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	 In this study, a real-time electromyography (EMG)-triggered controller for a pneumatic 
artificial muscle (PAM) actuated lower limb rehabilitation robot is proposed.  To make the 
rehabilitation task controllable by the patient’s movement intention, a novel trigger controller is 
designed according to the EMG signals of the patient’s muscle.  For predicting his or her movement 
intention in advance, the EMG signals of the patient’s muscle are captured and identified to realize 
the proposed EMG-triggered control.  To guarantee the safety and performance of the proposed 
system, a patient’s movement intention must be identified accurately by EMG feature extraction.  
First, the discrete wavelet transformation (DWT) technique is used to acquire the feature vectors of 
the EMG signals.  The properties of the different feature spaces are taken into consideration, and 
the optimal multicomponents of features are chosen according to the experimental results.  Second, 
support vector machines (SVMs) are studied to improve the classification performance.  Finally, 
the MyRIO controller is used to implement a closed-loop control system for the rehabilitation robot 
with the movement-intention trigger control.

1.	 Introduction

	 The rehabilitation of stroke patients, those with spinal cord injuries (SCIs), patients who 
underwent total knee replacement (TKR) surgery, the elderly, and those with other movement 
disorders has become a major social problem owing to the lack of physical therapists (PTs), because 
conventional manual therapy requires experienced therapists.  However, the aging society with 
fewer children has resulted in manpower shortage, so that the lack of therapists makes it difficult 
to meet the requirements of high-intensity and repetitive rehabilitation for patients.(1)  Therefore, 
rehabilitation robotics has become a research field that has attracted increasing attention over the 
last decade.  Rehabilitation robots can reduce the heavy burden of PTs and can evaluate patients’ 
recovery status by analyzing their bioelectrical data.
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	 There are several published review papers surveying the mechanical design, control strategies, 
and training modes of rehabilitation robots.  For example, Diaz et al. conducted a comprehensive 
survey about current lower limb rehabilitation robots, but they did not emphasize training modes 
and control strategies.(2)  Kawakkel et al. discussed control strategies for rehabilitation robots and 
focused on the clinical outcomes of different systems.(3)  Mohammed and coworkers reviewed the 
actuated exoskeletons of lower limb wearable robots and focused on the control strategies in them.(4,5)  
Meng et al. presented a review and analysis of mechanisms, training modes, and control strategies 
of lower limb rehabilitation robots; they mainly focused on control methods with hybrid data fusion.(6)

	 Pneumatic artificial muscles (PAMs) were first developed by McKibben in the 1950s for use 
in artificial limbs; therefore, they are also called the McKibben artificial muscle.(7)  The PAM is a 
device like a braided pneumatic actuator with an inner rubber tube and a layer of nonexpendable 
braided shell.  The tube is wrapped in a double-helix-braided shell woven at a predetermined angle.  
Both ends of the rubber tube are closed with caps.  When compressed gas enters the tube through a 
hose connected to a pressure source, the PAM contracts in the longitudinal direction according to 
its inflation volume.  Over the last decade, robotics engineers have begun to use them as actuators 
of rehabilitation robots.  Costa et al. proposed a powered lower limb orthosis whose actuators are 
PAMs and they used highly compliant actuators (PAMs) to manipulate the exoskeleton.(8)

	 The design philosophy provided an important insight into the rehabilitative orthosis systems.  
Sawicki and Fessis in 2009 developed the pneumatically powered knee–ankle–foot orthosis (KAFO), 
which was proposed through the study of human motor adaptation, gait rehabilitations, and 
locomotion energetics.(9)  In 2011, Park et al. developed a lower-limb rehabilitation orthosis, which 
is made of a bio-inspired active soft orthotic device for ankle foot pathology.(10)  In 2012, Teng et al. 
developed a KAFO using McKibben actuators to provide assistance during gait training.(11)  In 
2013, Hussain et al. inverted a robotic orthosis with six degrees of freedom for use in gait training.(12)  
Arzuwan et al. in 2014 presented a survey of existing lower-limb leg orthoses for rehabilitation 
using pneumatic muscle-type actuators, such as McKibben artificial muscles, air muscles, PAMs 
or pneumatic muscle actuators (PMAs).(13)  Although many review papers had surveyed gait 
training, control strategies, mechanisms of rehabilitation robotics, and patients’ biosignals, they did 
not discuss the details about how to trigger the rehabilitation robotics.  Therefore, we focus on how 
to identify patients’ movement intention using electromyography (EMG) signals and to realize the 
proposed EMG-triggered control in this study.  
	 An EMG signal is generated before the patient makes a limb muscle contraction.  Without 
feature extraction and pattern recognition, surface EMG cannot be used to identify the user’s 
intention but provides only a limited assessment of muscle activity.  The EMG signals acquired 
from muscles require advanced methods such as filtering, processing, decomposition, and 
classification.  The purpose of this study is to illustrate the algorithms of feature extraction and 
pattern recognition for EMG signal analysis to provide effective ways of identifying the user’s 
movement intention in advance.  Then, the self-designed rehabilitation robot would operate with a 
predefined trajectory after being activated.  The proposed PAM-actuated lower-limb rehabilitation 
using EMG-triggered control is implemented using the embedded real-time controller and 
experimental results are analyzed and discussed.  

2.	 Proposed EMG-Triggered Control for Lower Limb Rehabilitation Robot

	 The proposed PAM actuated rehabilitation robotic system consists of two subsystems, namely, 
a cognition system integrated with EMG sensors and a rehabilitation robot (RRS) system as shown 
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in Fig. 1.  The first subsystem is the cognitive human–robot interaction (cHRi), which consists 
of EMG sensors, a signal processing card, a data acquisition (DAQ) card, and a PC to deal with 
feature extraction and classification.  The second subsystem is the proposed RRS.  The RRS is 
actuated by PAMs and controlled by the real-time embedded system (MyRIO) using the proposed 
controller algorithm.  The details about the RRS and cHRi are described as follows.

2.1	 Design of PAM actuated rehabilitation robot

	 Most lower-limb rehabilitation orthosis systems use conventional actuators, such as DC or AC 
brush motors, DC brushless servomotors, linear actuators, and pneumatic cylinders.  However, 
compared with conventional pneumatic cylinders and motors, PAMs have several advantages, 
including compactness, inherent compliance, low cost, and high power-to-weight ratio.(14)  
Moreover, PAMs are highly compliant actuators to manipulate the rehabilitation exoskeleton; thus, 
they are safer than other actuators such as motors.  Compared with other complicated rehabilitation 
orthosis systems, the main purpose of our design is concentrated on knee rehabilitation.  Figure 2 
shows the mechanism design of the proposed rehabilitation robot, which has two degrees of 
freedom for gait training tasks.  The knee and hip joints are both attached to pulleys as shown in 
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Fig. 1.	 (Color online) Experimental setup and systematic scheme used in this study.

Mechanism to drive the hip

Mechanism to drive the knee

Potentiometers

PAMs
(for knee)

PAMs
(for hip)

Fig. 2.	 (Color online) (a) Photograph of the proposed rehabilitation robot. (b) Driving mechanism for the hip and 
knee.  (c) Robotic mechanism design. 
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Fig. 2(b) and each of them is actuated by PAMs.  For the knee joint, the first pulley is connected 
to a steel wire whose two ends are pulled by PAMs (MAS-20-300N-AA-MC-O-ER-BG, made 
by Festo in Germany) as shown in Fig. 2(c).  A similar design is applied to the hip joint, but the 
hip mechanism is actuated by different PAMs, which are MAS-40-300N-AA-MC-O-ER-BG, 
because the loading of the hip is larger than that of the knee.  Potentiometers with high resolution 
are used to measure the joint angular positions of the hip and knee of the robot, and then the 
positioning signals are fed back to the embedded control (NI MyRIO).  The real-time control 
program is developed in Labview language, and position-based trajectory tracking is implemented 
by propositional–integral–derivative (PID) control.  The “teach-and-replay” method is used to 
generate the rehabilitation trajectory.  The training modes are separated into two modes, which are 
the passive and active modes.  The passive mode is usually used in the early stage of rehabilitation, 
and it should be conducted to help patients track the predefined trajectory to reduce muscle 
atrophy and improve movement ability.(15)  After a specified training period, the advanced stage of 
rehabilitation is called the active mode, which should be carried out to encourage patients to trigger 
robot assistance by their own active efforts.(16)  To realize the EMG-triggered control to identify 
the patient’s movement intention, in the following section, we will discuss the signal processing of 
EMG signals, feature extraction, and pattern recognition.

2.2	 cHRi using EMG sensors

	 For assisting rehabilitation in the active training mode, cHRi is the key component to 
manipulate the rehabilitation robotic system.  Although EMG enables the assessment of muscle 
activity, the patient’s movement intention cannot be identified from the EMG raw data directly.  
For example, Fig. 3 shows the EMG signal captured from the patient’s lower limb as he raises 
his leg and then stands in the same cycle time.  From the experimental results in Fig. 3, the EMG 
signal is determined to be very noisy.  
	 Therefore, the processes of filtering, processing, decomposition, and classification for cHRi are 
necessary.  Figure 4 shows the main components of cHRi, which are described as follows.
(1)	Filtering and amplifying: The EMG signal is filtered and amplified first.  An active band-pass 

filter circuit is used for this system, and the filter’s bandwidth ranges from 7 to 482 Hz.  After 
filtering the noise, the filtered EMG signal is amplified by TL082IC to adjust the suitable 
voltage range for NI PCI6024E.  

Fig. 3.	 (Color online) EMG signals captured from the patient’s lower limb as he raises his leg and then stands.
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(2)	Feature extraction: It is difficult to distinguish the important messages from the EMG signal 
in the time-domain signal, because there is too much noise. Generally, the time-domain 
signal should be transferred into the frequency-domain power spectrum to analyze the energy 
components.  First, the discrete wavelet transformation (DWT) is used to transfer the EMG 
signal into the wavelet components.  After analyzing the importance of each feature for EMG 
signals, the best feature for classification can be obtained.

(3)	Classification and pattern recognition: The real-time classification of the EMG feature is 
very important for the EMG-triggered control, because the accuracy and speed of identifying 
patients’ movement intention determine the correctness and real-time performance of the 
rehabilitation trigger control.  Among these classification algorithms, artificial neural 
networks (ANNs) are widely used in previous studies to improve the recognition accuracy.  In 
recent decades, support vector machines (SVMs) are applied in machine learning for many 
applications.  An SVM is a supervised learning model with associated learning algorithms 
that analyze the data used for classification and regression analysis.  In this study, an SVM is 
applied to identify the patients’ movement intention according to the EMG extracted feature 
in the wavelet components.  In Sect. 3, we will discuss how to obtain the optimal features 
for classification to identify the patient’s movement intention and analyze the classification 
performance of an SVM.

3.	 Feature Extraction by DWT Decomposition for EMG Signals

	 Because the time-domain EMG signal is easily affected by noise, it is difficult to distinguish a 
patient’s movement intention directly on the basis of the time-domain signal.  If the EMG signals 
are transferred into the frequency domain, the noise is easily removed; the difference between 
lifting the patient’s leg and the standing state can be easily classified in the frequency domain.  
Fourier transform (FT) is one of the most popular spectral analysis methods, but it will lose the 
time information as it is transformed from the time domain into the frequency domain.  To improve 
the disadvantages of the FT, short-time Fourier transform (STFT) was proposed by Dennis Gabor 
in 1946.  It was used as a time-window function at a specific position for signal analysis.(17)

	 However, if a complex of wide-band signals is analyzed, the characteristics of the signals 
cannot be represented accurately.  On one hand, selecting a longer window can provide better 
frequency-domain analysis, but the time-domain analysis will deteriorate.  On the other hand, 
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Fig. 4.	 Proposed method for EMG feature extraction and classification.
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a shorter window will provide excellent time-domain analysis; however, the frequency-domain 
analysis will become relatively poor.  Compared with the STFT, wavelet transformation (WT) has a 
different window function frame.  The WT can change the frame size with respect to the accuracy 
requirement of the time or frequency analysis.  It uses the wavelet function via the time-shift and 
scaling parameters to induce signal decomposition.  Wavelet analysis is like a mathematical camera 
with a microscope lens.  The wavelet function ψ must satisfy the following conditions.(18–20)

	
∫ +∞
−∞
ψ(t)dt = 0  and 

∫ +∞
−∞
|ψ(t)|2 dt < ∞	 (1)

A wavelet basis function ψa,τ(t) is defined as

	 ψa,τ(t) =
1
√

a
ψ

 t − τa

, a > 0,	 (2)

where 1/
√

a is the normalization factor, ψ(t) is the mother wavelet, and (1/
√

a)ψ(t/a) is the dilation 
of ψ(t) with the factor a.  The translation factor τ can make ψ(t) have a time shift.  Therefore, the 
continuous wavelet transform (CWT) can be defined as

	 CWT (a, τ) =
1
√

a

∫ +∞
−∞

f (t)ψ∗
 t − τa

 dt,	 (3)

where f(t) is the input signal, CWT (a, τ) represents continuous wavelet coefficients that are scaling 
and translation functions, and ψ* is the complex conjugate of ψ.  For real-time computation, the 
DWT was proposed to reduce the amount of data and improve the computation speed in the 1980s.(18)  
For the DWT, the wavelet basis function ψa,τ(t) should be discretized with respect to the scaling and 
translation factors.  Therefore, the scaling and translation factors of the discrete sampling are given 
by

	 a = a j
o, τ = a j

ok, j, k ∈ Z ,	 (4)

where j is the number of scales and k is the number of samples.  Then, the wavelet function in the 
discrete space can be defined as

	 ψ j,k(t) =
1√
a j

o

ψ

 t − a j
ok

a j
o

, ao > 0 .	 (5)

	 According to the suggestion in the previous literature, the parameter ao is chosen as 2 and 
called the dyadic wavelet function, so that Eq. (5) is rewritten as 

	 ψ j,k(t) =
1
√

2 j
ψ

 t − 2 jk
2 j

.	 (6)

	 Then, the DWT is defined as follows according to Eq. (6).
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	 DWT ( j, k) =
1
√

2 j

∫ +∞
−∞

f (t)ψ∗
 t − 2 jk

2 j

 dt	 (7)

	 The original signal can be decomposed by the DWT into the low-frequency part (approximation) 
and the high-frequency part (detail).  For example, Fig. 5 shows that an original signal is 
decomposed into two components, namely, cD and cA, where the original signal is denoted by S, 
and ↓2  denotes the down sampling by a factor of 2.  
	 The most commonly used set of discrete wavelet transforms was formulated by the Belgian 
mathematician Ingrid Daubechies in 1988.  Mallat proposed that the DWT signal could be 
decomposed and reconstructed by multiresolution analysis (MRA) in 1989.(21,22)  With MRA, the 
original signal was transferred by discrete wavelet decomposition (DWD) and decomposed into 
a low-frequency approximation (A1) and a high-frequency detail (D1).(23–25)  Then, the first low-
frequency approximation (A1) is decomposed again into a high-frequency detail (D2) and a low-
frequency approximation (A2); similar decompositions can be obtained in accordance with the 
actual needs of wavelet decomposition layers as shown in Fig. 6.  Therefore, we use the DWT 
for EMG signals to observe the key feature that depends on patient’s movement intention.  For 
example, an EMG signal is determined by the decomposition of five layers by DWD as shown in 
Fig. 7.  
	 The EMG signals are nonstationary signals that vary with the muscle activity.  After the 
decomposition of the DWT, the features of signals cannot be identified clearly.  Therefore, seven feature 
functions are used to analyze the EMG patterns for different situations.  The feature functions are 
listed as follows.

Root-mean-square value:	 RMS =

√
x2

1 + x2
2 + x2

3 + ... x
2
n

n
	 (8)

Mean absolute value:	 MAV =
|x1| + |x2| + |x3| + ... |xn|

n
	 (9)

Norm:	 xnorm =
x −min(x)

max(x) −min(x)
, x is MAV value	 (10)

Summation:	 sum =
n∑

n=1

xn	 (11)

Maximum:	 XN,max = max
0≤n≤N

(XN(n)) 	 (12)

Minimum:	 XN,min = min
0≤n≤N

(XN(n))	 (13)

Range: 	 XN,Range = XN,max − XN,min	 (14)

	 The different feature functions according to the different wavelet components can represent 
different eigenvalues of the EMG signals.  Therefore, in the next section, we will discuss the 
classification analysis using the different feature functions of the different wavelet components to 
obtain the optimal solution for identifying the movement intention of patients.  
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4.	 Classification of EMG Signals Using SVM

	 An SVM constructs a hyperplane or a set of hyperplanes in a multidimensional space, which 
can be used for classification and data regression for many applications.(26–31)  In this case study, 
good separation depends on the suitable choice of feature functions after DWT decomposition.  
The EMG raw data are obtained from the specified experiments for eight different persons.  Two 
classification patterns of EMG signals are captured using the DAQ card of NI 6024E.  The first 
pattern is to lift his or her leg and the second pattern is just to stand at rest.  The first pattern is 
used to identify the patient’s movement intention; the raw data of EMG signals are recorded when 
the patient is lifting his or her leg twenty times.  The second pattern is established for the pattern of 
standing at rest.  
	 Case I:  To capture the EMG raw data, there are eight different persons lifting their legs 
or standing at rest twenty times.  Therefore, each type of collected EMG signal has 160 group 
characteristic signal data sets, with a total of 320 group characteristic data sets.  Therefore, we can 
obtain two sets for SVM classification.  To find the best choice of SVM classification, the different 
feature functions in Eqs. (8)–(14) with D3, D4, and D5 in the DWT decomposition are analyzed.  
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For this case study, all testing group data are the same as the training group data.  By using the 
different feature pairs for the SVM classifier, the feature pairs of MAV + Max, Norm + RMS, and 
Norm + MAV using the D5 wavelet component have the highest recognition rate of 100%, as shown 
in Table 1.  
	 Case II:  For the above classification test in Table 1, all testing group data are the same as the 
training group data.  However, to obtain a robust SVM classifier, the second experiment uses an 
outside testing method whose testing group data are different from the training group data.  Each 
training group data is not placed in the testing group data.  The characteristic signals of each 
person at different states are divided into a training group set (160 data) and a testing group set (160 
data).  In the first case study, the SVM classifiers using the feature pairs of MAV + Max, Norm + 
RMS, and Norm + MAV of the D5 wavelet component have the highest recognition rate.  Therefore, 
the second case study focuses on the above three SVM classifiers.  Table 2 shows the experimental 
results for the all-training, half-training, and external testing cases.  The results show that the SVM 
classifiers using the feature pairs of MAV + Max and Norm + MAV have the highest recognition 
rate of 100% for the external testing case.  Therefore, the proposed real-time trigger control of the 
PAM rehabilitation robot uses the SVM classifiers of MAV + Max with the D5 wavelet component 
to identify the movement’s intention.  Figure 8 shows the real-time experimental result for the PAM 
rehabilitation robot using the proposed EMG-triggered controller.  The first and second figures 
show the tracking response for the proposed PAM actuated rehabilitation lower-limb robotic 
system and the third figure shows the captured EMG signal from the patient.  The experimental 
results obtained using the proposed DWT + SVM classifier validate the proposed EMG-triggered 
controller.

Table 1
Recognition rates for the different feature functions.

D3 (%) D4 (%) D5 (%)
MAV + Max   97.18   98.43 100
MAV + Range   97.81   98.43         99.37
Range + Sum   97.81   98.43         99.06
Norm + RMS 97.5   98.12 100
Norm + MAV   96.87   98.43 100
Norm + Sum   52.19 60.6         60.31
Norm + Max   96.87   98.75         99.06
Norm + Min 97.5   98.43         99.06
Norm + Range   97.81   98.43         99.06

Table 2
Experimental results for the all-training, half-training, and external testing cases.

SVM/D5 All training for testing
(%)

Half training for testing
(%)

External testing
(%)

MAV + Max 100 100 100
Norm + RMS 100       99.6         98.12
Norm + MAV 100 100 100
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5.	 Conclusions

	 In this paper, we propose a new EMG-triggered controller for the self-designed PAM actuated 
rehabilitation robotic system.  In this study, we focus on how to identify patients’ movement 
intention to realize the proposed EMG-triggered controler.  Therefore, we use DWT for EMG 
signals to observe the key feature that depends on the patient’s movement intention.  EMG raw 
signals are decomposed into six components with five-level MRA, which are A5, D1, D2, D3, D4, 
and D5.  To choose the best SVM, the different feature functions with D3, D4, and D5 in the DWT 
decomposition are analyzed.  Using the different feature pairs for an SVM classifier, the feature 
pairs of MAV + Max, Norm + RMS, and Norm + MAV using the D5 wavelet component have 
the highest recognition rate of 100%.  To test the robustness for external testing cases, the SVM 
classifiers using the feature pairs of MAV + Max and Norm +MAV have the highest recognition rate 
of 100%.  Therefore, the proposed real-time trigger controller uses the SVM classifiers of MAV + 
Max with D5 to identify the movement’s intention.  The final real-time experimental result for the 
PAM rehabilitation robot validates the proposed EMG-triggered controller.
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Fig. 8.	 (Color online) Real-time experimental result obtained using the proposed EMG-triggered control.
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