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	 The MapReduce programming model is designed to process large data sets based on parallel 
computing among multiple computer nodes (CNs).  Because the data size is considerably increased 
(data are collected from sensors in most cases), the optimization problem of task assignment 
becomes important to improve the performance of MapReduce.  Unfortunately, this problem 
is even more difficult in heterogeneous clouds in which the CNs have different capabilities 
and available resources.  In this paper, the context-aware task assignment (CATA) approach is 
proposed to improve the performance of MapReduce in a twofold manner.  First, CATA takes the 
resource demands for different types of jobs into account.  Second, CATA can assign tasks to CNs 
according to their capabilities and available resources in a resource-proportional manner.  The 
experimental results show that CATA can efficiently reduce the job execution time by 10 to 40%.

1.	 Introduction

	 Cloud computing is a computing paradigm intended to provide resources as services on-demand.(1)  
For most applications of Internet of Things (IoT), such a paradigm can provide processing of 
massive data streams from a large number of sensor nodes in cyber-physical environments.  A 
cloud data center consists of a large number of commodity computer nodes (CNs).  With parallel 
processing on these CNs, MapReduce is considered as a suitable model for large data processing.  
In MapReduce, input data collected from sensor nodes are first divided into a large number of 
data splits.  Then, these data splits are processed by tasks, called mappers and reducers, assigned 
to CNs in a parallel manner.  MapReduce has a built-in fault-tolerance mechanism(2) to ease the 
development of parallel applications.  Thus, a programmer can focus on applications without 
considering the synchronization among CNs.  As a result, many cloud service providers, such as 
Google, Yahoo, and Facebook, have utilized MapReduce for data analysis.
	 Apache Hadoop and Spark are the most famous open source frameworks to realize MapReduce.  
In these frameworks, the default task assignment (DTA) is suggested to refer the number of CPU 
cores on CNs.  In practice, the number of tasks assigned to a CN can be 1 to 2 times the number 
of CPU cores on this CN.  Unfortunately, this simple task assignment becomes inefficient for 
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the following reasons.(3)  First, many IoT applications (e.g., air quality indexing, ocean current 
monitoring, and industrial monitoring and control systems) need to deploy numerous sensor nodes 
for collecting environmental sensor data.  Consequently, the size of the data collected from sensor 
nodes can be enormously increasing over time.  Second, the heterogeneity of CNs in the cloud data 
center increases the difficulty of load balancing.  Therefore, a smart task assignment is required to 
raise the resource utilization of the data center.(4)  Although several approaches were proposed,(5,6)

the following open issues remain to be addressed for the cloud-side infrastructure to cope with IoT 
applications consisting of various scales of sensors.
1.	 Job diversity.  Different types of jobs have diverse resource demands.  For example, a 

processing-intensive job can speed up with more computing resources; in contrast, a 
communication-intensive job requires high-performance I/O resources.  Thus, the cloud 
resources can be optimally utilized only by considering the job diversity.(7)

2.	 Cloud heterogeneity.  The cloud resources are integrated from a large number of CNs with 
different capabilities and resources.  Load unbalancing can be caused by assigning tasks 
without considering the heterogeneity of CNs.(8)  Consequently, it degrades the performance of 
MapReduce.

3.	 Network dynamics.  Because the CNs are network-connected, network dynamics can 
significantly affect the performance of MapReduce.  For example, the transmission time can 
increase because of the low network throughput between two CNs.  Unfortunately, most task 
assignment approaches do not take network dynamics into account.(9)

	 In this paper, the context-aware task assignment (CATA) approach is proposed to address the 
above issues.  The contributions of this paper are described as follows.
1.	 We prove that the job processing time is shortest if the loads among CNs are perfectly balanced.
2.	 CATA classifies jobs into two types: (1) processing-intensive or (2) communication-intensive 

jobs.  Then, CATA can allocate the appropriate resources according to the different types of 
jobs.

3.	 The objective of CATA is to balance the loads among CNs while taking the heterogeneity of 
CNs and network dynamics into account.

	 The rest of this paper is organized as follows.  In Sect. 2, the previous work relevant to task 
assignment in MapReduce is introduced.  In Sect. 3, we indicate the challenges and opportunities 
of task assignment in heterogeneous clouds.  In Sect. 4, CATA is introduced in detail.  The 
experiment results for evaluating the performance of CATA are presented in Sect. 5.  Finally, the 
conclusions and future work are summarized in Sect. 6.

2.	 Related Work

2.1	 Execution flow of MapReduce

	 As shown in Fig. 1, MapReduce consists of three phases called map, shuffle, and reduce.(10)  In 
the map phase, the input data is first divided into several data splits.  Then, tasks, called mappers, 
are assigned to CNs for processing these data splits in a parallel manner.  In the reduce phase, 
tasks, called reducers, are assigned to CNs for integrating the intermediate results generated by 
mappers.  Because mappers and reducers may be assigned to different sets of CNs, the intermediate 
results must be transmitted among CNs in the shuffle phase.
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	 In the above execution flow, the job execution time consists of (1) map processing time, (2) 
shuffle communication time, and (3) reduce processing time. Job execution time can depend on 
several parameters, such as the number of CNs executing mappers in the map phase, the number 
of CNs executing reducers in the reduce phase, and the communication load in the shuffle phase.  
Thus, the performance of MapReduce can be improved by carefully selecting these parameters.(11)

2.2	 Performance improvement of MapReduce

	 Several approaches were proposed to improve the performance of MapReduce.  Kambatla et al. 
first proved that the best practices of task assignment are different for different types of jobs.(12)  
According to the experimental results, the Hadoop parameters, such as the number of CNs, the 
number of mappers, and the number of reducers, can affect the performance of MapReduce.  
Moreover, a signature-based approach is proposed to determine the types of jobs based on the 
signature of this job and then indicates a predefined task assignment strategy.  Unfortunately, 
this approach requires time to create the signature database and cannot adapt to fine-grained job 
diversity using a predefined signature database.(13,14)

	 Although Tian et al. proposed a fine-grained job classifier,(15) there is still a problem of 
selecting the appropriate number of CNs, mappers, and reducers in the task assignment strategies 
for different job types.  Under the multicore with a tiling platform, Chen et al. proposed the tiled-
MapReduce that speeds up at least 19% compared with the original MapReduce.(16)  However, a 
specific hardware platform is required.  Moreover, Ahmad et al. observed that communication-
intensive jobs, which tend to output as much as the input, incur a considerable performance 
overhead (e.g., 30–40%).  The reason for this is that a high data volume is required to be transferred 
using an affordable disk and network bandwidths in the shuffle phase.  Thus, overlapping the 
shuffle delay with mapper and reducer computations is performed to reduce the job execution time.(17)

	 In summary, the above approaches tend to reduce the job execution time by finding the best 
practices for task assignment according to the type of job.  Unfortunately, most of them assumed 
that the CNs are homogeneous and did not take the cloud heterogeneity and network dynamics 
into account.  However, heterogeneous clouds become increasingly common.  Thus, a new task 
assignment approach, which is able to adapt to the capabilities and available resources of CNs, is 
required.
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Fig. 1.	 Execution flow of MapReduce.
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3.	 Problem Statement

	 Prior to the problem statement, Table 1 shows the notations and their descriptions used in 
this paper.  As the task assignment in heterogeneous clouds shown in Fig. 2(a), assume that 
the processor speed of CN A (denoted by PA) and that of CN B (denoted by PB) are 10 and 5 
million instructions per second (MIPS), respectively.  In addition, assume that a job requires one 
instruction to process one bit (IPb) of input data.  If this job needs to process 300 Mb of data that 
are equally assigned to A and B, then both A and B need to process 150 Mb of data.  Thus, A and 
B need to spend 15 and 30 s to finish the tasks, respectively.  Although A can finish its tasks in 15 
s, the map phase can be accomplished only after both A and B finish their tasks.  Thus, the time 
required to accomplish the map phase will be 30 s.  However, as the other task assignment shown 
in Fig. 2(b), if 200 and 100 Mb of the same job are assigned to A and B, respectively, according to 
their processor speeds, then A and B will both spend 20 s to finish the tasks.  Thus, the map phase 
can be accomplished in 20 s.
	 As we can see from these two cases, the job execution time can be prolonged if the loads 
among CNs are unbalanced.  Thus, optimizing load balancing among CNs can significantly 
improve the performance of MapReduce.  Unfortunately, it is difficult to optimize load balancing 
in heterogeneous clouds.  The challenge is that CNs have wide varieties of computation and 
communication capabilities and available resources, such as CPU time, memory, and storage in 
heterogeneous clouds.

Table 1
Notation list.
Notation Description
L Size of data to be processed by current job (bits).
CT Complexity of task (e.g., mapper or reducer) of current job (instructions per bit).
N Set of CNs selected to execute tasks for current job where |N| indicates the size of N.
li Size of data to be processed by the tasks assigned to CN i for current job (bits).
Pi Processor speed of CN i (MIPS).
PNN Task processing time by all CNs in N.
ci Number of CPU cores of CN i.

CN A
PA = 10 MIPS

CN B
PB = 5 MIPS

Task 1
150 Mb

Task 2
150 Mb

Job
300 Mb

150 Mb * 1 IPb / 10 MIPS
= 15 s

150 Mb * 1 IPb / 5 MIPS
= 30 s

PT{A,B} = max(15, 30)
= 30 s

Map Phase

CN A
PA = 10 MIPS

CN B
PB = 5 MIPS

Task 1
200 Mb

Task 2
100 Mb

Job
300 Mb

200 Mb * 1 IPb / 10 MIPS
= 20 s

100 Mb * 1 IPb / 5 MIPS
= 20 s

PT{A, B} = max(20, 20)
= 20 s

Map Phase

Fig. 2.	 (Color online) Examples of loads in heterogeneous clouds: (a) load unbalanced and (b) load balanced.

(a) (b)
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	 In this paper, CATA is proposed to solve the above problem by balancing the loads of CNs in 
heterogeneous clouds.  The main concept of CATA is to adaptively assign mappers and reducers 
to CNs according to the type of job and the capabilities and available resources of CNs.  In 
the following paragraphs, we will describe the challenges and opportunities to improve the 
performance of MapReduce in heterogeneous clouds.

3.1	 Computation speedup in heterogeneous clouds

	 In MapReduce, a job is typically executed in a parallel manner for computation speedup.  
Intuitively, the computation speedup is higher if more CNs are involved.  Unfortunately, it is not 
exactly true in heterogeneous clouds.  For example, in Fig. 3(a), the map phase can be finished in 
15 s with two CNs.  However, although the third CN C is added to execute this job as shown in 
Fig. 3(b), the processor speed of C is too low to prolong the map processing time. Therefore, if the 
loads are not balanced among CNs, the computation speedup cannot be guaranteed even though 
there are more CNs selected to execute a job.  In this paper, the criterion of computation speedup in 
heterogeneous clouds is defined and described as follows.

Definition 1 (Task Assignment).  Assume that there is a job with a data size of L bits, which will 
be executed by a selected set of CNs denoted by N.  A task assignment for this job can be defined 
as  
{
l1, l2, ..., li, ..., l|N |

}
, where li is the size of the data needed to be processed by the tasks assigned 

to CN i ∈ N and 
|N |∑
i=1

li = L .(18)

	 Different task assignments will have different task processing times defined as follows.

Definition 2 (Task Processing Time).  Since the map (or reduce) phase can be accomplished only 
after all the CNs have finished their tasks,(19) the task processing time is defined as

CN A
PA = 10 MIPS 

CN B
PB = 10 MIPS 

Task 1
150 Mb

Task 2
150 Mb

Job
300 Mb

150 Mb * 1 IPb / 10 MIPS 
= 15 s

150 Mb * 1 IPb / 10 MIPS
= 15 s

PT{A, B} = max(15, 15)
= 15 s

Map Phase

CN A
PA = 10 MIPS 

CN B
PB = 10 MIPS 

Task 1
100 Mb

Task 2
100 Mb

Job
300 Mb

100 Mb * 1 IPb / 10 MIPS 
= 10 s

100 Mb * 1 IPb / 10 MIPS
= 10 s

PT{A, B, C} = max(10, 10, 20)
= 20 s

Task 3
100 Mb

CN C
PC = 5 MIPS 

100 Mb * 1 IPb / 5 MIPS
= 20 s

Map Phase

Fig. 3.	 Challenge of computation speedup in heterogeneous clouds: (a) load balanced among two CNs and (b) 
load unbalanced among three CNs.

(a) (b)
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	 PTN = max
∀i∈N

(
li ×CT

Pi

)
,	 (1)

where Pi is the processor speed of CN i ∈ N and CT is the complexity of the task (e.g., mapper or 
reducer) of the current job.
	 The objective of a task assignment is to reduce the task processing time while considering the 
load balance among CNs.  In this paper, the perfect load balance (PLB) is defined as follows.

Definition 3 (PLB).  A task assignment among all CNs in N is PLB if and only if

	
l1
P1
=

l2
P2
= ... =

li
Pi
= ... =

l|N|
P|N|

.	 (2)

	 In the following paragraphs, we will prove that the task processing time is shortest if the task 
assignment is PLB.

Theorem 1.  If the task assignment among all CNs in N is PLB, then the task processing time is 
shortest.
Proof.  By Definitions 2 and 3, if the task assignment among all CNs in N is PLB, then the task 
processing time is defined as

	 PTN = max
∀i∈N

(
li ×CT

Pi

)
=

∑|N|
i=1

(
li ×CT

Pi

)

|N | .	 (3)

	 If CN i ∈ N yields x bits to CN j ∈ N where x > 0 and i ≠ j, then this task assignment will not 
be PLB by Definition 3.  The new sizes of data that need to be processed by the tasks assigned to 
CN i and CN j are l′i = li − x and l′j = l j − x , respectively.  Thus, the new task processing time is

	 PT ′N = max
(
l1 ×CT

P1
,

l2 ×CT

P2
, ...,

(li − x) ×CT

Pi
, ...,

(
l j + x

) ×CT

P j
, ...,

l|N| ×CT

P|N|

)
.	 (4)

Since x > 0, the following inequality holds:

	
(
l j + x

) ×CT

P j
>

li ×CT

Pi
.	 (5)

According to Eqs. (3)–(5), it is easily proven that

	 PT ′N =
(
l j + x

) ×CT

P j
> PTN.□	 (6)

	 Based on Theorem 1, we can prove that the task processing time is shorter by adding more CNs 
if the task assignment is still PLB.
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Theorem 2.  Assume that the task assignments among two sets of CNs denoted by N and N′, where 
|N| = n, |N′| = m, and m > n, for a job are both PLB, then PTN > PTN′.
Proof.  According to Eq. (3), if the task assignment is PLB, then the relationship between li and lj 

can be obtained as l j = li
P j

Pi
.  Thus, 

|N|∑
j=1

l j = 
|N|∑
j=1

(
li

P j

Pi

)
.  Since 

|N|∑
j=1

l j = L, the following equation 

holds:

	 L =
|N|∑
j=1

(
li

P j

Pi

)
=

li
Pi

|N|∑
j=1

P j .	 (7)

According to Eq. (7), li is then given by

	 li =
L × Pi∑|N|

j=1 P j
.	 (8)

	 Without loss of generality, we may assume that Pi ≤ Pj when i < j.  Assume that a new CN k 
is added to N, where Pi ≤ Pk ≤ Pi+1 and the new set of CNs is denoted by N′.  To preserve PLB, 
the new task assignment  

{
l′1, l
′
2, ..., l

′
i , ..., l

′
|N′|
}
 is required, where l′i is the new size of data to be 

processed by the tasks assigned to CN i ∈ N′ and 
|N′|∑
i=1

l′i = L.  According to Eq. (8), the following 

equations hold:

	 l′i =
L × Pi∑|N′|

j=1 P j
,	 (9)

	 li
l′i
=

L×Pi∑|N|
j=1 P j

L×Pi∑|N′|
j=1 P j

=

∑|N′|
j=1 P j
∑|N|

j=1 P j

.	 (10)

Since 
|N|∑
j=1

P j <

|N′|∑
j=1

P j, it is obvious that

	 li > l′i .	 (11)

	 According to Eq. (3),

	 PTN =
li ×CT

Pi
>

l′i ×CT

Pi
= PTN′.□	 (12)

	 According to Theorem 2, the computation speedup of parallel computing on more CNs can be 
guaranteed if the task assignment is PLB.

3.2	 Communication load in heterogeneous clouds

	 In addition to the task processing time, the shuffle communication time also influences the 
performance of MapReduce.  Since the communication among CNs is based on networking, the 
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insufficient bandwidths among these CNs can incur a substantial performance reduction.  In a 
heterogeneous cloud, the bandwidths among these CNs may vary greatly, so the task assignment 
becomes more complex.  For example, as shown in Fig. 4, assume that this is a communication-
intensive job where the size of the output data is equal to that of the input data.  In addition, assume 
that the bandwidth between A and C is 1 Mbps, and the bandwidth between B and C is 10 Mbps.  
Although the load is balanced among A and B in Fig. 4(b), the map processing time (i.e., 20 s) is 
shorter than that in Fig. 4(a) (i.e., 30 s).  However, owing to the communication bottleneck between 
A and C, the shuffle communication time in Fig. 4(b) (i.e., 210 s) is much longer than that in Fig. 
4(a) (i.e., 165 s).  By summing the times required to complete the map and shuffle phases, the task 
assignment in Fig. 4(a) (i.e., 195 s) is better than that in Fig. 4(b) (i.e., 230 s).
	 In conclusion, the optimization problem of task assignment must consider not only the 
computation speedup but also the communication load.  Unfortunately, it is impractical to find the 
optimal number of CNs, mappers, and reducers while considering the type of job and capabilities 
and resources of CNs.  Thus, CATA is proposed to find the approximation solution in a reasonable 
time by exploring the above challenges and opportunities of task assignment in heterogeneous 
clouds.

4.	 CATA

	 CATA has two adaptation levels: (1) node-level adaptation (NLA) and (2) task-level adaptation 
(TLA).  In the first level (CATA-NLA), the appropriate number of CNs is determined according 
to the type of current job.  Then, the determined number of CNs is selected to execute the current 
job using a resource-proportional approach.  In CATA-NLA, the number of tasks assigned to a 
CN only depends on the number of CPU cores.  In the second level (CATA-TLA), these tasks are 
reassigned to the selected CNs according to the processor speeds of CNs for approximating PLB.  
The flow chart of CATA is shown in Fig. 5 and described as follows.

CN A
PA = 10 MIPS 

CN B
PB = 5 MIPS 

Task 1
150 Mb

Task 2
150 Mb

Job
300 Mb

150 Mb * 1 IPb / 10 MIPS 
= 15 s

150 Mb * 1 IPb / 5 MIPS
= 30 s

PT{A, B} = max(15, 30)
= 30 s

CN C

CTA,C = 150 Mb / 1 Mbps 
= 150 s

CTB,C = 150 Mb / 10 Mbps 
= 15 s

ET = PT{A, B} + CT{A, B, C} = 195 s

Map Phase Shuffle Phase

CT{A,B,C} = CTA,C + CTB,C
= 165 s

BA,C = 1 Mbps 

BB,C = 10 Mbps 

CN A
PA = 10 MIPS 

CN B
PB = 5 MIPS 

Task 1
200 Mb

Task 2
100 Mb

Job
300 Mb

200 Mb * 1 IPb / 10 MIPS  
= 20 s

100 Mb / 5 MIPS
= 20 s

PT{A, B} = max(20, 20)
= 20 s

CN C

CTA,C = 200 Mb / 1 Mpbs 
= 200 s

CTB,C = 100 Mb / 10 Mbps 
= 10 s

ET = PT{A, B} + CT{A, B, C} = 230 s

Shuffle PhaseMap Phase

CT{A, B, C} = CTA,C + CTB,C
= 210 s

BA,C = 1 Mbps 

BB,C = 10 Mbps 

Fig. 4.	 Challenges of communication load in heterogeneous clouds (a) with and (b) without considering 
bandwidth.

(a) (b)
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4.1	 CATA-NLA

	 CATA-NLA improves DTA by selecting the appropriate CNs while taking (1) the type of job and (2) 
the capabilities of CNs into account.  CATA-NLA has four steps as described in detail below.

4.1.1	 Job type classification

	 Typically, a processing-intensive job demands more computation resources.  In contrast, a 
communication-intensive job demands more communication resources.  If the task assignment 
does not take the type of job into account, it can prolong the job execution time. Thus, the first step 
in CATA-NLA is to determine the type of current job.
	 In CATA-NLA, the job type classification is simplified by determining the communication 
load,

	 ω = min
(
S MOD

S MID
, 1
)
,	 (13)

where SMOD and SMID are the sizes of mapper input data (MID) and mapper output data (MOD), 
respectively.(15)  A job (e.g., max) with a low communication load (i.e., ω ≈ 0) is more likely to be 
a processing-intensive job.  This is because few data are needed to be transmitted from mappers to 
reducers among CNs.  In contrast, a job (e.g., sort) with a high communication load (i.e., ω ≈ 1) is 
more likely to be a communication-intensive job.

Job Type Classification

Job submitted

Node Number Determination

Execution Node Selection

Uniform Task Assignment

Task Level Adaptation

Perform NLA YES

Job accomplished

NO

YES

Perform
CATA-TLA?

YES

NO

Perform TLA ?

NO

Task Execution Round

Is current job 
accomplished? NO

Fig. 5.	 Flow chart of CATA.
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4.1.2	 Node number determination

	 More CNs can be selected to execute a processing-intensive job for computation speedup.  
In contrast, a communication-intensive job can be executed by a few CNs to decrease the 
communication among CNs.  Thus, CATA-NLA determines appropriate number of CNs to execute 
the current job according to its type.  Because the shuffle phase is typically the bottleneck in 
MapReduce,(20,21) we only consider the case of only one CN selected to execute reducers and the 
reduce processing time is ignored.  
	 The problem is to select n CNs among all n CNs in the data center with the objective of 
minimizing the job execution time. Assume that the current job is executed by x CNs in the map 
phase and the expected job execution time is

	 EETx = (1 – ω) × (MPTx + RMTx) + ω × ECTx,	 (14)

where EETx, MPTx, and RMTx are the expected map processing time, reduce processing time, and 
shuffle communication time, respectively.  According to the finding of Chowdhury et al.,(19) the 
map processing time decreases linearly with the number of CNs, but the shuffle communication 
time increases linearly owing to data transfer among CNs.  Thus, in this paper, the expected map 
processing time and reduce processing time are modeled to be in linear positive correlation with 
the number of CNs as

	
MRTx =

L ×CM

x × P
,

RPTx =
L ×CR

x × P
,
	 (15)

where P is the average processor speed of all CNs in the data center.  Moreover, the expected 
shuffle communication time is modeled to be in linear negative correlation with the number of CNs 
as

	 ECTx = x × S MOD

R
,	 (16)

where R is the average bandwidth among all CNs in the data center.  Finally, node number 
determination is actually the optimization problem to find n such that

	 EETn = min
x= 1,...,n

{EETx}.	 (17)

4.1.3	 Execution node selection

	 Although the appropriate number of CNs, denoted by n, has been determined in Step 2, there 
is still a problem on how to select the n of all CNs in the data center.(22)  Since the available 
resources of CNs are different, the number of n CNs must be carefully selected according to 
the type of current job and the available resources of CNs.  Basically, CATA-NLA selects CNs 
with more computation resources for a processing-intensive job.  In contrast, the CNs with more 
communication resources are selected to execute a communication-intensive job.
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	 CATA-NLA adopts the resource-proportional node selection strategy.(23)  Assume that there are  
K kinds of resources.  First, CATA-NLA  calculates the selection priority SPi,j of CN i, where i = 1, 
2, ..., n, for job j  by

	 SPi, j =

K∑
k=1

(
ω j,k × RPi,k

)
,	 (18)

where ωj,k and RPi,k are the weight on resource k for job j and the resource proportion of resource 
k on CN i, respectively.  Since different types of jobs have various resource demands, the node 
selection strategy, suitable for the type of job j, can be configured as the specific demand weights 

on resources as (ωj,1, ωj,1, ..., ωj,K), where 
K∑

k=1

ω j,k = 1.  Moreover, the resource proportion of 

resource k on CN i  is

	 RPi,k =

ri,k
Ri,k∑K

k=1

( ri,k
Ri,k

),	 (19)

where ri,k and Ri,k are the available amount and maximum amount of resource k on CN i, 
respectively.  Then, CATA-NLA can simply sort these CNs by selection priority and select first  
CNs to execute this job.

4.1.4	 Uniform task assignment

	 In the last step of CATA-NLA, the number of mappers assigned to CN i, denoted by Mi, is 
determined.  Although each mapper can handle one data split at one time, it does not mean that 
a higher Mi incurs a higher performance, which depends on the capabilities of CN i.  On the 
basis of our experimental results on homogeneous clouds, as shown in Fig. 6, it is found that the 
job execution time is shortest if the ratio of the numbers of CPU cores to mappers is about 1:2 
regardless of the data size and the number of CNs.  Thus, in CATA-NLA, Mi is defined as

Fig. 6.	 (Color online) Relationships between the job execution time and the numbers of CNs and CPU cores in 
each CN. (The notation NnCc means that the experiment is conducted on n CNs and each CN has c CPU cores.) 
The data sizes are (a) 20 and (b) 40 GB.

(a) (b)
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	 Mi = 2 × ci,	 (20)

where ci is the number of CPU cores of CN i.

4.2	 CATA-TLA

	 CATA-NLA can improve the performance of MapReduce by selecting the appropriate number 
of CNs to execute the current job while considering the computation speedup and communication 
load at the same time. However, the task assignment in CATA-NLA assumes that the cloud is 
homogeneous.  Thus, according to Theorem 1, CATA-NLA can be further improved by reassigning 
mappers to CNs according to the processor speeds of CNs for approximating PLB.
	 Thus, the objective of CATA-TLA is to achieve PLB by performing task reassignment.  In 
CATA-NLA, the total number of mappers in each task execution round is the summation of the 
numbers of mappers in CN i, where i = 1, ..., n, and is defined as

	 MR =

n∑
i=1

Mi.	 (21)

	 To achieve PLB, the number of mappers in CN i must be reassigned according to the processor 
speed of CN i in CATA-TLA.  According to Theorem 1, the reassigned number of mappers to CN i, 
where i = 1, ..., n, is defined as

	 mi =
Pi∑n

j=1 P j
× MR.	 (22)

5.	 System Evaluation

	 These experiments are conducted to evaluate the benefits of using CATA.  The performances of 
CATA-NLA, CATA-TLA, and Hadoop DTA are compared in terms of different types of jobs, data 
sizes, and the numbers of CNs, mappers, and reducers.

5.1	 Experimental setup

	 The jobs selected to represent processing- and communication-intensive jobs are sort and grep, 
respectively.  The experimental environments are built on two physical computers with a 2.66 GHz 
quad-core processor, an 8 GB main memory, and a 1 TB hard disk.  The virtualization software, 
XEN, is employed to emulate a homogeneous cloud and a heterogeneous cloud with 8 and 4 CNs, 
as shown in Tables 2 and 3, respectively.

5.2	 Experimental results

	 In all experimental results, the notation NnMm indicates that the MapReduce configuration 
for the experiment is composed of m mappers that run on n CNs.  Each experimental result is the 
average of 10 runs of experiment with the same configuration.
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5.2.1	 Experiments in homogeneous cloud

	 First, CATA-NLA is compared with DTA in the homogeneous cloud as described in Table 2.  
Since the size of MOD is far less than that of MID in grep, a higher computation speedup can thus 
be expected if more CNs are selected.  In contrast, since the size of MOD is equal to that of MID 
in sort, a higher communication load can thus be expected if more CNs are selected.
	 When the data size is 10 GB, the numbers of CNs for grep and sort are determined as 8 and 4 
by CATA-NLA, respectively.  Moreover, since each CN has a single CPU core in this homogeneous 
cloud, each CN is assigned 2 mappers by Eq. (20) in each task execution round.  As shown in Fig. 
7, since the size of MOD for grep is small, CATA-NLA is intended to execute grep on more CNs 
for a high computation speedup.  In contrast, as shown in Fig. 8, CATA-NLA executes sort on few 
CNs for a low communication load.  According to the experimental results, the job execution time, 
under the numbers of CNs and mappers determined by CATA-NLA, is the shortest among all other 
combinations.
	 For different data sizes of 10, 20, 40, and 80 GB, the experimental results for grep and sort are 
shown in Figs. 9 and 10, respectively.  The experimental results show that the advantage of CATA-
NLA becomes more obvious with increasing data size.

Table 2
Homogeneous cloud with 8 CNs.

CN 1–CN 8
Core 1 core
Memory 1.5 GB
Storage 200 GB

Fig. 7.	 (Color online) Job execution time of grep 
with different numbers of CNs and mappers in the 
homogeneous cloud.

Fig. 8.	 (Color online) Job execution time of sort 
with different numbers of CNs and mappers in the 
homogeneous cloud.

Table 3
Heterogeneous cloud with 4 CNs.

CN 1 CN 2 CN 3 CN 4
Core 3 cores 1 core 2 cores 2 cores
Memory 3 GB 3 GB 3 GB 3 GB
Storage 200 GB 200 GB 200 GB 200 GB
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5.2.2	 Experiments in heterogeneous clouds

	 In this section, CATA-TLA is compared with DTA and CATA-NLA in the heterogeneous 
cloud as described in Table 3.  In this experiment, the numbers of CNs selected for grep and 
sort by CATA-TLA are both 4 CNs owing to the heterogeneous cloud, so we only show the 
experimental results with different numbers of mappers.  Because the CNs in heterogeneous 
clouds have different processor speeds, CATA-TLA reassigns the numbers of mappers to CNs for 
approximating PLB.  As shown in Figs. 11 and 12, CATA-TLA can further improve CATA-NLA 
by considering the processor speeds of these CNs.

Fig. 11.	 (Color online) Job execution times of grep 
compared among DTA, CATA-NLA, and CATA-TLA 
in the heterogeneous cloud.

Fig. 12.	 (Color online) Job execution times of sort 
compared among DTA, CATA-NLA, and CATA-TLA 
in the heterogeneous cloud.

Fig. 9.	 (Color online) Job execution time of grep 
with different numbers of CNs and different data 
sizes in the homogeneous cloud.

Fig. 10.	 (Color online) Job execution time of sort 
with different numbers of CNs and different data 
sizes in the homogeneous cloud.
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6.	 Conclusions

	 For most IoT applications, one of the challenges is to efficiently process massive data streams 
from a large number of sensor nodes.  However, the task assignment approach in the MapReduce-
based cloud framework is inefficient to cope with the enormously increasing size of sensor data 
and the heterogeneity of CNs in the data center.  In this paper, the CATA approach is proposed to 
improve MapReduce performance.  CATA can assign tasks while considering different resource 
demands according to the type of job.  Moreover, CATA also takes the capabilities and available 
resources of CNs into account while performing task assignment.  There are two contributions of 
CATA.  First, CATA can adaptively assign tasks to CNs according to the capabilities and available 
resources of CNs with the objective of achieving PLB.  Thus, the job execution time is efficiently 
reduced because of the balanced load among CNs.  Second, CATA does not require any specific 
hardware platform.  The experimental results show that CATA can reduce the job execution time 
by 10–40% whether the job is processing- or communication-intensive.
	 Currently, CATA is based on the Hadoop first-in first-out (FIFO) scheduler, so the decision of 
task assignment is only for a single job at one time.  Thus, it is still possible to incur starvation if 
the high-priority and long-running jobs exhaust cloud resources.  In the future, we will modify 
CATA for other efficient schedulers, such as fair, capacity, and Hadoop on Demand schedulers.(24)
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