidden 
layer nodes will introduce poor stability and generalization ability.  To fulfill the requirements of 
deck motion prediction, a prediction method based on ELM, support vector machine, and particle 
swarm optimization [particle swam optimization kernel extreme learning machine (PSO-KELM)] 
is designed.  In this method, the fundamental structure of the ELM is used and the kernel function 
from the support vector machine (SVM) is introduced to replace the hidden function in ELM.  
Further aiming at the acquisition of optimal parameters, including the penalty coefficient and 
kernel parameters for the kernel function, autoadaptive particle swarm optimization is adopted.  
Simulation results indicate that a prediction method based on PSO-KELM has the advantages of 
a simple structure, fast training speed, and powerful generalization ability, and thus can satisfy 
the requirements of real-time and high-accuracy deck-motion prediction.  Compared with the 
prediction data from BP and the ELM, high-precision prediction data can be obtained with PSO-
KELM.  PSO-KELM has a significantly reduced training time compared with BP.
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1.	 Introduction

	 As a moving platform for aircraft at sea, aircraft carriers have been widely valued for the 
powerful offensive/defensive ability of carrier-based aircraft.  During the process of aircraft 
landing, aircraft carriers should be in a stable condition and the position of the ideal landing point 
should be known.  Because of excitation by wind and waves, deck motion in six degrees of freedom 
is generated.  Deck motion, especially heave and the coupling motion caused by pitch and the lever 
arm, will make the ideal landing point of aircraft variable in three-dimensional space; thus, the 
landing safety of aircraft will be significantly decreased.(1–4)  In this paper, the lever arm refers 
to the geometric distance between the ideal landing point and the swinging center of an aircraft 
carrier.
	 Using the active control method to suppress the six-degree-of-freedom motion of ships may be 
an effective means of improving the landing safety of carrier-based aircraft.(5)  Unfortunately, there 
is no effective method to restrain or control wave-induced motion except yaw and roll, which can 
be partially restrained through the combined operation of the fin and rudder.
	 When swaying motion, especially heave and pitch, cannot be restrained, the prediction of deck 
motion is a potential means of improving the safety of aircraft.  The prediction of deck motion is 
based on extreme short-term prediction technologies for ships, in which historical deck-motion 
data, including current data, is used to predict the motion of approximately the next 10 s.(6)   It is 
believed that if the motion of the next 10–13 s can be accurately predicted, the landing track can be 
adjusted in real time, and thus the safety of aircraft can be significantly improved.(7) 
	 Currently, technologies for predicting extreme short-term conditions of ships have been 
widely studied from such aspects as ship safety and navigation performance, and many effective 
accomplishments, such as statistical prediction, convolution prediction, and Kalman prediction, 
have been achieved.(8–11)  These methods are all based on an accurate mechanical model or accurate 
statistical parameters.  However, in engineering, it is difficult to acquire an accurate input/output 
mechanical model for carriers because of the overcomplex relationship between wind/waves and a 
ship.  Also it is difficult to acquire accurate statistical parameters because large ships always sail in 
a large expanse of sea over a long period and experience the complexity of the sea.  With the aim 
of realizing deck-motion prediction, intelligent methods such as grey prediction and neural network 
prediction are introduced.(12–14)  Among these methods, the grey prediction method requires the 
predicted object to conform to the exponential function law, but it is an ideal assumption and 
therefore difficult to realize.  When this assumption cannot be satisfied, fitting and generalization 
ability will degrade.  In contrast, back-propagation (BP) networks are believed to be highly capable 
of fitting any nonlinear function and are an effective method for solving nonlinear prediction 
problems.  Unfortunately, classical neural networks easily suffer from large amounts of calculation, 
slow training, and a local minimum problem; thus, they cannot meet the requirements of real-time 
calculation and high accuracy required for deck-motion prediction.(15)  To make matters worse, the 
deck motion of aircraft carriers is always measured with the Strapdown Inertial Navigation System 
(SINS).  SINS has a high update frequency (≥100 Hz).  This means that the amount of input for the 
prediction model is very large and the calculation is very heavy.  
	 In 2004, the extreme learning machine (ELM) was first proposed by Huang and co-authors.  
It was also based on a feed-forward neural network structure but a new and single hidden layer 
was adopted.(16–18)  Unlike the classical neural network, only the number of hidden nodes in ELM 
needs to be set in advance.  During training, input weights and thresholds are randomly assigned, 
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and output weights are solved using these samples for training and the theory of the generalized 
inverse matrix.  In this paper, a prediction method based on ELM is introduced to cope with deck-
motion prediction that has the characteristics of a simple structure, high training speed, powerful 
fitting ability, and a global optimum.  However, when using ELM, there is no mature method of 
selecting the number of hidden nodes which is a decisive factor deciding prediction accuracy.  Also 
this method suffers from model instability and a low generalization ability caused by random 
mapping in the hidden layer.(19)  In order to solve these problems, a new network named kernel 
extreme learning machine (KELM) was introduced in Ref. 16.  In KELM, the kernel function 
of the support vector machine (SVM) is introduced to act as the hidden layer in ELM; thus, the 
advantages of ELM and the SVM can be combined.  In KELM, there are also difficulties in setting 
the penalty coefficient and kernel parameter, which govern the prediction accuracy.  With the aim 
of acquiring optimal parameters for KELM, autoadaptive particle swarm optimization (PSO) is 
further introduced.  Simulation results indicate that the prediction model based on PSO-KELM 
shows significant advantages compared with BP and ELM.
	 The rest of this paper is organized as follows.  In Sect. 2, models describing deck motion are 
studied and the method for simulating deck motion is introduced; the algorithm for ELM and the 
improved method of KELM are studied in Sect. 3; autoadaptive PSO is further introduced for 
parameter optimization in Sect. 4; simulations are demonstrated in Sect. 5; finally the conclusions 
are given in Sect. 6.

2.	 Models for Deck Motion of Aircraft Carrier

	 Models describing ship motion or deck motion are widely studied.  However, in engineering it is 
difficult to use a unified model describing deck motion because of the complexity of sea conditions 
and different ship types.  When studying the ship-swaying model, it is always studied under a 
fixed sea condition for one ship type.  In this paper, deck motion of an aircraft carrier with a tipped 
bottom in general sea conditions is studied.
	 Currently, there are two widely used models describing deck motion: the random model based 
on the power spectrum and the combined model based on the superimposition of sine waves.(20,21)  
The latter is widely accepted and has been used since the 1950s.  In the combined model, waves in 
mature periods are regarded as a stable random process and can be reconstructed with independent 
random variables; under a fixed sea condition, ship motion is regarded as a process with a narrow 
band stochastic process and can be simplified by superimposing with some sine waves.  In Ref. 
21, deck-motion models for pitch, roll, yaw, and heave for a moderate-size aircraft carrier under a 
moderate sea condition with a velocity of  30 knots are given as

	



P = 0.5 sin(0.6t) + 0.3 sin(0.63t) + 0.25,
R = 2.5 sin(0.5t) + 3.0 sin(0.52t) + 0.5,
H = 0.25 sin(0.7t) + 0.5 sin(0.1t),
Tz = 1.22 sin(0.6t) + 0.3 sin(0.2t),

	 (1)

where P, R, and H are pitch, roll, and yaw motion with the unit of degrees, respectively; Tz is the 
heave motion with the  unit of meters; t is the running time in seconds.
	 During deck-motion prediction, acquiring historical deck-motion data is a precondition.  In the 
sea, there is no direct reference position; thus, it is difficult to measure deck motion with indirect 



1294	 Sensors and Materials, Vol. 29, No. 9 (2017)

methods, such as light and radar.  Direct measuring methods are preferred.  SINS is always used 
to measure deck motion.  When SINS is installed at or near the ideal landing point, pitch, roll, 
and heave relative to the earth’s horizontal plane and yaw relative to north can be calculated with 
angle velocity and accelerations measured with an inertial measurement unit and SINS navigation 
algorithm.  With only SINS, navigation data will drift with time, but if aided navigation systems 
such as GNSS are adopted, errors from SINS/GNSS can be dealt with as white noise.
	 In this paper, the motion described by Eq. (1) represent the ideal deck motion without any error/
noise.  Random noise is added to this ideal motion, and the resulting motion containing noise is 
used as the measured deck motion by SINS.

3.	 Prediction Model Based on KELM

	 ELM is a new type of feed-forward neural network with a single hidden layer.  Compared 
with those in classical feed-forward neural networks, only the number of hidden nodes need be 
determined in advance in ELM, and input weights and thresholds are randomly assigned, then the 
optimal solution can be obtained.  The structure of ELM is as follows.(16–18)

	 As illustrated in Fig. 1, the function of the hidden layer is denoted as g(x) and the number 
of hidden nodes is denoted as L.  When a set of samples (xi, ti), 1 ≤ i ≤ N, is given, where 
xi = [xi1, xi2, ..., xin]T ∈ Rn denotes the input, ti = [ti1, ti2, ..., tim]T ∈ Rm denotes the target, and β 
denotes the connection weight between the hidden and output layers, and β can be expressed as

	 β =



β11 β12 · · · β1m

β21 β22 · · · β2m
...

...
. . .

...

βL1 βL2 · · · βLm


L×m

,	 (2)

where βim denotes the connection weight between the ith neuron of the hidden layer and the jth 
node of the output layer.
	 The model of ELM can be constructed as

	 T =
[
t1, t2, . . . , tN

]
m×N , f (x j) =



∑L
i=1 βi1g

(
ωi, bi, x j

)
∑L

i=1 βi2g
(
ωi, bi, x j

)

. . .∑L
i=1 βimg

(
ωi, bi, x j

)


= t j, j = 1, 2, . . . ,N ,	 (3)

Fig. 1.	 The structure of ELM.
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where ωi denotes the connection weight between the hidden and input layers, bi denotes the 
threshold of neurons in the hidden layer, g(ωi, bi, xj) is the output of the ith neuron with the input of 
xj, and T is the output matrix of samples.  Furthermore, Eq. (3) can be rewritten as

	 Hβ = T′ ,	 (4)

where T′ is the inverse of T, and H is the output matrix of the hidden layer expressed as

	 H = [ω1,ω2, . . . ,ωL, b1, b2, . . . , bL, x1, x2, . . . , xN] 	

	 =



g (ω1, b1, x1) g (ω2, b2, x1) · · · g (ωL, bL, x1)
g (ω1, b1, x2) g (ω2, b2, x2) · · · g (ωL, bL, x2)

...
...

. . .
...

g (ω1, b1, xN) g (ω2, b2, xN) · · · g (ωL, bL, xN)


N×L

.	 (5)

	 With the aim of acquiring the lowest structural and empirical risks, the training target function 
of ELM is defined as

	


min :

1
2
‖β‖2 + 1

2
C

N∑
i=1

ξ2i ,

s.t. : ti − f (xi) = ξi,
	 (6)

where 
1
2
‖β‖2 and 

1
2

N∑
i=1

ξ2i  denote structural risk and empirical risk, respectively, ξi is the difference 

between the theoretical output and actual output, and is defined as the penalty coefficient that is 
used to weight the ratio between structural risk and empirical risk.
	 Applying the Karush–Kuhn–Tucker (KKT) condition, the output weight matrix of β can be 
expressed as

	 β = HT
(

1
C

IN + HHT
)−1

T ,	 (7)

where IN is a unit matrix.
	 As illustrated above, the ELM algorithm has the advantages of a simple structure, requiring a 
small amount of calculation.  However, there are two defects as follows.  Firstly, the generalization 
ability of ELM is determined by the number of hidden nodes.  Unfortunately, there is no 
established method of selecting this number, thus the generalization ability is unstable.  Secondly, 
the input weight and threshold are assigned randomly, which introduces random fluctuation of 
the output and leads to the instability of ELM and unsatisfactory generalization.  To overcome 
these shortcomings, the kernel function of the SVM is introduced in ELM, which is then renamed 
KELM, in which kernel mapping is used as a substitute for random mapping.
	 If the matrix H in the hidden layer is unknown, the kernel matrix can be defined as follows in 
ELM under the condition described by Mercer.(16)
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
ΩELM = HHT

Ωi, j = h (xi) h
(
x j
)
= K
(
xi, x j
) 	 (8)

	 Then the output of KELM can be expressed as

	 f (x) = h(x)HT
(

1
C

IN + HHT
)−1

T =



K (x, x1)
...

K (x, xN)



T (
1
C

IN +ΩELM

)−1

T ,	 (9)

where h(x) denotes the output function of hidden nodes and K(x, xi) the kernel function.  Then the 
output weight of KELM can be solved as

	 α =

(
1
C

IN +ΩELM

)−1

T .	 (10)

	 Commonly used kernel functions include linear, polynomial, RBF, and sigmoid kernels.  
Among these functions, the RBF kernel function has few variables, a simple structure, and global 
approximation capability.  The detailed expression for the RBF kernel function is

	 K (x, xi) = exp
(
−‖x − xi‖2

σ2

)
.	 (11)

	 From the above, with a set of N samples (xi, ti) and the kernel function K(x, xi), the KELM 
prediction model can be formulated as Eq. (9).  With KELM, difficulties in ELM when determining 
the number of hidden nodes can be avoided because the number of hidden nodes is the number 
of samples.  Furthermore, the merits of a fast training speed and simple structure in ELM are 
retained, and those of good stability and generalization in SVM can be introduced.
	 Further analysis of Eq. (9) will show that the stability and generalization of KELM are closely 
related with the parameters C and σ.  If these two parameters are optimized, optimal stability and 
generalization can be acquired.  To this end, self-adaptive PSO is introduced to optimize the above 
two parameters for KELM.

4.	 Improved Prediction Model for KELM with PSO

4.1	 Algorithm of PSO

	 The PSO algorithm is a kind of swarm intelligent optimization algorithm generated from the 
foraging behavior of birds.(22–24)  In PSO, one particle denotes one potential optimized solution, 
and three indexes, velocity, location, and fitness, denote its characteristics.  During the optimizing 
process, each particle is evaluated by goodness of fit, and the moving direction and distance of 
particles are controlled by the velocity vector.  During an iteration, particles can update their 
velocity and location referring to their memory of the optimal location and finally achieve 
individual optimization in the solution space after some iterations.
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	 It is assumed that the search space is of D dimensions; the population is composed of n particles, 
that is, X = [X1, X2,..., Xn], among which the ith particle is expressed as Xi = [xi1, xi2,..., xiD]T and 
xmin ≤ xi ≤ xmax with xmin and xmax denoting the lower and upper bounds, respectively; the velocity 
of the ith particle can be expressed as Vi = [vi1, vi2,..., viD]T and vmin ≤ vi ≤ vmax with vmin and vmax 
denoting the lower and upper bounds, respectively; the fitness function J  is defined in accordance 
with the optimization function following the equation

	 J =
√

pemean2 + pemse2 ,	 (12)

where pemean denotes the mean of the prediction and pemse denotes the mean square error of the 
prediction error.
	 During an iteration, particles update their velocities and locations in accordance with the 
ultimate values of the individual and the population following the equation

	


Vk+1

i = ωVk
i + c1r1

(
Pi − Xk

i

)
+ c2r2

(
Pg − Xk

i

)
,

Xk+1
i = Xk

i + Vk+1
i ,

	 (13)

where ω denotes the inertial weight; c1 and c2 denote non-negative acceleration constants; r1 and 
r2 are random values between 0 and 1; Pi and Pg are the ultimate individual value and population 
value, respectively.
	 In order to overcome disadvantages such as premature convergence, slow search, and low 
efficiency in PSO, two measures can be taken.  One is to introduce genetic and mutation algorithms 
to reinitialize some variables with some probability and narrow the search space.  The other is to 
adopt a new inertial-weight-selecting scheme to strengthen the search ability in the initial solution 
space.  In this study, the latter measure is adopted and the improved weight can be calculated as

	 ω(i) = ωstart −
ωstart − ωend

Tmax
i,	 (14)

where ωstart is the weight at the start, ωend is the weight at the end, i is the current iterative cycle, 
and Tmax is the maximum number of iterations.  In Eq. (14), the inertial weight decreases with 
increasing number of iterations thus the local search ability is strengthened.

4.2	 Prediction model based on PSO-KELM

	 In the prediction model based on PSO-KELM, two parameters in KELM, the penalty 
coefficient and the kernel parameter, should first be determined with the PSO algorithm and then, 
with these optimized parameters, training and prediction with KELM can be carried out.  The 
detailed steps are as follows.
	 Step 1: Parameter optimization with the PSO algorithm.
(1)	Initialize particle population including initial velocity V and location X; assign maximum 

number of iterations, population size, inertial weight, and acceleration constant.
(2)	Calculate the fitness of each particle: these particles with low fitness have a good optimizing 

index.
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(3)	Update ultimate values of Pi and Pg in accordance with the fitness.
(4)	Update the velocity and location of each particle in accordance with Pi and Pg.
(5)	End of Step 1: The parameters C and σ at the maximum number of iterations are selected as the 

optimized values.
	 Step 2: Training and prediction with KELM
(1)	With the parameters C and σ optimized using the PSO algorithm and the sample set with 

N samples, the output weight matrix α and other structural parameters of KELM can be 
determined using Eq. (10).

(2)	With the trained model, the prediction of deck motion can be executed using the current deck-
motion measurements and Eq. (9).

The flowchart of the system is shown in Fig. 2.

5.	 Simulation and Analysis 

5.1	 Simulation setting

	 During simulation, the data from Eq. (1) are used as theoretical data without any error.  White 
noise with variances of 0.01° and 0.05 m are added to the theoretical pitch, roll, yaw, and heave 
and used as actual values measured using SINS.  The update frequency of samples is 1 Hz and the 
preset prediction time is 15 s.  After some simulation experiments and considering the issues of 
real-time and precision in the prediction of deck motion, the number of samples is set to 50.  The 
duration of data used for simulation is 2300 s and the data in the first 500 s are used as samples and 
those in the latter 1800 s are used in the prediction test.  The input and output data are constructed 
as

	



X = [x1, x2, . . . , xN] =



x1 x2 · · · xN

x2 x3 · · · xN+1
...

...
. . .

...

xn xn+1 · · · xN+n−1


.

T = [t1, t2, . . . , tN] =



t1 t2 · · · tN

t2 t3 · · · tN+1
...

...
. . .

...

tm tm+1 · · · tN+m−1


.

	 (15)

Fig. 2.	 Flowchart of the system.
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	 After the completion of the model training, the data in the past 50 s are used to predict the data 
in the next 15 s when the new data are added and the oldest data are omitted.  The total amount 
of model data is unchanged.  In this way, the total data of 1800 s are predicted, and the input and 
output data are normalized and antinormalized to meet the needs of the model.
	 The initial settings for the PSO algorithm are as follows: the maximum number of iterations is 
40; the initial population is 20; the initial inertial weight is 0.8; the last inertial weight is 0.2; the 
acceleration constants are both 1.49445; the search range for C and σ are both from 0.001 to 1000; 
the maximum and minimum values for position and speed are 20 and 0, respectively; 500 s of data 
are used for parameter optimization, and according to Eq. (15), 436 samples can be produced and 
the first 400 samples are used for model training and the last 36 samples are used for parameter 
optimization tests.  

5.2	 Simulation results and analysis

	 The optimized values using the PSO algorithm are shown in Table 1.  Taking the PSO algorithm 
optimization process of pitch data as an example, as shown in Fig. 3, it is found that the fitness 
value changes from 0.3362 to 0.1023 after two evolutionary optimization processes.  After 40 
iterations, the fitness value is stabilized at 0.1015.  The PSO algorithm can quickly find the 
appropriate penalty factor C and kernel parameter σ and keep the fitness value in a very low range.  
For roll, yaw, and heave data, similar results are also obtained.
	 Simulation results including pitch, roll, yaw, and heave are shown in Fig. 4 with solid lines 
denoting the actual measured values, dashed lines denoting the predicted values, and dot-dashed 

Table 1
Optimized values using PSO algorithm.

Pitch Roll Yaw Heave
C   66.3026 239.7010   21.2722   20.0010
σ 980.6548 713.1792 840.4762 268.2339
J     0.1015     0.0151     0.0788     0.1038

Fig. 3.	 (Color online) Optimal individual fitness value of pitch training sample.
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lines denoting the prediction error.  From the curves in Fig. 4, it can be seen that with PSO-KELM, 
the deck motion in the next 15 s can be effectively predicted with only small fluctuation deviations.
	 Furthermore, in order to evaluate prediction accuracy using PSO-KELM, prediction methods 
based on BP and ELM are selected to execute prediction with the same deck-motion data.  The 
prediction error and training time for BP, ELM, and PSO-KELM are listed in Tables 2–4, 
respectively.  In Tables 2–4, variance percentage means the variance of actual data divided by the 
variance of the prediction error.  
	 Seen from Tables 1–3, it is obvious that PSO-KELM runs about 20 times faster than BP but 
about 10 times slower than ELM.  The reason is that in contrast with BP, PSO-KELM has no 
constant error feedback correction process and in contrast with ELM, PSO-KELM has a parameter 
optimization process.  PSO-KELM can be completed to predict data over 1800 s within 38 s, the 
average per-second data prediction does not exceed 0.03 s, so PSO-KELM fully meets real-time 
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requirements for deck-motion prediction of aircraft carriers.  Note that in this paper, predictions are 
run with a personal computer (PC) and the running times are gathered from the same PC.
	 Also seen from Tables 1–3, the results of prediction with PSO-KELM have higher accuracy 
than those of BP and ELM, except that the mean square of the roll error with BP is 0.01652, while 
the mean square of the roll error with PSO-KELM is 0.01695; the errors of the rest of the results 
with BP are 1 to 2 times larger than those with PSO-KELM.  The roll error with ELM is about 8 
times larger than that with PSO-KELM; the errors of the rest of the results with ELM are 1 to 2 
times larger than those with PSO-KELM.  From the above analysis, it can be concluded that with 
PSO-KELM, deck motion can be accurately predicted with a short training time.

6.	 Conclusion

	 The problem of deck-motion prediction of an aircraft carrier was studied.  Firstly, the 
characteristics of deck motion were analyzed, and a combined model based on the composition 
of sine waves was adopted to describe deck motion.  To satisfy the requirements of real-time 
calculation and high-accuracy of deck-motion prediction, ELM was introduced, and the concept 
of kernel mapping in SVM was introduced to overcome the difficulty in selecting the number 
of hidden nodes as well as the instability and poor generalization caused by random mapping in 
ELM.  Further analysis indicated that the stability and generalization ability are closely related 
to the penalty coefficient and kernel parameter.  To acquire optimal values of these parameters 

Table 3
Results of prediction with ELM model.

Error variance (degree or m) Variance percentage (%) Training time (s)
Pitch 0.0198 10.9925 4.1808
Roll 0.1165   1.4612 4.4304
Yaw 0.0167 10.0306 4.3836
Heave 0.0765   9.4784 4.4616

Table 2
Results of prediction with BP model.(25)

Error variance (degree or m) Variance percentage (%) Training time (s)
Pitch 0.0212 11.5220   605.5803
Roll 0.0165   0.2221 1111.1351
Yaw 0.0196 11.6673   652.2090
Heave 0.0754   9.1123   609.8079

Table 4
Results of prediction with PSO-KELM model.

Error variance (degree or m) Variance percentage (%) Training time (s)
Pitch 0.0124 6.7588 32.1206
Roll 0.0137 0.1723 33.5402
Yaw 0.0111 6.6526 34.1642
Heave 0.0560 6.7609 37.2686
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for KELM, autoadaptive PSO was introduced, and then the prediction model and steps to be 
implemented based on PSO-KELM were designed.  Simulation with prediction models based 
on PSO-KELM, BP, and ELM were executed and the results were compared.  The comparison 
indicated that the prediction accuracy and training speed of PSO-KELM are better and faster 
than those of ELM and BP, and the model of PSO-KELM can be used for successful deck motion 
prediction of an aircraft carrier.
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