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 The saliency map of an image provides useful information regarding the region of interest.  
In this paper, the normalized saliency map, called the saliency histogram, is used as a valid 
probability density function, based on which an efficient algorithm has been proposed for image 
resizing in the saliency histogram domain.  Moreover, the saliency-histogram-based image resizing 
algorithm has been extended to video applications.  Experimental results show the performance of 
the saliency histogram in terms of the preservation of salient objects in resized images and videos.  
The proposed approach is suitable for content-driven surveillance with multiresolution image 
sensor systems.

1. Introduction

 Handheld devices such as smart phones and digital pads nowadays are in widespread use; 
however, there is an inevitable problem regarding the adjustment of image and video sizes.(1)  
Conventional methods using simple cropping and linear scaling are likely to degrade the region 
of interest (ROI).(2)  In order to resize images/videos more effectively, it is desirable to take 
into account the visual content.(3)  Modern resizing techniques are generally grouped into two 
categories: the discrete approach and the continuous approach.  The content-aware seam carving (SC) 
algorithm is a common representative of the former.(4)  As wavelet transform provides an efficient 
manner to represent images at multiple scales,(5) Conger et al. proposed the seamlet transform with 
wavelet filters for multiseam carving.(6)  In Ref. 7, we proposed a scale-recursive algorithm for 
fast image resizing in the wavelet domain.  The continuous approach is to warp an image by quad-
shaped mesh deformation.  Gal et al. reshaped images to preserve the proportions of prominent 
objects while stretching or squeezing homogeneous regions.(8)  Wolf et al. analyzed the importance 
of pixels on the basis of local saliency, object detection and motion estimation for content driven 
video retargeting.(9)  Chen et al. formulated image warping as a convex quadratic problem, and 
solved it via quadratic programming.(10)  Wang et al. proposed the optimized scale and stretch (OSS) 
algorithm by allowing uniform scaling in prominent regions while hiding nonuniform stretching 
distortions in homogeneous backgrounds.(11)  The saliency map (SM) of an image provides 
valuable information on the presence of prominent objects.(12)  In Refs. 13–15, we proposed several 
algorithms based on the normalized SM, termed the saliency histogram (SH), for image resizing.  
In this work, we extend the potential of the SH to video resizing.
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 The rest of the paper is organized as follows.  Materials and Methods, including the proposed 
SH-based video resizing algorithm, are given in Sect. 2.  Experimental Results are shown in Sect.  3.  
Conclusions can be found in Sect. 4.

2. Materials and Methods

 In contrast to the discrete approach to image resizing, the continuous approach tends to avoid 
the cause of annoying jags.(2)  Image warping uses a mesh M = (V, E, Q) composed of vertices V, 
edges E, and quads Q; V and E form grid lines to partition an image into Q.  Wang et al. proposed 
the OSS algorithm to map the input mesh M onto the deformed mesh M' with minimum distortion 
energy.(11)  For each quad q in Q, the OSS algorithm allows a scaled mapping v' ∈ V' of v ∈ V:

 v′ = sqv + t , (1)

where sq is the scale factor and t is the constant translation vector.  The distortion energy D(q) of q 
is defined as

 D(q) =
∑

(i, j)∈E(q)

∥∥∥(v′i − v′j) − sq(vi − v j)
∥∥∥2, (2)

where E(q) is the edge of q and t is eliminated in the computation of D(q).  By taking the SM, w(q), 
of an image into account, the OSS algorithm minimizes the total distortion D as

 D =
∑
q∈Q

w(q) · D(q). (3)

 It is a quadratic problem with constraints on boundary conditions, grid line bending, and fold-
over prevention.
 The normalized SM can be used to describe the probability of a target’s presence in the image 
domain and is therefore termed SH.  For 1D shrinking, the marginal SH (MSH) is defined as

 px(x) =

∑N
y=1 p(x, y)

∑M
x=1
∑N

y=1 p(x, y)
; x ∈ [1,M], (4)

where px(x) denotes the MSH in the x-axis and p(x, y) is the SH of an image.  Figure 1(a) shows 
a test image, and its SM is given in Fig. 1(b).  If the image is evenly partitioned into L vertical 
strips, it is noted from the MSH shown in Fig. 1(c) that most of the important contents are in the 
left and right regions.  To reduce the difference in saliency between strips, a nonuniform partition 
is needed.  On the basis of Eq. (4), the following transformation is used for adaptive nonuniform 
partition:

 c j = k :
j − 1

L
<

k∑
x=1

px(x) ≤ j
L

, (5)

where cj is the jth strip represented by its upper-right vertex, j = 1, 2, …, L, and the boundary 
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condition is cL = N.  As noted in Fig. 1(d), the MSH of the nonuniformly partitioned strips is much 
smoother than that in Fig. 1(c).  Figure 1(e) shows the boundaries of the nonuniformly partitioned 
strips overlaid on the SM.  For horizontal shrinking, the output image is evenly partitioned into L 
vertical strips with an equalized MSH, and the mapping of the output strips can be realized from 
the corresponding nonuniform input strips by simple interpolation.  Figures 1(f) and 1(g) show the 
results of reducing the width of the image in Fig. 1(a) using the MSH-based algorithm and linear 
scaling. As expected, the mapping shows the potential of the SH.  2D shrinking can be realized by 
using the tensor product of two 1D shrinking operations, i.e., width reduction followed by height 
reduction, or vice versa.  Details of the saliency histogram equalization (SHE) and hybrid SHE-SC 
algorithms can be found in Refs. 13–15.
 Visual saliency provides useful information on the likelihood of ROI, which is beneficial to the 
development of content-driven image/video resizing systems.  In general, the nonuniform mesh 
constructed by SHE is composed of different quad sizes, and high-saliency quads are smaller 
than low-saliency quads.  Both of the SHE algorithm and the hybrid SHE-SC algorithm can be 
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Fig. 1. (Color online) (a) Test image.  (b) SM.  (c) MSH of (b) with uniform partition.  (d) MSH of (b) with 
nonuniform partition.  (e) Boundaries of the nonuniform partition overlaid on (b). (f) and (g) are the results of 
reducing the width of (a) using the proposed algorithm and linear scaling, respectively.
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applied to the first video frame to construct the initial mesh.  For computational simplicity, a fast 
smoothing scheme is proposed to stabilize the construction of successive meshes with temporal 
coherence for the rest of a video.  Specifically, let Mk−1 and Mk be the meshes obtained from the 
SH of two consecutive video frames, Fk−1 and Fk, at times k − 1 and k, respectively.  Each vertex, 
vi,j,k, at coordinates (i, j) in the mesh Mk is linearly smoothed as

 vi, j,k = α · vi, j,k−1 + (1 − α) · vi, j,k, (6)

where vi,j,k−1 is the corresponding vertex in the previous mesh Mk−1, and 0 < α < 1 implies the 
degree of temporal coherence between the frames Fk−1 and Fk.
 As a video is usually composed of different scenes, the proposed video resizing algorithm first 
divides the input video into sequences of scenes using the scene change detection algorithm,(16) and 
then resizes each sequence of frames independently since the temporal coherence between different 
scenes is not necessary.  Figure 2 exemplifies the detection result with sharp peaks indicating the 
occurrences of scene changes for a segment of the big buck bunny sequence.

3. Experimental Results

 The SH-based image and extended video resizing algorithms were implemented in Matlab.  The 
discriminative regional feature integration (DRFI) SM(17) was used to produce the SH of an image.  
Figure 3 shows the potential of the SH-based image resizing algorithm compared with those of 
other state-of-the-art algorithms.(9,10)  The width of the original image was reduced.  This shows 
that the proposed algorithm is preferable in terms of the preservation of salient objects.
 The extended SH-based video resizing algorithm was compared with other existing 
algorithms.(18,19)  The discrete cosine transform (DCT)-based pairwise comparison method(16) was 
used for scene change detection.  Different scenes were resized separately as temporal coherence 
is not necessary for disjointed scenes.  Figure 4 shows a visual comparison.(18)  As can be seen, 
there exist curving artifacts at the right border of the resized frame in the warp method.(18)  They 
are absent in the image resized using the proposed algorithm.  Figure 5 presents visual comparison 
with the improved SC.(19)  Note that most of the ROI in the middle area can be preserved using the 

Fig. 2. (Color online) (a) Segment of the big buck bunny sequence and (b) percentage of changed DCT blocks(16) 
with sharp peaks indicating scene changes.

(b)

(a)
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Fig. 3. (Color online) (a) Test images.  Resized images using (b) Wolf,(9) (c) OSS,(11) and (d) proposed algorithm.

(b) (d)(c)(a)

Fig. 4. (Color online) Visual comparison: (from left to right) source video frame and results of SH-based video 
resizing algorithm.(18)

Fig. 5. (Color online) Visual comparison: (from left to right) source video frame and results of SH-based video 
resizing algorithm.(19)
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improved SC at the cost of border backgrounds.  In contrast, the SH-based video resizing algorithm 
is capable of preserving border regions with acceptable deformation.
 In most cases, the SH-based algorithm is superior.(18,19)  As the warping approach is mainly 
dependent on the estimation of SH, there is a possibility of overwarping in regions with low 
saliency.  One example is given in Fig. 6.  As observed from the estimated SH [Fig. 6(b)] obtained 
by DRFI(17) of a video frame [Fig. 6(a)], the saliency values near the left border are small, and 
consequently, there is overwarping at the left border of the resized frame.  To solve this problem, 
one of the promising approaches is to supplement the SH with additional features, e.g., those 
proposed by Judd et al.(20)  Figure 6(e) shows the improved result with the enhanced SH shown in 
Fig. 6(d).

4. Conclusion

 Saliency information plays an important role in content-aware image/video resizing.  The 
normalized SM, called the SH, can be used as a valid probability density function for image 
warping with nonuniform meshes.  In this study, images/video frames are partitioned into 
nonuniform quad meshes in the SH domain.  Note that the content of salient objects can be 
well preserved in the resized images and video frames after mapping from the input quads onto 
the corresponding output quads.  In the future, the proposed content-driven approach will be 
suitable for intelligent surveillance with multiresolution image sensors.(21)  More specifically, the 
salient objects can be well sampled in a high-resolution mode with more pixels by sampling the 
backgrounds with fewer pixels.
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Fig. 6. (Color online) (a) Source video frame.  (b) SH of (a) obtained by DRFI(17) with low saliency near left 
border.  (c) Resized frame using proposed algorithm with (b).  (d) Enhanced SH with additional features proposed 
by Judd et al.(20)  (e) Improved result with the aid of (d).
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