
1339Sensors and Materials, Vol. 29, No. 9 (2017) 1339–1351
MYU Tokyo

S & M 1427

*Corresponding author: e-mail: ruqiang@seu.edu.cn
http://dx.doi.org/10.18494/SAM.2017.1606

ISSN 0914-4935 © MYU K.K. 

Analyzing Wrist Pulse Signals Measured with 
Polyvinylidene Fluoride Film for Hypertension Identification

Ruqiang Yan,* Mengjie Zhou, Wenjun Sun, and Jingjing Meng

School of Instrument Science and Engineering, Southeast University
No. 2, Sipailou, Nanjing 210096, China

(Received March 21, 2017; accepted July 18, 2017)

Keywords:	 wrist pulse signal, wavelet packet transform, hidden Markov model, local discriminant bases

	 The human wrist pulse signal, which often exhibits nonstationarity, can reflect changes 
in mechanisms and pathophysiology in the blood and viscera.  In this paper, we present an 
integrated approach for identifying hypertension using the wavelet packet transform (WPT) and 
continuous hidden Markov models (HMM) to analyze wrist pulse signals.  The approach starts 
with decomposing the wrist pulse signals into a number of frequency sub-bands through the WPT.  
Then the local discriminant bases (LDB) algorithm is used to obtain the best representation of the 
wrist pulse signal in the optimal frequency sub-bands.  After that, energy features are extracted 
from those sub-bands and the optimal features associated with corresponding sub-bands are 
selected using the Fisher linear discriminant criterion.  The optimal features are subsequently used 
as input to a continuous HMM classifier for hypertension identification.  Experimental results 
indicate that the presented approach can differentiate the hypertensive wrist pulses from healthy 
wrist pulses effectively.  In addition, when compared with other classifiers, the results demonstrate 
that the continuous HMM classifier yields a better classification result.

1.	 Introduction

	 Hypertension, also known as high blood pressure, is a chronic disease with a rise in 
arterial blood pressure as the main symptom.  Most of the more than one million deaths due to 
cerebrovascular disease every year are caused by high blood pressure.  Since wrist pulse signals 
carry a great deal of physiological information regarding the health of a human body, research on 
wrist pulse signal analysis has been attracting more and more attention over the past few years.  
However, the wrist pulse signal is very complex; it is related to the vascular structure, blood 
characteristics, blood circulation system, and many other factors(1) that give rise to challenges in 
effective pulse signal analysis.
	 For computerized pulse signal diagnosis, pulse signals are firstly acquired by sensors,(2,3) and 
then processed to extract effective features for different classification tasks, such as diagnosis of 
disease, pulse waveform classification, and analysis of health conditions.  Since the pulse signal is 
weak, nonstationary, and predominantly in the low-frequency region, appropriate signal processing 
methods must be adopted for the signal analysis.  With the rapid development of signal processing 
technology, time-frequency analysis methods, such as short-time Fourier transform,(4) Hilbert–
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Huang transform (HHT),(5) empirical mode decomposition (EMD),(6) and wavelet transform,(7) 
have provided effective methods of extracting features from transient, time-varying signals.  For 
example, the pulse signal has previously been processed by HHT to determine arterial stiffness,  
which can be used as an indicator for differentiating subjects with and without diabetes.(8)  The 
ensemble EMD has been used to extract statistical features for pulse feature representation.(9)  
Previous works(10) confirmed that wavelet transform is superior to frequency-domain analysis for 
the feature extraction of the pulse waveform and can decompose signals into elementary time-
frequency blocks that are well localized in both time and frequency domains.(11,12)  Automated 
pulse recognition by using the wavelet transform to compute the main time-domain characteristic 
parameters of pulse signals could also be realized.(13,14)  Furthermore, wavelet packet transform 
(WPT),(15,16) as an extension of wavelet transform, has attracted increasing attention owing to its 
ability to provide more flexible time-frequency decomposition.(17)  It was used for frequency sub-
band energy or other statistical feature extractions for pulse feature representations.(18)  Although 
many studies have shown that wavelet transform is effective in pulse signal analysis, research has 
rarely focused on hypertensive features learned through the pulse signal, and features extracted by 
wavelet transform are chosen mostly by subjective judgment so they may not be representative. 
	 In this paper, an integrated approach, in which WPT is combined with continuous hidden 
Markov models (HMM), is designed for more effective pulse signal analysis with specific 
application to  the health status assessment of hypertensive patients.  WPT is used to decompose 
the pulse signals into various frequency sub-bands, with energy features being extracted from 
those sub-bands to characterize the pulse signal.  The local discriminant bases (LDB) algorithm 
and Fisher linear discriminant (FLD) measure are applied when choosing the optimal features 
to characterize pulse signals.  The HMM, a probability distribution model, is then used to 
diagnose hypertensive subjects.  The paper is organized as follows.  Section 2 gives the theoretical 
knowledge of WPT, LDB, FLD, and HMM.  In addition, some methods, such as K-means 
clustering and the genetic algorithm (GA), are also studied for HMM parameter initialization.  
Then, human wrist pulse signals measured from healthy and hypertensive subjects are analyzed 
and discussed in Sect. 3.  Finally, conclusions are drawn in Sect. 4. 

2.	 Theoretical Framework

2.1	 WPT-based feature extraction

	 WPT,(15,16) different from discrete wavelet transform, can decompose a signal into equally 
spaced frequency sub-bands.  Mathematically, a wavelet packet consists of a set of linearly 
combined wavelet functions that can be defined by the following recursive relationships:

	



ψ2k(t) =
√

2
∑

n

h(n)ψk(2t − n),

ψ2k+1(t) =
√

2
∑

n

g(n)ψk(2t − n),
	 (1)

where ψ0(t) = ϕ(t) is the scaling function and ψ1(t) = ψ(t) is the wavelet function.  The symbols h(n) 
and g(n) represent the low-pass and high-pass filter coefficients, respectively, determined by the 
scaling function and wavelet function.(19)  Furthermore, h(n) and g(n) are related to each other by 
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g(n) = (−1)nh(1−n).  Utilizing the low-pass and high-pass filter coefficients, a time-domain signal 
x(t) can be decomposed recursively as

	



x2k
j+1(t) =

∑
m

h(m − 2k)xk
j(t),

x2k+1
j+1 (t) =

∑
m

g(m − 2k)xk
j(t),

	 (2)

where the symbols j and k denote the decomposition level and frequency sub-band, respectively. 
Furthermore, xk

j(t) denotes the wavelet coefficients at the j-th level, k-th frequency sub-band, 
represented by node ( j, k), and x0

0(t) = x(t).  If each frequency sub-band at ( j, k) can be considered 
as a subspace Bj,k, which is spanned by a series of base vector {ωi, j,k}m=2N− j−1

m=0 , where m is equal 
to the dimension of Bj,k, 2N corresponds to the length of the signal, and then the signal xi can be 
expressed as

	

xi =
∑
j,k,m

[x j,k,m]i · ω j,k,m,	 (3)

where xj,k,m is equal to the m-th coefficient of Bj,k.
	 Unlike traditional signal processing methods, WPT can provide many important signal 
characteristics that are useful in classification.  Because of the great diversity of the existing 
wavelet packet bases, WPT has various decomposition styles for a signal.  Different wavelet 
packet bases possess different natures and reflect the different properties of a signal.  To solve this 
problem, the LDB algorithm, introduced in the following subsection, has been employed to select 
the optimal wavelet packet bases for signal decomposition based on the data gathered.

2.2	 LDB

	 The LDB algorithm is a pruning algorithm that identifies the subspaces that exhibit high 
discrimination attributes between signal classes, using a given dissimilarity measure.(20,21)  The 
LDB algorithm has been employed to select the optimal wavelet packet bases to address real-
world classification problems in audio,(22) radar,(23) and biomedical engineering,(24) etc.  The 
optimal choice of LDB subspaces for a given dataset is driven by the nature of the dataset and 
the dissimilarity measures used to distinguish between classes.  In this study, relative entropy is 
selected as the discriminant measure in searching for the optimal wavelet packet subspaces because 
of its prominent ability in characterizing the relationship between two signals.(25)  In the case of 
two categories, the relative entropy can be defined as

	
D(p(1), p(2)) =

n∑
i=1

p(1)
i log

p(1)
i

p(2)
i

,	 (4)

where pi
(1) and pi

(2) are two non-negative sequences satisfying the condition that the sum of 
every sequence is one.  We assume that log0 = –∞ and log(pi/0) = +∞ for pi > 0, 0(±∞) = 0.  The 
discriminant information D(p(1), p(2)) between the two sequences measures how different the 
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distributions of the two classes are.  For multiple class problems, the discriminant measure based 
on relative entropy is expressed as

	
D({pl}Ll=1) =

L−1∑
i=1

L∑
j=i+1

D(p(i), p( j)),	 (5)

where L is the number of classes.
	 Suppose that Aj,k represents the desired local discriminate basis restricted to the subspace of 
Bj,k, which is a set of basis vectors at node ( j, k).  Then, for a given training dataset consisting of L 

classes of signals 
{{

x(l)
i

}Nl

i=1

}L

l=1
, where Nl is the total number of training signals in class l, the steps 

for implementing the LDB algorithm are shown as follows.
Step 1:	Choose a time-frequency decomposition method, such as WPT used in this study, to 

decompose the signals contained in the training dataset.
Step 2:	Construct time-frequency energy maps Cl for l = 1, 2, ..., L on the wavelet packet 

coefficients using following equation.

	 Cl( j, k,m) =
Nl∑

i=1

(ωT
j,k,mx(l)

i )2
/ Nl∑

i=1

||x(l)
i ||

2	 (6)

Step 3:	Suppose that AJ,K = BJ,K.  Then, set Δj,k = D({Cl( j, k, ・)})L
l=1 as in Eq. (7), which contains 

the dissimilarity measure of the node ( j, k) for k = 0, 1, ..., 2J−1.

	 D({Cl( j, k)}Ll ) =
2n0− j−1∑

m=0

D(C1( j, k,m), ...,Cl( j, k,m))	 (7)

Step 4:	Search for the best subspace Aj,k, defined as follows.  For j = J−1, J−2, ..., 0 and k = 0, 1, 
..., 2J−1, if Δj,k ≥ Δj+1,2k + Δj+1,2k+1, that is, the dissimilarity measure of the parent node is 
greater than those of cumulative children nodes, then AJ,K = BJ,K.  Otherwise, Aj,k = Aj+1,2k ⊕ Aj+1,2k+1 and set Δj,k ≥ Δj+1,2k + Δj+1,2k+1.

Step 5:	Rank the complete basis functions found in step 3 from high to low according to their 
discrimination power.

	 Through LDB, a set of optimal wavelet packet subspaces have been selected.  In this study, 
the sum of the squares of the coefficients in each subspace (i.e., energy feature Ek

j =
∑

m

x2
j,k,m) is 

calculated to construct the feature vector as 

	 F = { f1, f2, ..., ft},	 (8)

where ft is the energy of each subspace and t is the number of subspaces chosen using LDB.
	 However, preliminary analysis has revealed that not all the feature components in the feature 
vector contribute directly to distinguishing the hypertensive subjects from the healthy subjects.  
This is because the human wrist pulse frequency range is between 0 and 20 Hz,(26) whereas about 
99% of the energy is distributed between 0 and 10 Hz.  Furthermore, an excessively high vector 
dimension involved in the input to a classifier may not necessarily improve the performance of 
classification and also increase computational time.  Therefore, the FLD measure is introduced in 
the following subsection to reduce the feature dimension.
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2.3	 FLD for feature selection

	 FLD, a distance measure, has been applied to components differentiation within a class pair.  Its 
basic idea is to project a high-dimensional model of the initial samples onto the best vector space 
for identification, so as to reduce the feature space dimension and extract significant information 
for classification.  Generally, the greater the distance between two feature components within a 
class pair, the easier it will be to separate them.  The FLD power can be expressed as

	

J fl(i, j) =
|µi, fl − µ j, fl |2

σ2
i, fl
+ σ2

j, fl

,	 (9)

where the symbols μi,f1  and μj,f1  and σ2
i,f1  and σ2

j,f1  are the mean values and the variances of the 
l-th feature fl, for class i and class j, respectively.  Features with a high discriminant power are 
more representative than those with low discriminant power, and will be selected as input for the 
subject’s health status assessment. 

2.4	 HMM classifier design

	 HMM is a statistical model that has been successfully applied to speech recognition since 
the 1980s.(27)  In recent years, it has been widely used, for example in text recognition and fault 
diagnosis.(28,29)  HMM has been developed from the Markov chain.  A Markov chain is a sequence 
of events, usually called states.  They are not directly observed but are associated with a probability 
function.  The generation of a random sequence is the result of a random walk in the chain and 
of an observation (also called an emission) at each visit to a state.  An HMM has the following 
elements.(30)

(1)	M represents the number of distinct observations for each state.  The observation symbols 
correspond to the physical output of the system being established.  The individual observation 
symbols are denoted as V={v1, v2, ..., vM}, and the state at time t is denoted as st.

(2)	N stands for the number of states in the model.  Although the states are hidden, there are often 
some physical signals attached to the states of the model.

(3)	A = {aij} 
stands for the state transition probability distribution, where aij = P[st+1 = j|st = i], 

	 1 ≤ i, j ≤ N.
(4)	B = {bjk} stands for the observation probability distribution in state j, where bjk = P[vk|st = j], 
	 1 ≤ j ≤ N, 1 ≤ k ≤ M.
(5)	π = {πi} represents the initial state distribution, where πi = P[s1 = i], 1 ≤ i ≤ N.
	 It can be seen that a complete HMM requires the specifications of N, M, A, B, and π.  Since 
there is a definite relation between these parameters (e.g., N and M can be determined if A and B 
are known),(31) a compact notation is often used in the literature to indicate the complete parameter 
set of the model for convenience.

	 λ = (π, A, B)	 (10)

	 A typical HMM is shown in Fig. 1, where h1 from one to hN symbolize the hidden states.  
Arrows indicate the relationship between variables, and the symbols above arrows indicate the 
state transfer probability.
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	 In general, HMM can be divided into two categories, the discrete HMM and the continuous 
HMM.  The latter is applied to analyzing the wrist pulse signals of healthy and hypertensive 
patients in this study.  Compared with the typical discrete HMM, the observation probability 
distribution B in the continuous HMM is assumed to be generated by the Gaussian probability 
density function.  In practical applications, one Gaussian probability density function cannot fit the 
probability distributions of the observation sequence, so the linear combination of several Gaussian 
probability density functions is used for generating the observation sequence.  The observation 
probability distribution is expressed as(32)

	 b j(O) =
M∑

l=1

C jl

∏D
d=1 exp[−(O − µ jl)2/2U2

jl]

(2π)D/2(
∏D

d=1 U2
jl)

1/2
,	 (11)

where D is the number of components in O and M is the number of Gaussian probability density 
functions.  Furthermore, Cjl is the l-th mixed coefficient belonging to the j-th state, μjl is the l-th 
average of the mixed Gaussian belonging to the j-th state, and Ujl is the l-th covariance of the 
mixed Gaussian belonging to the j-th state.  Therefore, a continuous HMM could be denoted as(33)

	 λ = {π, A, μjl, Ujl, Cjl}.	 (12)

	 When building an HMM, three basic problems must be solved: evaluation, decoding and 
training.  Firstly, when observation sequence O and HMM λ are given, the evaluation problem is 
how to calculate the probability of observation sequence O under model λ.  The forward–backward 
algorithm is used to solve this problem.(34)  Secondly, the decoding problem is how to determine 
a best state sequence that can generate the best observation sequence when one observation 
sequence and a model are given.  The Viterbi algorithm is used to solve this problem.(35)  Thirdly, 
the training problem is how to determine the optimum HMM to maximize the probability of an 
observation sequence when the observation sequence is given, and the Baum–Welch algorithm 
is introduced to deal with this problem.(36)  The Baum–Welch algorithm is a type of expectation 
maximization (EM) method based on the maximum likelihood criterion that could be defined as

	 Best = arg max
i∈k

P(O|λi),	 (13)

where O indicates the observation sequence and P(O|λi) indicates the probability of the output 
observations O under the HMM .  Then, the best parameter set λ of the model is determined.

1h 2h 3h Nh

11p

12p

13p

Np1

22p

23p

Np2

33p NNp

Fig. 1.	 A typical structure of the HMM.
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2.5	 Parameter initialization

	 To use a continuous HMM as a classifier, the HMM parameters should be estimated first.  
Since it is generally recognized that the choice of the initial values of π and A has little effect on 
the results, the influence of the parameters μjl, Ujl, and Cjl on the classification performance is 
investigated in this paper.  In addition to random initialization, two other methods are studied to 
initialize the continuous HMM parameters, as briefly introduced below.

2.5.1	 K-means initialization

	 K-means clustering is a method of cluster analysis aimed at distributing n observations into 
k clusters in which each observation belongs to the cluster with the nearest mean.(37)  K-means 
clustering often uses Euclidean distance as the evaluation index of comparability, and is one of the 
popular cluster algorithms today.  For HMM parameter initialization in this study, k feature vectors 
are randomly selected as initial cluster center points.  Then, depending on the similarity criterion 
(Euclidean distance), each sample belongs to the cluster with the shortest distance to the clustering 
center, and the new central point of each cluster is calculated.  If the mean square covariance of two 
iteration results tends to be convergent, the calculation is over; otherwise, this process is repeated 
to adjust the cluster center.  Finally, the mean value and standard deviation of each cluster are used  
to estimate the Gaussian probability density function for initialization.

2.5.2	 GA initialization

	 GA is an optimization algorithm that simulates Darwin’s genetic choice and biological natural 
selection process.(38,39)  It uses a coding scheme to realize parameter optimization through iterative 
genetic operations, including selection, crossover, and mutation, where a fitness function is usually 
defined to find the optimal solution.  For HMM parameter initialization in this study, floating point 
number coding is used as the coding scheme due to the high precision requirement when the mixed 
Gaussian probability density function is employed for generating the observation sequence.  The 
matrices of μjl, Ujl, and Cjl are then built and connected together as individual populations.  The 
fitness function is defined as(40)

	 f (λ) =
K∑

k=1

ln(P(O(k)|λ)),	 (14)

where O(k) indicates the k-th observation sequence of the training model and P(O(k)|λ) is the 
likelihood probability.  After the result of the fitness function is obtained, individuals and the 
population are varied by genetic operations.  This study employs a one-point crossover operator.  
It also takes a real value variation as a mutation operator and adopts a roulette wheel selection 
method.  Supposed there are n genes and M sequences Ok (k = 1, 2, ..., M) of length T.  In 
accordance with the roulette wheel selection method, one gene from every sequence is selected and 
the probability for gene g being selected is shown as(32)

	 Pc =
f (gc,Ok)∑

k

f (gk,Ok)
.	 (15)
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After that the fitness function is recalculated.  If the fitness matches the expectation error (<10−3) 
or reaches the maximum number of iterations, the results are considered to have been obtained.  
Otherwise, the above process is repeated.

2.6	 Wrist pulse signal diagnosis system

	 With the information described above, an integrated algorithm for wrist pulse signal diagnosis 
can be designed.  Suppose there are k kinds of targets, and each target is represented by an 
HMM and recorded as λ1, λ2, ..., λk.  The flow chart of this wrist pulse signal diagnosis system 
is shown in Fig. 2.  Firstly, k different categories of wrist pulse signals are collected and they are 
each decomposed through WPT.  Secondly, the LDB algorithm is applied to the selection of the 
optimal bases and FLD is used to select the best energy characteristic vectors.  Thirdly, each 
class of signals is divided into two parts.  One is used to train the model, and the other is used to 
test the model.  Fourthly, the energy characteristic vectors from the training dataset are used to 

Fig. 2.	 (Color online) Flow chart of the pulse signal diagnosis system.
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obtain the k classes of continuous HMMs using the Baum–Welch algorithm.  Finally, the energy 
characteristic vectors from the testing dataset are put into the trained models, and the likelihood 
ratio is calculated using the Viterbi algorithm.  A wrist pulse signal series in the testing will belong 
to the continuous HMM that corresponds to the largest likelihood ratio.

3.	 Experimental Evaluation

3.1	 Wrist signal measurement

	 Experimental study was conducted at Nanjing ZhongDa Hospital (affiliated to Southeast 
University) with informed concent that the authors have obtained.  A pulse sensor, which converts 
the pulse to an electric signal through a polyvinylidene fluoride (PVDF) film, was placed on 
the surface of the wrist of the subjects.  A total of 94 volunteers, including 38 healthy and 56 
hypertensive subjects with an average age of 42 years old, were involved in the experiment.  The 
ratio of males to females was close to 1.  Typical healthy and hypertensive pulse signals are 
represented in Fig. 3.  It can be seen that the descent stage of the hypertensive pulse wave has less 
fluctuation than that of a healthy pulse wave because the blood pressure of hypertensive patients 
increases sustainability.

3.2	 Energy feature extraction

	 In this study, for hypertensive and healthy subjects, each pulse signal is decomposed into 
four levels using the WPT algorithm with the Db4 wavelet, whose shape is more similar than 
those of other wavelets to the shape of the pulse wave.  Since energy can be used to describe the 
characteristics of a given signal, the corresponding energy values at all frequency sub-bands are 
calculated and chosen as the feature to characterize the wrist pulse signal.  As an example, Fig. 4 
illustrates the energy distribution of wrist pulse signals from both the healthy and hypertensive 
subjects at the fourth decomposition level.  It can be seen that the energy of the healthy and 
hypertensive signals is mainly concentrated in the low frequency sub-band, which also matches 
the characteristics of the low frequency of the pulse signal.  The energy amplitude of the healthy 
signal is significantly higher than that of the hypertensive signal, and thus the energy features of 
the package can be used to classify health and hypertension.

Fig. 3.	 (Color online) Wrist pulse signals measured using PVDF film.  (a) Typical healthy pulse signal.  (b) 
Hypertensive pulse signal.
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	 LDB and FLD are then used to select the appropriate optimal features from all the four 
decomposition levels.  Figure 5 shows the selected wavelet packet nodes that contain the best 
discriminant information for classifying health conditions after applying the LDB algorithm.  It 
can be seen from Fig. 5 that the following subspaces are chosen as optimal orthogonal subspaces: {B4,0; 
B4,1; B4,6; B4,7; B4,12; B4,13; B3,1; B3,2; B3,7; B2,2}.
	 The corresponding FLD powers of all chosen frequency sub-bands are obtained and listed in 
Table 1.  The first four large discriminant powers at frequency sub-bands B3,3, B4,6, B4,13, and B3,2 
are chosen.  Therefore, the energy features E3

3, E6
4, E13

4, and E2
3 are selected as the optimal features 

for continuous HMM classification.

3.3	 HMM classification

	 In accordance with the human wrist pulse detection process, a continuous HMM structure (shown 
in Fig. 6.) that has three hidden states is chosen to simulate the changing processes of the wrist 
pulse.  The states simulate the main, tide, and repulse waves of the wrist pulse. 
	 The experiments were divided into three groups on the basis of different parameter initialization 
methods: random generation, K-means, and GA.  The initial state distribution is set as π = [1, 0, 0], 
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Fig. 4.	 (Color online) Energy features at the fourth decomposition level of the WPT.  (a) Energy distribution of a 
healthy pulse signal.  (b) Energy distribution of a hypertensive pulse signal.
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Fig. 5.	 Selected wavelet packet nodes.
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and the initial state transition probability distribution matrix A is expressed as

	 A =


0.5 0.5 0
0 0.5 0
0 0 1

 .	 (16)

	 Tables 2 and 3 are the initial parameters generated by K-means and GA, respectively.  Features 
from a group of 20 healthy subjects and 20 hypertensive subjects are used as training data.  The 
remaining 18 healthy subjects and 36 hypertensive subjects are used as test data and are input to 
the trained continuous HMMs.
	 The classification results of these three methods are listed in Table 4.  It can be seen that 
continuous HMM, as a classifier, is effective in differentiating hypertensive subjects from healthy 
subjects.  K-means and the GA algorithm, which are used to initialize the continuous HMM 
parameters, can improve the accuracy of the continuous HMM for classification, and GA is more 
effective than K-means because of its strong local search ability.

3.4	 Comparison with other classifiers

	 From the discussion in Sect. 3.3, it can be seen that the continuous HMM classifier can 
effectively differentiate the hypertensive wrist pulses from healthy wrist pulses.  To compare 
the classification accuracy of different classifiers, the artificial neural network (ANN) classifier, 
support vector machine (SVM), and k-nearest neighbor (KNN) classifier are to class the wrist 
pulse signals instead of the HMM classifier.(41–43)  Classification results are shown in Table 5.
	 It can be seen that the classification accuracy rates of these three classifiers are less than 80%.  
The comparison of results shows that the continuous HMM classifier can effectively improve the 
classification results.

Fig. 6.	 Continuous HMM structure of the wrist pulse signal.

Table 1
Discriminant power of sub-bands.
Sub-band B4,0 B4,1 B4,6 B4,7 B4,12
Discriminant power 0.0592 0.0748 0.2186 0.1009 0.0385
Sub-band B4,13 B3,2 B3,3 B3,7 B2,2
Discriminant power 0.1449 0.1033 0.3283 0.0683 0.0012
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4.	 Conclusions

	 An integrated signal processing approach for wrist pulse signal analysis was investigated.  
This approach utilizes the capability of the WPT in analyzing non-stationary signals to construct 
the sub-band energy features of pulse signals, and then uses them as input to a continuous HMM 
classifier.  Three methods were used to initialize the HMM parameters and the classification 
results were compared.  The experimental results indicated that the integrated approach is effective 

Table 2
Initial parameters generated by K-means.
HMM parameters Ujl μjl Cjl

Hypertensive


300.4
19.40
375.6




173.9
27.89
4660




0.2320
0.7765
0.0038



Healthy


22.90
43.60
977.1




18.98
0.469
146.0




0.4376
0.1458
0.4266



Table 3
Initial parameters generated by GA.
HMM parameters Ujl μjl Cjl

Hypertensive


36.30
39.01
9485




13.20

0.1695
194.7




0.1051
0.0923
0.8949



Healthy


4.641
39.41
7787




2.452

0.7319
146.38




0.3190
0.1776
0.5034



Table 4
Classification results of three HMM parameter initialization methods.
Initialization 
method

Health 
condition

Number of 
subjects

Classification 
results

Classification 
accuracy (%)

Total 
accuracy (%)

Random values Healthy 18 16 88.9 83.3Hypertensive 36 29 80.6

K-means Healthy 18 17 94.4 87.0Hypertensive 36 30 83.3

GA Healthy 18 16 88.9 90.7Hypertensive 36 33 91.7

Table 5 
Classification results of three other classifiers.
Classifier Total accuracy (%)
SVM 70.4
KNN 75.9
ANN 77.8
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in differentiating hypertensive subjects from healthy subjects, and provides a viable tool for pulse 
signal analysis.  Furthermore, the parameter initialization approach can effectively improve the 
classification performance.
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