
1497Sensors and Materials, Vol. 29, No. 11 (2017) 1497–1512
MYU Tokyo

S & M 1444

*Corresponding author: e-mail: chaochun@mail.ncku.edu.tw
http://dx.doi.org/10.18494/SAM.2017.1659

ISSN 0914-4935 © MYU K.K.

Context-Aware Task Assignment
for MapReduce in Heterogeneous Clouds

Wei-Tsung Su, Wei-Fan Pan, and Chao-Chun Chen1*

Department of Computer Science and Information Engineering, Aletheia University,
No. 32, Zhenli St., Danshui Dist., New Taipei City 25103, Taiwan, R.O.C.

1Institute of Manufacturing Information and Systems, National Cheng Kung University,
No. 1, University Rd., Tainan 701, Taiwan, R.O.C.

(Received April 6, 2017; accepted August 4, 2017)

Keywords:	 heterogeneous cloud, MapReduce, task assignment, resource-proportional approach

	 The MapReduce programming model is designed to process large data sets based on parallel
computing among multiple computer nodes (CNs). Because the data size is considerably increased
(data are collected from sensors in most cases), the optimization problem of task assignment
becomes important to improve the performance of MapReduce. Unfortunately, this problem
is even more difficult in heterogeneous clouds in which the CNs have different capabilities
and available resources. In this paper, the context-aware task assignment (CATA) approach is
proposed to improve the performance of MapReduce in a twofold manner. First, CATA takes the
resource demands for different types of jobs into account. Second, CATA can assign tasks to CNs
according to their capabilities and available resources in a resource-proportional manner. The
experimental results show that CATA can efficiently reduce the job execution time by 10 to 40%.

1.	 Introduction

	 Cloud computing is a computing paradigm intended to provide resources as services on-demand.(1)
For most applications of Internet of Things (IoT), such a paradigm can provide processing of
massive data streams from a large number of sensor nodes in cyber-physical environments. A
cloud data center consists of a large number of commodity computer nodes (CNs). With parallel
processing on these CNs, MapReduce is considered as a suitable model for large data processing.
In MapReduce, input data collected from sensor nodes are first divided into a large number of
data splits. Then, these data splits are processed by tasks, called mappers and reducers, assigned
to CNs in a parallel manner. MapReduce has a built-in fault-tolerance mechanism(2) to ease the
development of parallel applications. Thus, a programmer can focus on applications without
considering the synchronization among CNs. As a result, many cloud service providers, such as
Google, Yahoo, and Facebook, have utilized MapReduce for data analysis.
	 Apache Hadoop and Spark are the most famous open source frameworks to realize MapReduce.
In these frameworks, the default task assignment (DTA) is suggested to refer the number of CPU
cores on CNs. In practice, the number of tasks assigned to a CN can be 1 to 2 times the number
of CPU cores on this CN. Unfortunately, this simple task assignment becomes inefficient for

1498	 Sensors and Materials, Vol. 29, No. 11 (2017)

the following reasons.(3) First, many IoT applications (e.g., air quality indexing, ocean current
monitoring, and industrial monitoring and control systems) need to deploy numerous sensor nodes
for collecting environmental sensor data. Consequently, the size of the data collected from sensor
nodes can be enormously increasing over time. Second, the heterogeneity of CNs in the cloud data
center increases the difficulty of load balancing. Therefore, a smart task assignment is required to
raise the resource utilization of the data center.(4) Although several approaches were proposed,(5,6)

the following open issues remain to be addressed for the cloud-side infrastructure to cope with IoT
applications consisting of various scales of sensors.
1.	 Job diversity. Different types of jobs have diverse resource demands. For example, a

processing-intensive job can speed up with more computing resources; in contrast, a
communication-intensive job requires high-performance I/O resources. Thus, the cloud
resources can be optimally utilized only by considering the job diversity.(7)

2.	 Cloud heterogeneity. The cloud resources are integrated from a large number of CNs with
different capabilities and resources. Load unbalancing can be caused by assigning tasks
without considering the heterogeneity of CNs.(8) Consequently, it degrades the performance of
MapReduce.

3.	 Network dynamics. Because the CNs are network-connected, network dynamics can
significantly affect the performance of MapReduce. For example, the transmission time can
increase because of the low network throughput between two CNs. Unfortunately, most task
assignment approaches do not take network dynamics into account.(9)

	 In this paper, the context-aware task assignment (CATA) approach is proposed to address the
above issues. The contributions of this paper are described as follows.
1.	 We prove that the job processing time is shortest if the loads among CNs are perfectly balanced.
2.	 CATA classifies jobs into two types: (1) processing-intensive or (2) communication-intensive

jobs. Then, CATA can allocate the appropriate resources according to the different types of
jobs.

3.	 The objective of CATA is to balance the loads among CNs while taking the heterogeneity of
CNs and network dynamics into account.

	 The rest of this paper is organized as follows. In Sect. 2, the previous work relevant to task
assignment in MapReduce is introduced. In Sect. 3, we indicate the challenges and opportunities
of task assignment in heterogeneous clouds. In Sect. 4, CATA is introduced in detail. The
experiment results for evaluating the performance of CATA are presented in Sect. 5. Finally, the
conclusions and future work are summarized in Sect. 6.

2.	 Related Work

2.1	 Execution flow of MapReduce

	 As shown in Fig. 1, MapReduce consists of three phases called map, shuffle, and reduce.(10) In
the map phase, the input data is first divided into several data splits. Then, tasks, called mappers,
are assigned to CNs for processing these data splits in a parallel manner. In the reduce phase,
tasks, called reducers, are assigned to CNs for integrating the intermediate results generated by
mappers. Because mappers and reducers may be assigned to different sets of CNs, the intermediate
results must be transmitted among CNs in the shuffle phase.

Sensors and Materials, Vol. 29, No.11 (2017)	 1499

	 In the above execution flow, the job execution time consists of (1) map processing time, (2)
shuffle communication time, and (3) reduce processing time. Job execution time can depend on
several parameters, such as the number of CNs executing mappers in the map phase, the number
of CNs executing reducers in the reduce phase, and the communication load in the shuffle phase.
Thus, the performance of MapReduce can be improved by carefully selecting these parameters.(11)

2.2	 Performance improvement of MapReduce

	 Several approaches were proposed to improve the performance of MapReduce. Kambatla et al.
first proved that the best practices of task assignment are different for different types of jobs.(12)
According to the experimental results, the Hadoop parameters, such as the number of CNs, the
number of mappers, and the number of reducers, can affect the performance of MapReduce.
Moreover, a signature-based approach is proposed to determine the types of jobs based on the
signature of this job and then indicates a predefined task assignment strategy. Unfortunately,
this approach requires time to create the signature database and cannot adapt to fine-grained job
diversity using a predefined signature database.(13,14)

	 Although Tian et al. proposed a fine-grained job classifier,(15) there is still a problem of
selecting the appropriate number of CNs, mappers, and reducers in the task assignment strategies
for different job types. Under the multicore with a tiling platform, Chen et al. proposed the tiled-
MapReduce that speeds up at least 19% compared with the original MapReduce.(16) However, a
specific hardware platform is required. Moreover, Ahmad et al. observed that communication-
intensive jobs, which tend to output as much as the input, incur a considerable performance
overhead (e.g., 30–40%). The reason for this is that a high data volume is required to be transferred
using an affordable disk and network bandwidths in the shuffle phase. Thus, overlapping the
shuffle delay with mapper and reducer computations is performed to reduce the job execution time.(17)

	 In summary, the above approaches tend to reduce the job execution time by finding the best
practices for task assignment according to the type of job. Unfortunately, most of them assumed
that the CNs are homogeneous and did not take the cloud heterogeneity and network dynamics
into account. However, heterogeneous clouds become increasingly common. Thus, a new task
assignment approach, which is able to adapt to the capabilities and available resources of CNs, is
required.

Mapper 2

Mapper m

:
:

Task 0

Task 1

Task 2

Task m

:
:

Mapper 3

Reducer 1

Reducer r

:
:

Reducer 2

Output 0

Output 1

Output r

Mapper 1

Map Phase Reduce PhaseShuffle Phase

Job

Fig. 1.	 Execution flow of MapReduce.

1500	 Sensors and Materials, Vol. 29, No. 11 (2017)

3.	 Problem Statement

	 Prior to the problem statement, Table 1 shows the notations and their descriptions used in
this paper. As the task assignment in heterogeneous clouds shown in Fig. 2(a), assume that
the processor speed of CN A (denoted by PA) and that of CN B (denoted by PB) are 10 and 5
million instructions per second (MIPS), respectively. In addition, assume that a job requires one
instruction to process one bit (IPb) of input data. If this job needs to process 300 Mb of data that
are equally assigned to A and B, then both A and B need to process 150 Mb of data. Thus, A and
B need to spend 15 and 30 s to finish the tasks, respectively. Although A can finish its tasks in 15
s, the map phase can be accomplished only after both A and B finish their tasks. Thus, the time
required to accomplish the map phase will be 30 s. However, as the other task assignment shown
in Fig. 2(b), if 200 and 100 Mb of the same job are assigned to A and B, respectively, according to
their processor speeds, then A and B will both spend 20 s to finish the tasks. Thus, the map phase
can be accomplished in 20 s.
	 As we can see from these two cases, the job execution time can be prolonged if the loads
among CNs are unbalanced. Thus, optimizing load balancing among CNs can significantly
improve the performance of MapReduce. Unfortunately, it is difficult to optimize load balancing
in heterogeneous clouds. The challenge is that CNs have wide varieties of computation and
communication capabilities and available resources, such as CPU time, memory, and storage in
heterogeneous clouds.

Table 1
Notation list.
Notation Description
L Size of data to be processed by current job (bits).
CT Complexity of task (e.g., mapper or reducer) of current job (instructions per bit).
N Set of CNs selected to execute tasks for current job where |N| indicates the size of N.
li Size of data to be processed by the tasks assigned to CN i for current job (bits).
Pi Processor speed of CN i (MIPS).
PNN Task processing time by all CNs in N.
ci Number of CPU cores of CN i.

CN A
PA = 10 MIPS

CN B
PB = 5 MIPS

Task 1
150 Mb

Task 2
150 Mb

Job
300 Mb

150 Mb * 1 IPb / 10 MIPS
= 15 s

150 Mb * 1 IPb / 5 MIPS
= 30 s

PT{A,B} = max(15, 30)
= 30 s

Map Phase

CN A
PA = 10 MIPS

CN B
PB = 5 MIPS

Task 1
200 Mb

Task 2
100 Mb

Job
300 Mb

200 Mb * 1 IPb / 10 MIPS
= 20 s

100 Mb * 1 IPb / 5 MIPS
= 20 s

PT{A, B} = max(20, 20)
= 20 s

Map Phase

Fig. 2.	 (Color online) Examples of loads in heterogeneous clouds: (a) load unbalanced and (b) load balanced.

(a) (b)

Sensors and Materials, Vol. 29, No.11 (2017)	 1501

	 In this paper, CATA is proposed to solve the above problem by balancing the loads of CNs in
heterogeneous clouds. The main concept of CATA is to adaptively assign mappers and reducers
to CNs according to the type of job and the capabilities and available resources of CNs. In
the following paragraphs, we will describe the challenges and opportunities to improve the
performance of MapReduce in heterogeneous clouds.

3.1	 Computation speedup in heterogeneous clouds

	 In MapReduce, a job is typically executed in a parallel manner for computation speedup.
Intuitively, the computation speedup is higher if more CNs are involved. Unfortunately, it is not
exactly true in heterogeneous clouds. For example, in Fig. 3(a), the map phase can be finished in
15 s with two CNs. However, although the third CN C is added to execute this job as shown in
Fig. 3(b), the processor speed of C is too low to prolong the map processing time. Therefore, if the
loads are not balanced among CNs, the computation speedup cannot be guaranteed even though
there are more CNs selected to execute a job. In this paper, the criterion of computation speedup in
heterogeneous clouds is defined and described as follows.

Definition 1 (Task Assignment). Assume that there is a job with a data size of L bits, which will
be executed by a selected set of CNs denoted by N. A task assignment for this job can be defined
as
{
l1, l2, ..., li, ..., l|N |

}
, where li is the size of the data needed to be processed by the tasks assigned

to CN i ∈ N and
|N |∑
i=1

li = L .(18)

	 Different task assignments will have different task processing times defined as follows.

Definition 2 (Task Processing Time). Since the map (or reduce) phase can be accomplished only
after all the CNs have finished their tasks,(19) the task processing time is defined as

CN A
PA = 10 MIPS

CN B
PB = 10 MIPS

Task 1
150 Mb

Task 2
150 Mb

Job
300 Mb

150 Mb * 1 IPb / 10 MIPS
= 15 s

150 Mb * 1 IPb / 10 MIPS
= 15 s

PT{A, B} = max(15, 15)
= 15 s

Map Phase

CN A
PA = 10 MIPS

CN B
PB = 10 MIPS

Task 1
100 Mb

Task 2
100 Mb

Job
300 Mb

100 Mb * 1 IPb / 10 MIPS
= 10 s

100 Mb * 1 IPb / 10 MIPS
= 10 s

PT{A, B, C} = max(10, 10, 20)
= 20 s

Task 3
100 Mb

CN C
PC = 5 MIPS

100 Mb * 1 IPb / 5 MIPS
= 20 s

Map Phase

Fig. 3.	 Challenge of computation speedup in heterogeneous clouds: (a) load balanced among two CNs and (b)
load unbalanced among three CNs.

(a) (b)

1502	 Sensors and Materials, Vol. 29, No. 11 (2017)

	 PTN = max
∀i∈N

(
li ×CT

Pi

)
,	 (1)

where Pi is the processor speed of CN i ∈ N and CT is the complexity of the task (e.g., mapper or
reducer) of the current job.
	 The objective of a task assignment is to reduce the task processing time while considering the
load balance among CNs. In this paper, the perfect load balance (PLB) is defined as follows.

Definition 3 (PLB). A task assignment among all CNs in N is PLB if and only if

	
l1
P1
=

l2
P2
= ... =

li
Pi
= ... =

l|N|
P|N|

.	 (2)

	 In the following paragraphs, we will prove that the task processing time is shortest if the task
assignment is PLB.

Theorem 1. If the task assignment among all CNs in N is PLB, then the task processing time is
shortest.
Proof. By Definitions 2 and 3, if the task assignment among all CNs in N is PLB, then the task
processing time is defined as

	 PTN = max
∀i∈N

(
li ×CT

Pi

)
=

∑|N|
i=1

(
li ×CT

Pi

)

|N | .	 (3)

	 If CN i ∈ N yields x bits to CN j ∈ N where x > 0 and i ≠ j, then this task assignment will not
be PLB by Definition 3. The new sizes of data that need to be processed by the tasks assigned to
CN i and CN j are l′i = li − x and l′j = l j − x , respectively. Thus, the new task processing time is

	 PT ′N = max
(
l1 ×CT

P1
,

l2 ×CT

P2
, ...,

(li − x) ×CT

Pi
, ...,

(
l j + x

) ×CT

P j
, ...,

l|N| ×CT

P|N|

)
.	 (4)

Since x > 0, the following inequality holds:

	
(
l j + x

) ×CT

P j
>

li ×CT

Pi
.	 (5)

According to Eqs. (3)–(5), it is easily proven that

	 PT ′N =
(
l j + x

) ×CT

P j
> PTN.□	 (6)

	 Based on Theorem 1, we can prove that the task processing time is shorter by adding more CNs
if the task assignment is still PLB.

Sensors and Materials, Vol. 29, No.11 (2017)	 1503

Theorem 2. Assume that the task assignments among two sets of CNs denoted by N and N′, where
|N| = n, |N′| = m, and m > n, for a job are both PLB, then PTN > PTN′.
Proof. According to Eq. (3), if the task assignment is PLB, then the relationship between li and lj

can be obtained as l j = li
P j

Pi
. Thus,

|N|∑
j=1

l j =
|N|∑
j=1

(
li

P j

Pi

)
. Since

|N|∑
j=1

l j = L, the following equation

holds:

	 L =
|N|∑
j=1

(
li

P j

Pi

)
=

li
Pi

|N|∑
j=1

P j .	 (7)

According to Eq. (7), li is then given by

	 li =
L × Pi∑|N|

j=1 P j
.	 (8)

	 Without loss of generality, we may assume that Pi ≤ Pj when i < j. Assume that a new CN k
is added to N, where Pi ≤ Pk ≤ Pi+1 and the new set of CNs is denoted by N′. To preserve PLB,
the new task assignment

{
l′1, l
′
2, ..., l

′
i , ..., l

′
|N′|
}
 is required, where l′i is the new size of data to be

processed by the tasks assigned to CN i ∈ N′ and
|N′|∑
i=1

l′i = L. According to Eq. (8), the following

equations hold:

	 l′i =
L × Pi∑|N′|

j=1 P j
,	 (9)

	 li
l′i
=

L×Pi∑|N|
j=1 P j

L×Pi∑|N′|
j=1 P j

=

∑|N′|
j=1 P j
∑|N|

j=1 P j

.	 (10)

Since
|N|∑
j=1

P j <

|N′|∑
j=1

P j, it is obvious that

	 li > l′i .	 (11)

	 According to Eq. (3),

	 PTN =
li ×CT

Pi
>

l′i ×CT

Pi
= PTN′.□	 (12)

	 According to Theorem 2, the computation speedup of parallel computing on more CNs can be
guaranteed if the task assignment is PLB.

3.2	 Communication load in heterogeneous clouds

	 In addition to the task processing time, the shuffle communication time also influences the
performance of MapReduce. Since the communication among CNs is based on networking, the

1504	 Sensors and Materials, Vol. 29, No. 11 (2017)

insufficient bandwidths among these CNs can incur a substantial performance reduction. In a
heterogeneous cloud, the bandwidths among these CNs may vary greatly, so the task assignment
becomes more complex. For example, as shown in Fig. 4, assume that this is a communication-
intensive job where the size of the output data is equal to that of the input data. In addition, assume
that the bandwidth between A and C is 1 Mbps, and the bandwidth between B and C is 10 Mbps.
Although the load is balanced among A and B in Fig. 4(b), the map processing time (i.e., 20 s) is
shorter than that in Fig. 4(a) (i.e., 30 s). However, owing to the communication bottleneck between
A and C, the shuffle communication time in Fig. 4(b) (i.e., 210 s) is much longer than that in Fig.
4(a) (i.e., 165 s). By summing the times required to complete the map and shuffle phases, the task
assignment in Fig. 4(a) (i.e., 195 s) is better than that in Fig. 4(b) (i.e., 230 s).
	 In conclusion, the optimization problem of task assignment must consider not only the
computation speedup but also the communication load. Unfortunately, it is impractical to find the
optimal number of CNs, mappers, and reducers while considering the type of job and capabilities
and resources of CNs. Thus, CATA is proposed to find the approximation solution in a reasonable
time by exploring the above challenges and opportunities of task assignment in heterogeneous
clouds.

4.	 CATA

	 CATA has two adaptation levels: (1) node-level adaptation (NLA) and (2) task-level adaptation
(TLA). In the first level (CATA-NLA), the appropriate number of CNs is determined according
to the type of current job. Then, the determined number of CNs is selected to execute the current
job using a resource-proportional approach. In CATA-NLA, the number of tasks assigned to a
CN only depends on the number of CPU cores. In the second level (CATA-TLA), these tasks are
reassigned to the selected CNs according to the processor speeds of CNs for approximating PLB.
The flow chart of CATA is shown in Fig. 5 and described as follows.

CN A
PA = 10 MIPS

CN B
PB = 5 MIPS

Task 1
150 Mb

Task 2
150 Mb

Job
300 Mb

150 Mb * 1 IPb / 10 MIPS
= 15 s

150 Mb * 1 IPb / 5 MIPS
= 30 s

PT{A, B} = max(15, 30)
= 30 s

CN C

CTA,C = 150 Mb / 1 Mbps
= 150 s

CTB,C = 150 Mb / 10 Mbps
= 15 s

ET = PT{A, B} + CT{A, B, C} = 195 s

Map Phase Shuffle Phase

CT{A,B,C} = CTA,C + CTB,C
= 165 s

BA,C = 1 Mbps

BB,C = 10 Mbps

CN A
PA = 10 MIPS

CN B
PB = 5 MIPS

Task 1
200 Mb

Task 2
100 Mb

Job
300 Mb

200 Mb * 1 IPb / 10 MIPS
= 20 s

100 Mb / 5 MIPS
= 20 s

PT{A, B} = max(20, 20)
= 20 s

CN C

CTA,C = 200 Mb / 1 Mpbs
= 200 s

CTB,C = 100 Mb / 10 Mbps
= 10 s

ET = PT{A, B} + CT{A, B, C} = 230 s

Shuffle PhaseMap Phase

CT{A, B, C} = CTA,C + CTB,C
= 210 s

BA,C = 1 Mbps

BB,C = 10 Mbps

Fig. 4.	 Challenges of communication load in heterogeneous clouds (a) with and (b) without considering
bandwidth.

(a) (b)

Sensors and Materials, Vol. 29, No.11 (2017)	 1505

4.1	 CATA-NLA

	 CATA-NLA improves DTA by selecting the appropriate CNs while taking (1) the type of job and (2)
the capabilities of CNs into account. CATA-NLA has four steps as described in detail below.

4.1.1	 Job type classification

	 Typically, a processing-intensive job demands more computation resources. In contrast, a
communication-intensive job demands more communication resources. If the task assignment
does not take the type of job into account, it can prolong the job execution time. Thus, the first step
in CATA-NLA is to determine the type of current job.
	 In CATA-NLA, the job type classification is simplified by determining the communication
load,

	 ω = min
(
S MOD

S MID
, 1
)
,	 (13)

where SMOD and SMID are the sizes of mapper input data (MID) and mapper output data (MOD),
respectively.(15) A job (e.g., max) with a low communication load (i.e., ω ≈ 0) is more likely to be
a processing-intensive job. This is because few data are needed to be transmitted from mappers to
reducers among CNs. In contrast, a job (e.g., sort) with a high communication load (i.e., ω ≈ 1) is
more likely to be a communication-intensive job.

Job Type Classification

Job submitted

Node Number Determination

Execution Node Selection

Uniform Task Assignment

Task Level Adaptation

Perform NLA YES

Job accomplished

NO

YES

Perform
CATA-TLA?

YES

NO

Perform TLA ?

NO

Task Execution Round

Is current job
accomplished? NO

Fig. 5.	 Flow chart of CATA.

1506	 Sensors and Materials, Vol. 29, No. 11 (2017)

4.1.2	 Node number determination

	 More CNs can be selected to execute a processing-intensive job for computation speedup.
In contrast, a communication-intensive job can be executed by a few CNs to decrease the
communication among CNs. Thus, CATA-NLA determines appropriate number of CNs to execute
the current job according to its type. Because the shuffle phase is typically the bottleneck in
MapReduce,(20,21) we only consider the case of only one CN selected to execute reducers and the
reduce processing time is ignored.
	 The problem is to select n CNs among all n CNs in the data center with the objective of
minimizing the job execution time. Assume that the current job is executed by x CNs in the map
phase and the expected job execution time is

	 EETx = (1 – ω) × (MPTx + RMTx) + ω × ECTx,	 (14)

where EETx, MPTx, and RMTx are the expected map processing time, reduce processing time, and
shuffle communication time, respectively. According to the finding of Chowdhury et al.,(19) the
map processing time decreases linearly with the number of CNs, but the shuffle communication
time increases linearly owing to data transfer among CNs. Thus, in this paper, the expected map
processing time and reduce processing time are modeled to be in linear positive correlation with
the number of CNs as

	
MRTx =

L ×CM

x × P
,

RPTx =
L ×CR

x × P
,
	 (15)

where P is the average processor speed of all CNs in the data center. Moreover, the expected
shuffle communication time is modeled to be in linear negative correlation with the number of CNs
as

	 ECTx = x × S MOD

R
,	 (16)

where R is the average bandwidth among all CNs in the data center. Finally, node number
determination is actually the optimization problem to find n such that

	 EETn = min
x= 1,...,n

{EETx}.	 (17)

4.1.3	 Execution node selection

	 Although the appropriate number of CNs, denoted by n, has been determined in Step 2, there
is still a problem on how to select the n of all CNs in the data center.(22) Since the available
resources of CNs are different, the number of n CNs must be carefully selected according to
the type of current job and the available resources of CNs. Basically, CATA-NLA selects CNs
with more computation resources for a processing-intensive job. In contrast, the CNs with more
communication resources are selected to execute a communication-intensive job.

Sensors and Materials, Vol. 29, No.11 (2017)	 1507

	 CATA-NLA adopts the resource-proportional node selection strategy.(23) Assume that there are
K kinds of resources. First, CATA-NLA calculates the selection priority SPi,j of CN i, where i = 1,
2, ..., n, for job j by

	 SPi, j =

K∑
k=1

(
ω j,k × RPi,k

)
,	 (18)

where ωj,k and RPi,k are the weight on resource k for job j and the resource proportion of resource
k on CN i, respectively. Since different types of jobs have various resource demands, the node
selection strategy, suitable for the type of job j, can be configured as the specific demand weights

on resources as (ωj,1, ωj,1, ..., ωj,K), where
K∑

k=1

ω j,k = 1. Moreover, the resource proportion of

resource k on CN i is

	 RPi,k =

ri,k
Ri,k∑K

k=1

(ri,k
Ri,k

),	 (19)

where ri,k and Ri,k are the available amount and maximum amount of resource k on CN i,
respectively. Then, CATA-NLA can simply sort these CNs by selection priority and select first
CNs to execute this job.

4.1.4	 Uniform task assignment

	 In the last step of CATA-NLA, the number of mappers assigned to CN i, denoted by Mi, is
determined. Although each mapper can handle one data split at one time, it does not mean that
a higher Mi incurs a higher performance, which depends on the capabilities of CN i. On the
basis of our experimental results on homogeneous clouds, as shown in Fig. 6, it is found that the
job execution time is shortest if the ratio of the numbers of CPU cores to mappers is about 1:2
regardless of the data size and the number of CNs. Thus, in CATA-NLA, Mi is defined as

Fig. 6.	 (Color online) Relationships between the job execution time and the numbers of CNs and CPU cores in
each CN. (The notation NnCc means that the experiment is conducted on n CNs and each CN has c CPU cores.)
The data sizes are (a) 20 and (b) 40 GB.

(a) (b)

1508	 Sensors and Materials, Vol. 29, No. 11 (2017)

	 Mi = 2 × ci,	 (20)

where ci is the number of CPU cores of CN i.

4.2	 CATA-TLA

	 CATA-NLA can improve the performance of MapReduce by selecting the appropriate number
of CNs to execute the current job while considering the computation speedup and communication
load at the same time. However, the task assignment in CATA-NLA assumes that the cloud is
homogeneous. Thus, according to Theorem 1, CATA-NLA can be further improved by reassigning
mappers to CNs according to the processor speeds of CNs for approximating PLB.
	 Thus, the objective of CATA-TLA is to achieve PLB by performing task reassignment. In
CATA-NLA, the total number of mappers in each task execution round is the summation of the
numbers of mappers in CN i, where i = 1, ..., n, and is defined as

	 MR =

n∑
i=1

Mi.	 (21)

	 To achieve PLB, the number of mappers in CN i must be reassigned according to the processor
speed of CN i in CATA-TLA. According to Theorem 1, the reassigned number of mappers to CN i,
where i = 1, ..., n, is defined as

	 mi =
Pi∑n

j=1 P j
× MR.	 (22)

5.	 System Evaluation

	 These experiments are conducted to evaluate the benefits of using CATA. The performances of
CATA-NLA, CATA-TLA, and Hadoop DTA are compared in terms of different types of jobs, data
sizes, and the numbers of CNs, mappers, and reducers.

5.1	 Experimental setup

	 The jobs selected to represent processing- and communication-intensive jobs are sort and grep,
respectively. The experimental environments are built on two physical computers with a 2.66 GHz
quad-core processor, an 8 GB main memory, and a 1 TB hard disk. The virtualization software,
XEN, is employed to emulate a homogeneous cloud and a heterogeneous cloud with 8 and 4 CNs,
as shown in Tables 2 and 3, respectively.

5.2	 Experimental results

	 In all experimental results, the notation NnMm indicates that the MapReduce configuration
for the experiment is composed of m mappers that run on n CNs. Each experimental result is the
average of 10 runs of experiment with the same configuration.

Sensors and Materials, Vol. 29, No.11 (2017)	 1509

5.2.1	 Experiments in homogeneous cloud

	 First, CATA-NLA is compared with DTA in the homogeneous cloud as described in Table 2.
Since the size of MOD is far less than that of MID in grep, a higher computation speedup can thus
be expected if more CNs are selected. In contrast, since the size of MOD is equal to that of MID
in sort, a higher communication load can thus be expected if more CNs are selected.
	 When the data size is 10 GB, the numbers of CNs for grep and sort are determined as 8 and 4
by CATA-NLA, respectively. Moreover, since each CN has a single CPU core in this homogeneous
cloud, each CN is assigned 2 mappers by Eq. (20) in each task execution round. As shown in Fig.
7, since the size of MOD for grep is small, CATA-NLA is intended to execute grep on more CNs
for a high computation speedup. In contrast, as shown in Fig. 8, CATA-NLA executes sort on few
CNs for a low communication load. According to the experimental results, the job execution time,
under the numbers of CNs and mappers determined by CATA-NLA, is the shortest among all other
combinations.
	 For different data sizes of 10, 20, 40, and 80 GB, the experimental results for grep and sort are
shown in Figs. 9 and 10, respectively. The experimental results show that the advantage of CATA-
NLA becomes more obvious with increasing data size.

Table 2
Homogeneous cloud with 8 CNs.

CN 1–CN 8
Core 1 core
Memory 1.5 GB
Storage 200 GB

Fig. 7.	 (Color online) Job execution time of grep
with different numbers of CNs and mappers in the
homogeneous cloud.

Fig. 8.	 (Color online) Job execution time of sort
with different numbers of CNs and mappers in the
homogeneous cloud.

Table 3
Heterogeneous cloud with 4 CNs.

CN 1 CN 2 CN 3 CN 4
Core 3 cores 1 core 2 cores 2 cores
Memory 3 GB 3 GB 3 GB 3 GB
Storage 200 GB 200 GB 200 GB 200 GB

1510	 Sensors and Materials, Vol. 29, No. 11 (2017)

5.2.2	 Experiments in heterogeneous clouds

	 In this section, CATA-TLA is compared with DTA and CATA-NLA in the heterogeneous
cloud as described in Table 3. In this experiment, the numbers of CNs selected for grep and
sort by CATA-TLA are both 4 CNs owing to the heterogeneous cloud, so we only show the
experimental results with different numbers of mappers. Because the CNs in heterogeneous
clouds have different processor speeds, CATA-TLA reassigns the numbers of mappers to CNs for
approximating PLB. As shown in Figs. 11 and 12, CATA-TLA can further improve CATA-NLA
by considering the processor speeds of these CNs.

Fig. 11.	 (Color online) Job execution times of grep
compared among DTA, CATA-NLA, and CATA-TLA
in the heterogeneous cloud.

Fig. 12.	 (Color online) Job execution times of sort
compared among DTA, CATA-NLA, and CATA-TLA
in the heterogeneous cloud.

Fig. 9.	 (Color online) Job execution time of grep
with different numbers of CNs and different data
sizes in the homogeneous cloud.

Fig. 10.	 (Color online) Job execution time of sort
with different numbers of CNs and different data
sizes in the homogeneous cloud.

Sensors and Materials, Vol. 29, No.11 (2017)	 1511

6.	 Conclusions

	 For most IoT applications, one of the challenges is to efficiently process massive data streams
from a large number of sensor nodes. However, the task assignment approach in the MapReduce-
based cloud framework is inefficient to cope with the enormously increasing size of sensor data
and the heterogeneity of CNs in the data center. In this paper, the CATA approach is proposed to
improve MapReduce performance. CATA can assign tasks while considering different resource
demands according to the type of job. Moreover, CATA also takes the capabilities and available
resources of CNs into account while performing task assignment. There are two contributions of
CATA. First, CATA can adaptively assign tasks to CNs according to the capabilities and available
resources of CNs with the objective of achieving PLB. Thus, the job execution time is efficiently
reduced because of the balanced load among CNs. Second, CATA does not require any specific
hardware platform. The experimental results show that CATA can reduce the job execution time
by 10–40% whether the job is processing- or communication-intensive.
	 Currently, CATA is based on the Hadoop first-in first-out (FIFO) scheduler, so the decision of
task assignment is only for a single job at one time. Thus, it is still possible to incur starvation if
the high-priority and long-running jobs exhaust cloud resources. In the future, we will modify
CATA for other efficient schedulers, such as fair, capacity, and Hadoop on Demand schedulers.(24)

Acknowledgments

	 This paper is based on the work partially supported by the Ministry of Science and Technology
(MOST), Taiwan, R.O.C., under Grant Nos. MOST 106-2221-E-156-001, 106-2221-E-006-005, 105-
2221-E-156-004, and 105-2221-E-006-141.

References

	 1	 R. Maggiani: Proc. IEEE Int. Professional Communication Conf. (IEEE, 2009) p. 1.
	 2	 W. Tom: Hadoop: The Definitive Guide (O’Reilly, Sebastopol, 2009) p. 193.
	 3	 M. M. Rafique, B. Rose, A. R. Butt, and D. S. Nikolopoulos: ACM SIGOPS Operating Syst. Rev. 43 (2009)

25.
	 4	 J. Gautam, H. Prajapati, V. Dabhi, and S. Chaudhary: Proc. 2015 IEEE Int. Conf. Electrical, Computer and

Communication Technologies (IEEE, 2015) p. 1.
	 5	 M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica: Proc. 8th USENIX Symp. Operating Systems

Design and Implementation (USENIX, 2008) p. 29.
	 6	 W. Hu, C. Tain, X. Liu, H. Qi, L. Zha, U. Liao, Y. Zhang, and J. Zhang: Proc. 6th Int. Conf. Semantics

Knowledge and Grid (IEEE, 2010) p. 135.
	 7	 Y. Yao, J. Tai, B. Sheng, and N. Mi: IEEE Trans. Cloud Comput. 3 (2014) 411.
	 8	 Z. Guo and G. Fox: Proc. 12th IEEE/ACM Int. Symp. Cluster, Cloud and Grid Computing (IEEE/ACM, 2012) p.

714.
	 9	 L. Popa, A. Krishnamurthy, S. Ratnasamy, and I. Stoica: Proc. 10th ACM Workshop on Hot Topics in

Networks (ACM, 2011) Article No. 22.
	10	 J. Dean and S. Ghemawat: MapReduce: Proc. 4th USENIX Symp. Operating Systems Design and

Implementation (USENIX, 2004) p. 137.
	11	 D. Jiang, B. C. Ooi, L. Shi, and S. Wu: Proc. VLDB Endowment 3 (2010) 472.
	12	 K. Kambatla, A. Pathak, and H. Pucha: Proc. 1st Workshop on Hot Topics in Cloud Computing (USENIX,

2009) Article No. 22.
	13	 H. Herodotou and S. Babu: Proc. VLDB Endowment 4 (2011) 1111.
	14	 G. Wang, A. Khasymski, K. R. Krish, and A. R. Butt: Proc. Int. Conf. Parallel and Distributed Systems (IEEE,

2013) p. 299.

1512	 Sensors and Materials, Vol. 29, No. 11 (2017)

	15	 C. Tian, H. Zhou, Y. He, and L. Zha: Proc. Int. Conf. Grid and Cooperative Computing (IEEE, 2009) p. 218.
	16	 R. Chen, H. Chen, and B. Zang: Proc. 19th Int. Conf. Parallel Architectures and Compilation Techniques (IEEE,

2010) p. 523.
	17	 F. Ahmad, S. Lee, and M. Thottethodi: J. Parallel Distrib. Comput. 73 (2013) 608.
	18	 B. Ghit and D. Epema: Proc. 16th IEEE/ACM Int. Symp. Cluster, Cloud and Grid Computing (IEEE/ACM,

2016) p. 11.
	19	 M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica: ACM SIGCOMM Comput. Commun. Rev. 41

(2011) 98.
	20	 M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat: Hedera: Proc. 7th USENIX Conf.

Networked Systems Design and Implementation (USENIX, 2010) p. 19.
	21	 A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta:

Commun. ACM 54 (2009) 95.
	22	 G. K. Archana and V. D. Charkravarthy: Proc. 2015 Int. Conf. Computing and Communication Technologies

(IEEE, 2015) p. 368.
	23	 C.-L. Chen, J.-W. Lee, W.-T. Su, M.-F. Horng, and Y.-H. Kuo: Int. J. Ad Hoc Ubiquitous Comput. 3 (2008)

224.
	24	 C. Wang, Y. Peng, J. Liu, M. Tang, G. Liu, J. Feng, and P. You: Proc. 9th IEEE Int. Conf. Networking,

Architecture, and Storage (IEEE, 2014) p. 118.

About the Authors

Wei-Tsung Su received his B.S. degree in Information and Computer Science
from Chung Yuan Christian University, Taiwan, in 2000 and his Ph.D. degree in
Computer Science and Information Engineering from National Cheng Kung
University, Taiwan in 2008. From 2009, he is an assistant professor at Aletheia
University, Taiwan. His research interests are in cloud computing and network
security.

Wei-Fan Pan received his B.S. degree in Information Application from Aletheia
University, Taiwan, in 2009 and his M.S. degree in Computer Science and
Information Engineering from Aletheia University, Taiwan, in 2011. He is a
system engineer in Chung Hwa Pulp Corporation. His research interests are in
distributed systems and parallel computing.

Chao-Chun Chen is an associate professor in the Institute of Manufacturing
Information and Systems (IMIS) and the Department of Computer Science and
Information Engineering (CSIE), National Cheng Kung University, Taiwan. He
received his Ph.D. degree in the Department of Computer Science and
Information Engineering at National Cheng Kung University, Taiwan, in 2004.
His research interests include dist r ibuted data management, cloud
manufacturing, artificial intelligence, system integration and optimization, and
databases.

