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	 It is a difficult task to teleoperate a robot in a partially known or unstructured environment 
without any assistance.  In this paper, a haptic assisted teleoperation system is discussed that 
provides virtual fixtures for motion guidance and haptic feedbacks for dynamic interaction.  First, 
a novel virtual fixture generation method based on a point-set implicit surface was proposed in 
a point cloud augmented virtual environment for human operational guidance.  A robot-centered 
potential force field model was applied to generate guidance virtual fixtures.  The resultant forces 
generated from both forbidden region and guidance virtual fixtures were fed back in real time to 
the human operator through a haptic device.  Second, a real-time dynamic modelling method was 
proposed to reconstruct contacts in the teleoperation system.  For the reconstruction of dynamic 
properties, an adaptive forgetting factor recursive least-squares method was applied for real-time 
parameter estimation.  With haptic assistance from the motion guidance force and the dynamic 
force feedback, human operators could efficiently achieve targets and complete interactive tasks.  
The experimental results show that the proposed methods are effective for robot teleoperation. 

1.	 Introduction

	 Robot teleoperation technology based on virtual environment (VE) is one of the most persuasive 
solutions currently employed to address the time delay problem in space teleoperation.(1–3)  The 
entire VE-based teleoperation process is composed primarily of five modules: the human operator, 
the master system, the communication line, the slave robot system, and the real environment, as 
shown in Fig. 1.  The slave robot and the real environment are modeled in the VE of the master 
system.  The human operator controls the virtual robot through human–robot interaction (HRI) 
devices, such as the PHANToM Desktop, the Novint Falcon, and data gloves.  The command 
for controlling the virtual robot is synchronously sent to the slave robot system through the 
communication line to control the slave robot.
	 As humans are in the control loop, many uncertain aspects, such as disparity, precision in 
hand manipulations, and hand trembling, may affect the performance of systems.  Most of these 
issues can be resolved through the application of a haptic virtual fixture in the VE.  The virtual 
fixture (VF) theory was first proposed by Rosenberg as an overlay of abstract sensory information 
on a workspace to improve human performance in direct and remotely manipulated tasks.(4)  He 
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implemented VF using definite surfaces to assist in peg-in-hole tasks and thereby increased 
operator performance up to 70%.  Haptic VFs are mainly categorized into two types, namely, 
forbidden region virtual fixtures (FRVFs) and guidance virtual fixtures (GVFs).  These are system-
generated forces that are fed back to the operators as motion regulation during robot manipulation.  
As the names imply, the FRVFs are used to restrict robot access to “forbidden” regions, while 
the GVFs assist operators or robots to move along desired paths or towards targets.  The VFs are 
widely applied in robotic surgery, autonomous robotic manipulators, and robot teleoperation.(5)  
The potential benefits of VFs are that it is safer and faster to operate robots with them.  In addition, 
VFs can reduce mental workload, time on task, and errors. 
	 VFs have been widely studied.  Abbott focused mainly on control stability in classical 
teleoperation control architectures with VFs.(6)  Park and Howard(7) proposed a methodology 
that employs vision-based GVF techniques for improving human performance in a teleoperated 
manipulation system.  Kapoor and Taylor(8) introduced the notion of “soft” virtual fixture 
mechanisms for robotic surgical assistance.  Most early reported studies concentrated on system 
performance using VFs(9,10) or VF applications based on a predefined geometric surface or path.(11,12)  
More VF construction methods have been described in a recent survey.(5)  Although these studies 
successfully implemented VFs, using VFs in a partially known and unstructured environment is 
still challenging. 
	 Recently, VF construction based on computer vision has been widely studied for adaptive 
applications, particularly for use in dynamic and unstructured environments.  Yamamoto et al.(13) 
applied FRVFs to tissues based on shape recognition.  However, this approach was offline and not 
adaptive.  A construction method for real-time FRVFs during teleoperation from streaming point 
clouds obtained using an RGB-D camera has been proposed by Kosari et al. for robot teleoperation.(14)  
However, they focused primarily on FRVFs for three architectures used in teleoperation. 
	 Furthermore, when human operators control the robot into contact with a real target, the 
dynamic properties of the environment are often hard to feed back to the VE.  Estimating the 
dynamic properties of the contact between the robot and the object is essential for haptic rendering 
in the VE.  Therefore, if the dynamic model can perfectly describe the real environment, human 
operators can perceive the virtual contact force directly in the VE during manipulation.  However, 
implementing accurate dynamic modelling remains a challenge.  Many studies have been done 
on the handling of these problems in robotic applications.  Ni et al.(15) proposed a sliding-average 
least-squares algorithm-based environment identification method for contact interaction with 

Fig. 1.	 (Color online) The typical structure of a VE-based teleoperation system.
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static objects.  Haddadi and Hashtrudi-Zaad(16) did a survey of online environment dynamic 
identification.  They detailed, summarized, and analyzed contact force modelling methods. 
Yamamoto et al.(17) reviewed three main online environmental parameter identification methods 
for bilateral teleoperation in which the environment was assumed to follow a Kelvin–Voigt model.  
However, most of these methods are aimed at a 2D virtual environment-based teleoperation 
system.
	 To overcome the disadvantages of the previous studies, a haptic-assisted teleoperation system 
with virtual fixtures and dynamic modelling was proposed in this study which extends the system 
in Ref. 18.  First, a new local implicit surface-based virtual fixture for the point cloud virtual 
environment (PCVE) was proposed with both FRVFs and GVFs to be applied for operators during 
robot manipulation in an unstructured environment.  With the proposed method, the operator 
could control the virtual robot without any dangerous collisions and move the robot to the target 
efficiently.  Second, 3D virtual contact force feedback could be calculated based on a novel 
parameter estimation method.  The method predicts the contact procedure relevant to the dynamic 
properties of the real interaction.  The main contributions of this work are:
(1)	to implement a methodology for building a PCVE with both FRVFs and GVFs in the PCVE;
(2)	to propose a novel GVF construction method based on a robot-centered potential force field 

model in the PCVE; and
(3)	to realize a new parameter estimation method that considers the prediction error in dynamic 

modelling.
	 The rest of the paper is organized as follows: Section 2 describes the system overview. Section 
3 introduces the detailed method of virtual fixture construction. Virtual contact construction based 
on dynamic modelling is described in Sect. 4. Section 5 presents the experiments and results. 
Finally, conclusions are drawn in Sect. 6.

2.	 System Overview

	 The traditional bilateral teleoperation scheme was adopted in the proposed system.  The 
operator controls the virtual robot using a six degree-of-freedom (DoF) positional sensing and 
three DoF force haptic device.  In this system, the PHANToM Desktop device was adopted.  As 
the virtual robot moves in the transmitted point cloud, when it is far from the target, the VFs are 
established in real time and fed back to the operator for motional guidance.  Simultaneously, the 
regulated commands are forwarded to the slave robot for real-time control.  When the operator 
reaches the target, the dynamic modelling on the slave side is implemented to generate haptic 
feedback.  This discussion takes the motion of the robot end effector (REE) into account in 
studying the method. 
	 Figure 2 shows the entire framework of the PCVE-based teleoperation.  Two main procedures 
are implemented in the entire framework: virtual fixture generation and virtual contact rendering.  
Virtual fixtures are used to guide operators to the position of the target object while the virtual 
contact rendering based on dynamic modelling allows for the realization of real physical properties 
during the interaction between the REE and the target object.  The two procedures are segmented 
based on whether the REE touches the target object. 
	 There are two key modules for VF construction in the PCVE.  First, there is a module for PCVE 
reconstruction.  The point cloud is transmitted from the slave side through the communication 
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line.  After processing the marker-based coordinate registration module, the PCVE representing 
the slave environment is constructed.  Second, there is a module for implicit surface-based VF 
realization.  Based on mapping the virtual robot motion kinematically, the real-time estimated 
relationship between the position of the REE and the point cloud, and the REE velocity, the VFs 
are constructed for force feedback to the operators.  Here, the FRVFs are set on all the point clouds 
in the PCVE for collision avoidance while the GVFs are applied using the robot-centered potential 
force field (PFF) model, which guides the operator to the target position efficiently and safely.
	 When the robot reaches the target, the dynamic modelling module begins to work.  First, the 
contact force data and motion states are acquired by a 3D force sensor and the robot encoder 
respectively.  In this system, the linear mass–damper–spring (MDS) contact model was adopted 
for simulating the contact properties.  The parameters of the contact model are estimated using 
the proposed adaptive forgetting factor recursive least squares (affRLS) method.  In the VE, the 
interaction force is rendered based on the estimated parameters from the slave side.  The human 
operator feels the contact force feedback in real time through the haptic device.

3.	 Virtual Fixture Construction Method

3.1	 PCVE reconstruction with marker-based coordinate registration 

	 With the development of 3D scanners, it is much easier to capture geometric information 
about the physical environment in real time.  Microsoft Kinect was adopted to capture the slave 
environment, as it could acquire both the red green blue (RGB) color information and the 3D 
geometric information.  Thus, there are several coordinates in the proposed system, including the 

Fig. 2.	 (Color online) The entire framework of haptic assistance for teleoperation.
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robot base coordinate (RbC), robot end effector coordinate (ReeC), Kinect coordinate (KC), marker 
coordinate (MC), and the PHANToM end effector coordinate (PeeC).  Coordinate uniformity is the 
foundation of an accurate interaction between the robot and the environment.  Choosing a robust 
reference for coordinate registration is crucial.  Here, the MC was used as the intermediate for the 
coordinate registration of the PCVE. 
	 In the PCVE, the robot arm coordinate system is assumed as the world coordinate system.  
Assuming a point in the point cloud is captured using Kinect and described as the vector (x, y, z)T 
in the KC, the transformation from the MC to RbC is (R1, T1) which is measured by moving the 
REE to the marker center, while the transformation from the KC to MC is (R2, T2).  Therefore, all 
the points in the point cloud are transformed to the real-world coordinate system using Eq. (1).  A 
3D frame of the point cloud with the robot model registration is shown in Fig. 3.

	 (xw, yw, zw)T = R · (x, y, z)T + T = R1
(
R2(x, y, z)T + T2

)
+ T1	 (1)

3.2	 Implicit surface based on point set

	 Implicit surfaces generated from point clouds have been studied for several years.  However, 
only a few methods are suitable for real time haptic rendering.  In Ref. 19, Leeper et al. proposed 
an algorithm for rendering local point cloud data as an implicit surface, which was defined using 
the weighted average of nearby points.  As this algorithm has been demonstrated to be resistant to 
sensor noise, suitable for arbitrary point clouds, highly efficient, and robust, our work has adapted 
this method for isosurface definition for VF generation in the PCVE.

3.2.1	 Point weighting based on the Wendland function W(p)

	 This weight function given in Eqs. (2) and (3) provides a continuous and smooth surface and 
forbids undesired oscillation.(20) 

	 r (p) = ‖REE − p‖	 (2)

	 W (p) =


(
1 − r(p)
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r (p) ≤ RI

0 r (p) > RI
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Fig. 3.	 (Color online) PCVE construction.
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	 The term r(p) represents the distance between the REE and the sensed points, and RI is the 
preset influence radius of the local area.

3.3.2	 Point-set implicit surface definition

	 As suggested in Ref. 20, limited by RI, the points surrounding the REE position can be 
obtained.  For the REE location, the weighted average center of the point series is defined as ep, 
while the weighted average normal is defined as en in Eqs. (4) and (5), respectively.

	 ep = (x, y, z)T =



∑
i

W (pi) pi (x, y, z)T

∑
i

W(pi)

	 (4)

	 en = (x, y, z)T =



∑
i

Wi (pi)
(
REE (x, y, z)T − pi (x, y, z)T

)
∥∥∥∥∥∥
∑
i

Wi (pi)
(
REE (x, y, z)T − pi (x, y, z)T

)∥∥∥∥∥∥


	 (5)

	 Therefore, the relative implicit surface is described as

	 f (p) = enT (p − ep)
{
px in Xlim, py in Ylim, pz in Zlim

}
.	 (6)

	 iso (p) = f (p).	 (7)

	 In Eq. (6), f(p) = 0 is the implicit surface of a local region.  Equation (7) is introduced as the 
isosurface function of the local implicit surface which describes a distance far from the local 
implicit surface. 

3.3	 FRVF

	 In the proposed system, the FRVF is defined on the upper boundary of the local point cloud 
by setting an isosurface that extends the implicit surface method in the whole point cloud 
environment.  Thus, the local manipulation region is protected from dangerous collisions.  As 
shown in Fig. 4, the blue points are the local points in the point cloud when the virtual robot moves, 
while the blue plane represents the simulated local implicit surface.  Meanwhile, the purple ball 
represents the REE position, and the green plane shows the relative isosurface R_FRVF distant 
from the local surface.
	 In the virtual environment, the haptic interface point (HIP) represents the motion of the haptic 
device end effector.  To achieve a collision-free system, the proxy represents the position of the 
virtual robot REE.  Here, Rf is set as the local surface detection area limitation.  When no points 
appear in the Rf region, the proxy tracks the HIP position, and the virtual robot moves in a free 
space.  Once there are some points in the Rf area, the implicit surface is simulated accordingly.  
Meanwhile, FRVFs work to avoid collisions.  The feedback force is linear with respect to the 
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distance between the proxy and the HIP and is calculated using

	 FFRVF = K
(
Pproxy − PHIP

)
+ B · VHIP,	 (8)

where K is the scaling factor.  To simulate a more realistic force feedback, the damper-spring force 
model is adopted. In this condition, the position of the proxy is estimated in real time using

	 PPproxy = ep + en · R FRVF.	 (9)

3.4	 GVF

	 The PFF idea was originally proposed by Khatib,(21) mainly for real-time obstacle avoidance.  
Later, it was adopted for constructing haptic constraints in teleoperations.(22,23)  The key idea is to 
define a field with force in the task space.  The position to be reached is an attractive pole for the 
REE, and the obstacles are repulsive surfaces.  With the PFF defined in the workspace, the user 
can be assisted by the composition force and guided by the tendency to move during manipulation.  
Although it is attractive for applications requiring obstacle avoidance and facilitating approaches 
to targets, the PFF is limited by the difficulty of handling unstructured shaped and unknown 
objects.  In previous research, most PFFs were based on known simple geometrics (cone, curve, 
cylinder), which are not adaptive for an unstructured environment.  Although some researchers 
tried to optimize the performance of PFF modelling with arbitrarily shaped objects,(24) that was 
done offline and was not adaptive for real-time systems.  Currently, estimating motion is still 
challenging for PFF modelling in an unstructured environment in real time.  As the key challenge 
is global PFF estimation which is not adaptive for unstructured environments, a robot-centered PFF 
modelling method, which involves real-time local modelling, was proposed for GVF construction 
in this study. 

3.4.1	 Attractive force field

	 An attractive force field is realized using the traditional method by considering the distance 
between the robot end effector and the center of the target.  The center of the target is calculated 
by averaging all the positions of the target points.  The attractive force field is defined in Eq. (10), 
where λ is the gain constant.  The attractive force is positive relative to the distance.

Fig. 4.	 (Color online) FRVF.
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	 Uatt =
1
2
λ(PTC − pREE)2 	 (10)

Meanwhile, the attractive force value is calculated using Eq. (11).

	 U
′
att = λ (PTC − pREE)	 (11)

The attractive force direction is towards the target center, which is estimated based on the target 
points.

3.4.2	 Repulsive force field

	 The traditional repulsive force field modelling method is based mainly on the envelopes 
representing 2D objects.  However, for 3D objects, the entire surfaces of the obstacles and the 
envelopes based on the fitting surfaces are quite challenging for a real-time system.  In this study, 
a method was proposed based on local PFF modelling.  This method is not dependent on all the 3D 
distance maps but on the robot-centered area PFF.  The proposed repulsive force field is centered 
at the robot instead of the obstacles.  The force field value still depends on the isosurface value 
effective in the REE position.  An original idea based on the isosurface of the nearby implicit 
surface was proposed in this study.  The main idea is to evaluate locally the obstacles’ influence in 
the robot-centered area.  The local isosurface estimation method described was applied to obtain 
the isosurface towards the obstacles, although it was a risk to consider only the nearby regions that 
might intersect with the isosurfaces of other regions.  To fully consider the nearby geometry, three 
regions of the robot-centered force field were set as shown in Fig. 5.  When the virtual robot moved 
in the PCVE, the existence of obstacle points in the robot-centered region was evaluated in real 
time in these three regions.  In addition, the time consumed and the haptic rendering frequency 
were critical in this section as more data searching was needed.  Therefore, a modified sigmoid 
model was proposed and used for obstacle local repulsive force field generation.  This method has 
been proven as an accurate analytic description of objects in three dimensions and requires very 
modest computational runtime.(24)  The detailed procedure for the repulsive force field modelling 
method is presented next.
	 First, the nearby obstacle points are searched in the three regions, as shown in Fig. 5.  The 
implicit surface of each region is estimated using the point set implicit surface method. 

Fig. 5.	 (Color online) Definition of robot-centered areas.
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	 Second, the isosurface value at the REE position of each surface is analyzed using the sigmoid 
model as shown in Eq. (12).

	 Urep (q) =
1

1 + eγ∗|iso(q)| ,	 (12)

where iso(q) is the estimated isosurface at the REE position q.  Using this equation, the repulsive 
force field can be calculated.  In some circumstances, such as moving a robot away from obstacles 
and remaining static, applying a repulsive force on the operator leads to a massive workload for the 
operators.  It is essential to consider the velocity before applying force feedback.  Therefore, the 
direction of the velocity relative to the obstacles is considered in the resultant force calculation. 
	 Third, by combining the velocity factors with the sigmoid model, the repulsive force field value 
is generated and the resultant repulsive force magnitude and direction are calculated assuming the 
gradient of the Urep at the REE position is dt, and the velocity of REE is v.
	 If dt●v ≥ 0, the REE remains static or moves away from the current obstacle surface, and the 
repulsive force is zero.  When dt●v < 0, the motion of REE is towards the local obstacle, and the 
repulsive force is in effect.
	 Finally, the resultant force from the potential force field is the sum of the repulsive force and 
the attractive force.  However, as the resultant force is fed back to the haptic device, it may exceed 
the hardware output; a magnitude adjustment parameter AF is adopted in practical applications. 
Therefore, the guidance constraint is defined by Eq. (13). 

	 FGVF = AF
(
U
′
rep + U

′
att

)
	 (13)

4.	 Virtual Contact Based on Dynamic Modelling

	 During the contact between two objects, the bodies suffer elastic and/or plastic deformation 
with loss of energy in various forms.  As the MDS model allows more modelling freedoms with 
linearity properties, it is widely used in contact simulations.  Thus, in the proposed system, we 
adopted the MDS model for contact dynamic modelling.
	 In the teleoperation system, real-time parameter estimation is essential because any parameter 
error can lead to bad modelling.  The ability to track abrupt changes during operation is vital.  In 
previous teleoperation systems, the block-wise sliding least squares (BSLS) method(3) has been 
used.  Even though the tracking performance is relatively good, the computational complexity is on 
the order of O(N3) which grows as block size increases.  The exponentially weighted recursive least 
squares (EWRLS) estimation method has been proven to have lower computational complexity 
on the order of O(N2).  However, it cannot adaptively change the weight, which better tracks the 
abrupt changes of values.  In this study, we propose a novel affRLS method for online parameter 
estimation which adaptively adjusts the forgetting factor for balancing previous data contributions. 
	 The measured force described by the MDS model is shown by Eq. (14):

	 fcontact = mẍ + bẋ + kx + ε,	 (14)

where ε is the measured noise.  Let θ =
[
m b k

]T
, φ =

[
ẍ ẋ x

]T
, Y (t) = fcontact, then, 

Y (t) = θTφ + ε. The basic EWRLS equations are as follows.
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	 θ̂ (n) = θ̂ (n − 1) + k (n)
(
Y (n) − θ̂T (n − 1) φ (n)

)
	 (15)

	 k(n) =
P(n − 1)φ(n)

λ + φT(n)P(n − 1)φ(n)
	 (16)

	 P(n) = λ−1
(
P(n − 1) − k(n)φT(n)P(n − 1)

)
	 (17)

Here, n is the time index in the discrete domain, P is the covariance matrix, and λ (0 < λ ≤ 1) is 
the forgetting factor.  The larger the λ, the less important the influence of old data.  Meanwhile, the 
estimated parameters can be calculated from θ̂ (n) =

[
m̂ (n) b̂ (n) k̂ (n)

]T
.  The EWRLS method 

has been proven to be effective and accurate for parameter estimation and robust against data noise.  
However, there are still two problems in using the EWRLS method:(16) (1) it is not adaptive for 
tracking changes after convergence, and (2) the initial values still affect the convergence rate.
	 The affRLS method was proposed to counter the problems with the EWRLS method by 
adaptively modifying the value of the forgetting factors.  A change detect theory was applied to 
detect parameter changes.  The prediction error of a preset length window in the neighbor region is 
calculated using Eq. (18):

	 e (k) = Yk
k−L+1 − Ŷk

k−L+1 = Yk
k−L+1 − φ

k
k−L+1θ̂L (k),	 (18)

where L is the neighbor window length, Yk
k−L+1 =

[
Y (k − L + 1) Y (k − L) . . . Y (k)

]
.  The 

forgetting factor must change if the average value E = eTe/L exceeds a set threshold β.  In this 
system, β = (4–6) × Var{e(k)}.  The detailed affRLS algorithm is presented as follows. 

Algorithm Adaptive Forgetting Factor RLS (LIST Y, LIST X, λ)
1: θc = EWRLS (Y, X, λ)
2:	 for k−L+1 < i < k
3:		  e(i) = Y(i) − θc'φ(i)
4:	 end for 
5:	 E = e'e/L
6:	 if E > β
7:		  λ = 0.9
8:	 else if λ < 0.98
9:			   λ = λ + 0.08/L;
10:		 else λ = 0.98 
11:		 end if
12: end if

5.	 Experiments

5.1	 System setup

	 Experiments were carried out based on a real environment which is composed of the 7 DoF 
SChunk robot arm, SChunk force sensor, the geomagic touch haptic device, the Kinect sensor, 
and the worktable.  The software on the slave side was primarily for robot control, Kinect data 
acquisition, and data transmission.  On the master side, the PCVE construction was based on 



Sensors and Materials, Vol. 29, No. 9 (2017)	 1377

VS2010, the PCL library, and the OpenCV library while OpenGL was used to render the 3D 
graphics.  The computers worked at 3.2 GHz.  The experimental setup is shown in Fig. 6.

5.2	 Evaluation of virtual fixtures 

5.2.1	 Evaluation of task implementation 

	 To test the proposed VF construction method, two obstacles, obstacles 1 and 2, were placed 
on the worktable.  They were recognized using a color-based object segmentation method.  Three 
distinct target positions, T1, T2, and T3, were set as the tasks to be achieved as shown in Fig. 7.
	 The operator was asked to reach the target position from the starting position S with and 
without VF assistance.  Only tests with no collisions during the operation were considered.  During 
the operation, the travelled routes and the time spent on reaching the targets were noted.
	 Figures 8–10 show the routes traversed during the operation.  The red lines show the routes 
without assistance while the green lines represent routes with VF assistance.  The blue arrows 
show the real time resultant forces applied during motion, the yellow represents the repulsive 
forces, and orange arrows show the attractive forces.  As seen from the routes with VF assistance, 
the attractive force guided the operator constantly.  When the motion came close to the obstacles, 
a relatively large repulsive force was generated, and the resultant force was affected and 
modified.  The resultant force led to motion away from the obstacles but still toward the targets.  

Fig. 6.	 (Color online) The real environment.

Fig. 7.	 (Color online) Description of tasks.
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The unassisted motion was strongly affected by human jittering and vision viewpoints.  When 
unassisted, the operator required many attempts to realize the tasks without collisions. However, 
the operator implemented the task with VF assistance first time. 

5.2.2	 User study

	 To rigorously test the proposed method, ten subjects, five with teleoperation experience and 
five without, none trained before, were asked to implement the reaching target task with VFs and 
without VFs.  The time spent to reach the target was recorded, while the number of collisions was 
also noted.
	 Figure 11 shows the time required for each task without and with the VFs.  The solid lines 
represent the time required to complete the task without VFs, while the dotted lines describe the 
time required with VFs.  The green lines show the time required to move towards T1.  The average 
time required was 5.04 s without and 1.14 s with VFs.  The blue lines show the time required to 
arrive at T2.  The average time required to accomplish the task was 4.96 s without and 2.96 s with 
VFs.  The red lines represent the time required to reach T3. The average time required was 7.96 s 

Fig. 10.	 (Color online) Movement from S to T3.

Fig. 8.	 (Color online) Movement from S to T1. Fig. 9.	 (Color online) Movement from S to T2.
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without and 4.34 s with VFs.  It is obvious from the experimental data that the VFs significantly 
reduce the time to complete the task.
	 In addition, the number of collisions was observed.  When the operator implemented a task 
without haptic assistance, the number of collisions varied considerably.  The average number of 
collisions was 4.  Even though the operator was careful to avoid collisions, it is quite difficult to 
achieve no collisions in random motion without haptic assistance.  Meanwhile, when the operator 
implemented a task with haptic assistance, the number of collisions was small.  Because a few gaps 
exist in the point cloud where the edge of the surface is hard to simulate, it is inevitable that some 
collisions may occur.

5.3	 Evaluation of dynamic modelling method 

	 To specially evaluate the contact force modelling method, the time delay was set at zero.  The 
operator was asked to control the robot to make contact with a target object.  The actual model 
parameters of the object were unknown.  The accuracy of estimating the contact force and the 
tracking convergence speed were evaluated.  In this experiment, the contact force along the Z axis 
was mainly observed.  The proposed method was then compared with the BSLS and the EWRLS 
methods in terms of the accuracy in estimating force and convergence speed in tracking change, 
respectively.
	 The estimated force is shown in Fig. 12(a), and the error between the real force and the 
estimated force is shown in Fig. 12(b).  The green line describes the performance of the BSLS 
method, the red line represents the EWRLS performance, and the blue line shows the affRLS 
performance.  As we can see from the two figures, the errors of affRLS are from 0–5 N while the 
errors using BSLS and EWRLS are much larger, from 0–30 and 0–20 N, respectively.  In addition, 
the affRLS method tracks changes at a much higher convergence speed than the BSLS and 
EWRLS methods.  The parameters reach a steady and accurate state more quickly with the affRLS 
method.  The MDS model parameters will be transmitted to the master side for haptic rendering 
and object motion prediction in the VE on the master side.
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Fig. 11.	 (Color online) Total time required to carry out the task.
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6.	 Conclusions

	 Generally, it is beneficial to provide operators with haptic assistance for the teleoperation of 
VE-based robots.  In this study, a novel VF construction method and a dynamic modelling method 
were proposed in a point cloud virtual environment.  The results of the experimental evaluation 
showed that the operators could reach the target easily while avoiding collisions, and the time 
taken was reduced considerably with VF assistance.  Meanwhile, the performance of the proposed 
affRLS method was more efficient and accurate compared with the BSLS and EWRLS methods 
used in the previous system.  The operators perceived a more real accurate force with the affRLS 
method.  As providing haptic assistance to the operators of robots is crucial and meaningful, more 
adaptive and robust methods will be studied in the future.
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