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	 A data-driven method is used to measure the thickness/subsurface-crack-depth of metal 
specimens.  The measuring system is driven by a pulsed eddy current (PEC), and for every 
detection process a huge data set is obtained because of the high detection speed.  To choose the 
best data to compute the thickness/subsurface-crack-depth, the Jarque–Bera (JB) statistical test 
is imported into the algorithm.  The proposed method is applied to select the best data from the 
huge detection data set by utilizing the statistical characteristics of the data.  Influenced by noise, 
the detection results may differ when the same thickness/subsurface-crack-depth is measured.  
To guarantee the accuracy of the measurement, principal component analysis (PCA) is used to 
combine all detection data.  Experimental results show the advantages of the proposed method.

1.	 Introduction

	 Researchers are now more frequently focusing on non-destructive testing (NDT).(1–3)   
In particular, the use of a pulsed eddy current (PEC) is developing rapidly.  It can be applied in the 
detection and measurement of surface and subsurface defects.(4–6)  Compared with the traditional 
eddy-current testing (ECT), this method offers considerable advantages.(7,8)  In the fields of crack 
detection, thickness measurement, and crack reconstruction, the PEC method plays an important 
role.(9–11)  To maintain large components that are difficult for people to maintain, a periodic 
monitoring method is needed.(12,13)  Malfunction may often be caused by changes in thickness.  
Many studies have been done on measuring thickness.  The power spectrum density (PSD) in the 
Fourier transform method has been proposed as a way to detect wall-thinning.(14)  In many studies, 
improving detection devices is emphasized.  A differential probe has been designed to detect the 
thickness of a specimen using the peak value and time-to-zero parameters.(15,16)  As a material 
may be complex—for example, iron—the thickness may be difficult to detect.  In crack research, 
iron is sensitive to an induced magnetic field.  However, aluminum is not.  Consequently, the 
peak value and time-to-zero parameters are used to detect the thickness of an aluminum plate.(4)  
Rapid progress is being made toward developing a method for thickness measurement.  However, 
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improvements in the accuracy of measurements at the data level are also required.  In the actual 
detection process, the method takes many data points over a short time at the same thickness.  Not 
all data points can be imported into the processing algorithm because the experimental conditions 
are different, such as the excitation signal and the experimental electromagnetic environment.  
Therefore, it is important to select useful data to compute the thickness.  In the study, statistical 
tests and the principal component analysis (PCA) method are used to process the data.  The poor 
detection signals can be recognized as different from good detection signals when a similar 
thickness is not detected; data from poor detection signals deviates from the correct value.  Thus, 
the distribution of a poor signal is very different from that of a correct signal.  As the sampling rate 
is 2 kHz and 2500 points are obtained by the system for every signal, it is sufficient to compute 
the distribution of the signal.  This characteristic can be used to separate the poor signals from the 
good signals.  The Jarque–Bera (JB) statistical test method was proposed in this study to deal with 
this problem.  The skewness and kurtosis of the signals are used in the method.  In the JB test, 
a value is calculated to evaluate whether the signal is poor or good.  Many good signals may be 
selected from a huge number of detected signals.  To make the results more accurate, these selected 
signals are processed by the PCA method.  The fusion of these two data-driven methods can 
improve the accuracy of thickness measurements to a large extent and the results reflect this.
	 This paper is organized as follows.  In Sect. 2, the basic electromagnetic laws and method are 
presented.  In Sect. 3, the experiment setup is shown, and the verification experiment is discussed 
in Sect. 4.  Finally, conclusions are offered in Sect. 5.

2.	 Electromagnetic Analysis and Data Processing

2.1	 Electromagnetic analysis

	 The basic principle of the PEC method used in this study is the skin effect.  Induced eddy 
currents contain information on the thickness of the specimen.  The equation is(17) 

	 δ =
1√
π fσµ

,	 (1)

where δ is the skin depth, f is the excitation signal frequency, σ is the electrical conductivity of the 
material, and µ is the magnetic permeability of the material.  As the skin depth δ decreases, the 
frequency f becomes higher when µ and σ are constant.
	 Figure 1 presents the relationships in the skin effect.  The figure shows that the eddy current 
density is higher when the current is close to the surface.  Figure 2 shows the PEC detection 
platform.  When excitation signal I1 changes, it produces the magnetic field B1.  Eddy current I2 
is induced in the specimen according to Maxwell’s laws.  Figure 3 shows the simulation of crack 
detection by the PEC method using the COMSOL software.  It presents that the density of induced 
eddy current is highest under the excitation coil, and the distribution of the induced eddy current 
density is different when there is a crack under the coil.  The probe is designed and optimized 
based on this theory and method.
	 For different excitation frequencies f of I1, the induced magnetic field B2 is different when the 
skin depth is larger than the specimen thickness.  Using the magnetic field B2, the thickness can be 
obtained.  When the frequency is high, the skin depth is small.  If the skin depth δ is smaller than 
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the specimen thickness, then the magnetic field B2 induced by the eddy current will be the same 
when detecting two different thicknesses, as shown in Fig. 4.  However, the skin depth will be 
different when the frequency is low.  This lower frequency is called the mutation frequency, and it 
is used to compute the thickness.  By processing the signal, the frequency can be used to compute 
the thickness of a metallic material.  This method has been evaluated in previous studies.(18)  To 
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Fig. 1.	 (Color online) Eddy current skin effect. Fig. 2.	 Eddy current distribution.

Fig. 3.	 (Color online) Induced eddy current distribution obtained by simulation.
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determine the values of the frequency features, a differential parameter ∆B( f ) is defined in Eq. (2):

	 ΔB( f) = Bref( f) − B( f),	 (2)

where Bref is the reference signal induced by the eddy current in specimen b, and B is the signal 
induced by specimen a. 
	 A Hall sensor is used in this study to detect the signal of the induced magnetic field.  Under 
ideal conditions, the excitation signal is the same during detection.  Many features of the response, 
such as amplitude, time to peak, and time to zero, are used to determine the thickness.(19)  Most 
of these features are easily influenced by noise, such as differences in the excitation signal.  In 
general, one signal is analyzed to calculate the thickness.  Consequently, the results often have 
a large error.  To reduce this error, the method should make full use of the detected data from 
sensors.  Furthermore, by applying the features of all the data, one can obtain a more accurate 
result.  For these reasons, we propose a data-driven fusion method in this study.  A new data signal 
can be extracted, and the new data is used in the measurement algorithm.

2.2	 Statistical test method

	 The JB test, as a statistical tool, is appropriate to determine the distribution of the data set.  It is 
based on sample kurtosis and the skewness of the data set and assumes a normal distribution.(20,21)  
For a true normal distribution, the skewness should be near zero and the kurtosis should be three.  
The JB test involves a chi-square statistical treatment, which determines whether the sample 
kurtosis and skewness differ markedly from expected values.  Based on the sample skewness and 
kurtosis, a JB test value of the data set can be calculated, and the distribution characteristics can be 
determined.  The distributions of the data set are the same if the JB values are the same.  The JB 
test statistics are presented in this equation:

	 JB = n
(α2

3

6
+

(α4 − 3)2

24

)
,	 (3)

where α3 ≡ s−3n−1
n∑

i=1

(xi − x̄)3, α4 ≡ s−4n−1
n∑

i=1

(xi − x̄)4, s2 ≡ n−1
n∑

i=1

(xi − x̄)2, ȳ is the sample 

mean, and s2, α3, and α4 are the second, third, and fourth sample moments, respectively.  In the 
measuring system, there are 2500 sample points for each signal period, which is large enough 
to determine the statistical distribution.  For every different thickness, the system takes multiple 
measurements and many JB values are calculated using Eq. (3).  According to the values, it can be 
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Fig. 4.	 Skin depth for different thicknesses.
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determined which data sets should be used in the PCA processing and which sets are incorrect and 
should be filtered.

2.3	 PCA method

	 Figure 5 shows a signal that is processed by the proposed data fusion method.  The data fusion 
method is based on the PCA algorithm.  As a statistical tool, PCA is often used to derive the 
principal components from many data sets of the same kind.  The theory of the PCA method is 
based on the linear combination of the data shown in the following equation:

	 Y = ω1X1 + ··· + ωpXp = ΩTX,	 (4)

where X is the multivariate data, Xi is a random variable, and Y is a new random variable.  The 
vector Ω is selected by the target in Eq. (5),

	 max
{Ω:‖Ω‖=1}

Var(ΩTX) = max
{Ω:‖Ω‖=1}

ΩTVar(X)Ω,	 (5)

where Var(*) is the operator of variance.  Actually, the vector Ω is determined by the feature vector 
γ1 corresponding to the maximum feature value λ1 of the variance matrix.  For the multivariate 
matrix data X, λ1 and γ1 are the feature value and feature vector if λ1 > λ2 > ... > λp, so γ1TX is the 
first principal component, then γ2

TX is the second principal component, and so on.  In the PEC 
system, every detection signal has the same units and the mean value is zero.  This makes the data 
suitable for PCA.
	 We assume that Xi is the detected data, where i denotes the ith detection.  Then the multivariate 
matrix data can be expressed in Eq. (6):

	 X = [X1, X2, ..., Xp].	 (6)

Then, using X in the PCA program, a new p-dimensional vector set can be obtained, which is 
arranged according to the contribution value shown in Eq. (7):

Fig. 5.	 (Color online) Detection signal.
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	  Score = [IMF1, IMF2, ..., IMFp],	 (7)

where the intrinsic mode function IMFi is the ith principal component data according to PCA.  As 
Xi is almost the same as IMF1, the contribution to IMF1 is above 99% according to the results.  
Therefore, IMF1 can be used to represent the signals of X.  
	 However, IMF1 is the data processed by the PCA program, and its value is very different from 
the source data shown in Fig. 6.  This is because the PCA result IMF1 is a linear combination of 
the source data, and this processing changes the amplitude of the result.  However, frequency 
information will not change and this is the reason why the PCA method is suitable for the 
processing of the PEC signal to obtain information in the frequency domain.  Therefore, the main 
difference is the amplitude, and to make it match the source data, IMF1 is transformed into a 
normalization domain using the mean value of the extreme values of all the source data. 
	 Processed by this method, the new data maintains the main characteristics of the source data 
and reduce the influences of noise and measuring errors.  By fusing with the PCA method, suitable 
new data may be obtained that can be used in the measuring algorithm.

3.	 Experimental Setup

	 The experimental platform is shown in Fig. 7(a).  A Hall sensor is placed under the excitation 
core to detect the electromagnetic signal.  The detailed structure of the probe is shown in Fig. 7(b).
	 When detecting thickness, the scanner platform moves on the specimen being probed.  The 
magnetic field detected by the Hall sensor is the signal that is imported into the algorithm.  

Fig. 6.	 (Color online) IMF1. Fig. 7.	 (Color online) (a) Experimental device and 
(b) schematic diagram of the probe.
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	 The sample shape is shown in Fig. 8.  There are ten samples with the thicknesses of 100, 90, 80, 
70, 60, 50, 40, 30, 20, and 10% of the original thickness of 10 mm.

4.	 Results and Discussion

	 In this detection system, the excitation signal is a 200 Hz square wave and the filter has a cutoff 
frequency of about 2 kHz.  The difference value ∆B( f ) is valid when the frequency ranges from 
200 Hz to 2 kHz by FFT.  Figure 9 shows the relationship between frequency and ∆B.  
	 Figure 10 shows the relationship between the searching step number and the searching 
frequency.  When the frequency is in the correct range, the searching step number can be used in 
the algorithm to compute the thickness.
	 During the experiment, the results when the same thickness is detected more than once 
are different, as shown in Fig. 11.  The figure shows that when detecting a thickness of 2 mm 
five times, the mutation frequencies are 1272, 1526, 1512, 1378, and 1571 Hz, which result in 
differences in the thickness measurement.  Thus, the frequency has to be selected manually for the 
signal for an accurate result.

Fig. 8.	 Samples used in this study. Fig. 9.	 (Color online) Difference value ∆B for 
different frequencies.

Fig. 10.	 (Color online) Relationship between 
searching steps and frequency.

Fig. 11.	 (Color online) Results for detecting a 2 mm 
thickness using a traditional frequency method.
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	 To solve this problem, the data fusion method is imported into the experiment.  First, some 
good signals should be selected using the following steps:
  •	Compute the JB test feature values; if the JB values are the same, the signals are correct.  

Otherwise, the data cannot be used in the algorithm.
  •	 Select five good signals and import them into the PCA algorithm.
  •	 Detect the thickness many times and save the data in a computer.
	 Figure 12(a) shows the JB test results, which establish that this method could select the best 
data from the data set.  Figure 12(b) shows that the differential value maintains a value of zero 
when detecting the same thickness.  This feature is more stable than the amplitude of JB.  In an 
actual situation, when detecting one thickness, the signals will be identified as effective when the 
differential value is close to zero.  The selected data will be processed by the PCA method.  Figure 
13 shows a typical result of the data fusion.  Figure 13(a) illustrates that the fused data fits the 
source data very well, and Fig. 13(b) shows that the data is concentrated on the side where more 
source data is available.  The fused data can be used to represent the source data set.  For each 
thickness measurement, the fused data will be collected and imported into the processing program.

Fig. 12.	 (Color online) (a) Results processed by the JB test and (b) differential values of JB.

Fig. 13.	 (Color online) (a) Full and (b) detailed views of the fused data.
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	 The method used the five data points selected by the JB test method, and the measurement 
result is better than any of the five results, as shown in Fig. 14.  The error decreases from 0.09 mm, 
the best of the five results, to 0.08 mm.  Furthermore, another experiment was conducted for a 2 
mm thickness, as shown in Fig. 15.  The experiment was repeated eight times, and the result was 
better than that for five measurements; the error was 0.07 mm.  The experiments were also carried 
out for thicknesses of 3, 4, 5, and 6 mm, as shown in Figs. 16–23; the errors were 0.08, 0.06, 0.03, 0.02, 
0.05, 0.03, 0.02, and 0.03 mm, respectively.

Fig. 14.	 (Color online) Comparison of the two methods for detecting a 2 mm thickness five times.

Fig. 15.	 (Color online) Comparison of the two methods for detecting a 2 mm thickness eight times.

Fig. 16.	 (Color online) Comparison of the two methods for detecting a 3 mm thickness five times.
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Fig. 17.	 (Color online) Comparison of the two methods for detecting a 3 mm thickness eight times.

Fig. 18.	 (Color online) Comparison of the two methods for detecting a 4 mm thickness five times.

Fig. 19.	 (Color online) Comparison of the two methods for detecting a 4 mm thickness eight times.

	 The results show that the error when using data fusion is slightly smaller than the error when 
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fusion and an eight-data-set fusion, the result from fusing the eight data sets is better than that for 

 
1 2 3 4 5 6 7 8

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

3.25
measurement of a 3 mm thickness using different methods

number of measurements

th
ic

kn
es

s

before using the data fusion
using the fusion method

0.08mm

0.08mm

0.06mm

This is the result after fusing 8 data sets
used independently in the method shown by
the blue line.

1 2 3 4 5
3.9

3.95

4

4.05

4.1

4.15

number of measurements

th
ic

kn
es

s

measurement of a 4 mm thickness using different methods

before using the data fusion
using the fusion method

0.06mm

0.03mm

0.04mm

0.11mm

This is the result after fusing 5 data sets
used independently in the method shown by
the blue line.

 
1 2 3 4 5 6 7 8

3.85

3.9

3.95

4

4.05

4.1

4.15

4.2

4.25

number of measurements

th
ic

kn
es

s

measurement of a 4 mm thickness using different methods

before using the data fusion
using the fusion method

0.02mm
0.05mm 0.04mm

This is the result after fusing 8 data sets
used independently in the method 
shown by the blue line.



Sensors and Materials, Vol. 29, No. 9 (2017)	 1335

fusing five.  The proposed data fusion method can thus improve the measurement accuracy.
	 For thicknesses of 2, 4, 5, and 6 mm (as limited by the cutoff frequency; thicknesses over 6 mm 
cannot be detected correctly), the mutation frequencies are 1520, 419, 279, and 196 Hz, and the 
calculated thicknesses are 2.07, 4.02, 4.97, and 6.02 mm, respectively, as shown in Table 1.

Fig. 20.	 (Color online) Comparison of the two methods for detecting a 5 mm thickness five times.

Fig. 21.	 (Color online) Comparison of the two methods for detecting a 5 mm thickness eight times.

Fig. 22.	 (Color online) Comparison of the two methods for detecting a 6 mm thickness five times.
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	 Figure 24 shows the mutation frequency when the specimen is scanned.  It can be seen that the 
frequency is cut off at 2 kHz when the 1-mm-thick specimen is measured.  The frequency should 
be higher than 2 kHz when the skin depth is less than 1 mm for this standard detecting material.  
Additionally, the mutation frequency becomes very unstable when the thickness is more than 6 
mm, because the required frequency is lower than 200 Hz.  In this system, the mutation frequency 
can be used to measure thicknesses ranging from 2 to 6 mm, and in this interval, the measured 
values fit the theoretical values very well.

Fig. 23.	 (Color online) Comparison of the two methods for detecting a 6 mm thickness eight times.

Fig. 24.	 (Color online) Mutation frequency for different thicknesses.

Table 1
Results of the study.

Real thickness (mm) Mutation frequency (Hz) Step number Measured thickness (mm)
2 1520 7 2.07
3 699 112 3.12
4 419 202 4.02
5 279 275 4.97
6 196 402 6.02
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	 Figure 25 shows a comparison between the theoretical thickness and measured thickness 
values.  The largest error is 0.07 mm and the mean error of the five measured thicknesses is 0.04 
mm, which is less than 0.2 mm in the design shown in previous work.(18)

	 From the results presented here, it can be shown that the measurement results are better than 
those not processed by the data-driven method.  A JB test is used to select the good signals from 
the huge numbers of detected signals.  The entire process is completed by the machine itself.  After 
signal selection, the PCA method is then used.  This method reduces the error due to noise while 
retaining the information in the signal.  These two methods in combination make the measurement 
more accurate.

5.	 Conclusions

	 In this study, a novel data-driven method for processing a PEC signal was proposed.  This 
method fused the JB test method and the PCA method.  As different conditions give rise to the 
detection, the signals that are induced by the eddy current are very different.  To make full use 
of the signal, the PCA method is used.  This method produces a new signal that includes most of 
the information in the signals.  It can reduce the influence of noise and improve the accuracy of 
the measurement.  However, before using the PCA method, good signals must first be obtained.  
Thus, the JB test method was applied in this study.  The distribution regularities of the signals 
are different between poor signals and good signals, which makes the JB test value different.  In 
general, the good signals predominate.  Five signals were selected using this method and were 
imported into the PCA method.  By using these two data-driven methods, the system can select 
good signals and can reduce the influence of noise.  The important point is that the method can 
improve the accuracy of the thickness measurement to a considerable extent.  In future work, this 
method will be combined with the magneto-optical imaging (MOI) method for subsurface crack 
detection to visualize subsurface cracks in 3D images.
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Fig. 25.	 (Color online) Theoretical thickness vs measured thickness.
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