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 In this study, a smart automatic health status diagnosis and monitoring scheme for an 
integrated-circuit-piezoelectric (IEPE)-type accelerometer is presented.  In China Steel Corporation 
(CSC), IEPE-type accelerometers have been widely and frequently used for machine vibration 
measurement.  Since a valuable monitoring report always counts on the precise measurement of 
IEPE-type accelerometers, the health condition of the sensors must be guaranteed.  However, 
there are now more than two thousand IEPE accelerometers attached to field machines and some 
of them are not easy to reach.  The point-by-point diagnosis of those sensors by field workers 
will require a large maintenance effort and is not efficient.  As a result, in the pursuit of the so-
called smart factory and the enhancement of the production process as well as attenuate numerous 
human maintenance efforts, a graphical histogram algorithm (GHA) health condition diagnosis and 
monitoring strategy is proposed.  By the analysis of the histogram distribution and the use of spline 
interpolation on the IEPE accelerometer excitation signals, characteristic profiles can be extracted.  
Therefore, different health conditions should be classified systematically.  Finally, the status of 
IEPE accelerometers can be automatically identified by estimating the correlations between the 
characteristic profiles.  Experiments have been conducted to verify the feasibility of the proposed 
GHA.

1. Introduction

 The Iron & Steel Research & Development Department (I&S-R&D) of China Steel Corporation 
(CSC) began its development of intelligent facility diagnosis methods in 2006.  With the 
accumulation of critical sensing data from equipment and facilities under operation, the research 
department has implemented dozens of monitoring and predictive maintenance solutions on CSC’s 
strip mills.  The development outcomes are highly influential to the company’s improvement of 
reducing operation cost, and to its aim of increasing production line reliability by implementing an 
intelligent diagnosis system.(1−4)

 The CSC’s R&D department spent two years to fully develop its first online monitoring system, 
which was named “Facility Online Monitoring and Diagnosis System (FOMOS)”, and began its 
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implementation on the production line in 2008.  The core technique of the diagnosis method is 
to analyze the vibration signals gathered from the accelerometers attached to the equipment such 
as milling machines,(1) bearings,(5) high-speed motors,(6) and certain electrohydraulic systems.(7)  
This allows the real-time monitoring of the operation condition of the facility.  FOMOS provides 
detailed insight into the causes of equipment malfunction and produces alerts and warnings, which 
are significantly helpful for onsite operators to take proper actions in a short response time. By 
implementing FOMOS, reducing downtime caused by unexpected equipment malfunction can 
be achieved, and this benefits the company by reducing lost profit and increasing the equipment 
lifetime. 
 FOMOS has been vastly implemented in CSC production lines, and more than two thousand 
integrated-circuit-piezoelectric (IEPE)-type(8) accelerometers have been attached to equipment in 
the field.  In facilities, most are under harsh environment with high temperature and high humidity; 
this makes the accelerometers prone to damage and, ultimately, malfunction.  This indicates that, 
for the results from a diagnosis system to be trustworthy, ensuring that the accelerometers are 
in a healthy condition is a crucial first step to further ensure the signal reliability of the entire 
diagnosis system.  If an abnormally operating accelerometer is not identified, this will further 
corrupt the diagnosis results produced by the monitoring and analysis system.  Furthermore, the 
accelerometers are distributed around a large operation space, and thus conducting a field check by 
manpower is extremely inefficient; even if one check point only takes up 5 to 10 min, the overall 
time consumption will be tremendous.  While under a harsh environment, dispatching workers to 
perform an onsite check also increases the risk of the workers.  Both putting employees in danger 
and increasing maintenance cost are not desirable options.
 During the conduct of this research, it has been found that the characteristics of the excited 
signals acquired from accelerometers may vary from one another.  Furthermore, the signal 
characteristics are highly dependent on data acquisition (DAQ) devices.  In other words, if the DAQ 
hardware is replaced, the signal acquired from the new hardware set may vary from the original 
one.  Thus, without the adaptability of the classification algorithm, the results of the classification 
may be different from the real situation.
 In the literature, publications regarding this issue are rare.  To more effectively solve the 
problem mentioned above, in this research, we proposed a health condition diagnosis method for 
an IEPE-type accelerometer.  By measuring the AC/DC excited-signal dynamic characteristics 
of the accelerometer, and with an established mathematical model to learn to classify the results, 
the health condition of the accelerometer can be determined.  At the same time, the problem of 
the dependence of the signal on the DAQ hardware is solved.  With the aid of this technique in the 
field, the sensor status can be identified automatically.  Therefore, local field technicians will be 
notified if any maintenance is required.  
 Last but not the least, in this research, we have proven the reliability of the technique after 
performing reliability tests with a thousand data sets, and the algorithm has already been 
implemented under the original FOMOS structure.  The accelerometer diagnosis method provided 
by this research not only reduces the human resources and human risk to perform maintenance 
check on the conditions of accelerometers, but also realizes factory automation and self-diagnosis 
through the implementation of the intelligent diagnosis system.
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2. Graphical Histogram Algorithm (GHA)

 According to reports on the condition of on-field accelerometers, the operating condition and 
their corresponding excited signal differences may be classified under five categories: (a) normal, 
(b) reverse connection, (c) open circuit, (d) short circuit, and (e) abnormal.  For the response signals 
of the first four categories mentioned above, see also Fig. 1.  If the signal characteristics are not 
categorized in the first four types, then they are classified as abnormal.
 However, since the recorded response signals may vary when using different DAQ cards, the 
characteristics of the recorded response signals may be different if different DAQ hardware sets 
are used to record the same accelerometer.  In other words, since the signal characteristics of the 
above-mentioned five categories are coupled with the characteristics of the DAQ hardware set used 
for their respective data recording, this may lead to wrong classification results.  For example, Fig. 
2 shows the AC/DC excited signal recording of the same normal-operating accelerometer.  With the 
use of different DAQ hardware sets (e.g., NI-PXI DAQ and NI-Compact DAQ) for data collection, 
the signal dynamic characteristics vary.  In addition, there are many other equipment that exist on 
the same site, causing interference and noises during measurement and recording, lowering the 

Fig. 1. IEPE-type accelerometer AC/DC excited signals under different conditions. (a) Normal, (b) reverse 
connection, (c) open circuit, and (d) short circuit.
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accuracy of the classification results.
 To tackle the above-mentioned challenge, in this research, we proposed a learning algorithm 
to automatically extract characteristics from excited signals, so as to solve the signal coupling 
problem and increase the flexibility of hardware arrangement and diagnosis robustness.  By 
utilizing a signal preprocessing method, we can increase the stability of the acquired excited 
signals and significantly increase the reliability of the characteristic learning model.  Lastly, the 
developed system automatically compares the correlation of the AC/DC excited signals with the 
trained model to finish the process of automatic classification and diagnosis.

2.1	 Signal	prefilter	design

 In most industrial applications, IEPE-type accelerometers are used in harsh environments, 
while being simultaneously exposed to interference caused by various surrounding equipment.  
Thus, during measurement, signal noises may be added to the records.  Figure 1 shows the AC/DC 
excited signal acquired in a lab environment.  However, measurements taken in a real industrial 
environment may be subject to differences caused by environment uncertainty.  As a result, to 
construct a robust histogram, the uncertain noise must be analyzed and removed from the AC/DC 
excited signals.  In the following, a finite impulse response (FIR) digital filter is considered.
 Consider a linear time-invariant system with the impulse response h[n]; the output sequence 
y[n] is related to the input sequence u[n] through the convolution sum
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Fig. 2. AC/DC excited signals acquired from normal-operating multichannel accelerometer using different DAQ 
cards.  Device: (a) NI-PXI DAQ and (b) NI-Compact DAQ.
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 y[n]= h[n] × u[n] =
∞∑

m=−∞
h[m]u[n − m] =

∞∑
m=−∞

h[m]e jω(n−m)

=


∞∑

m=−∞
h[m]e− jωm

 e jωn =


∞∑

m=−∞
h[m]e− jωm

 u[n]

= H( jω)u[n]

 

(1)

where u[n], y[n], and H( jω) are filter input, output, and frequency response, respectively.
 Specify Eq. (1) using a moving average filter as follows:

 yout(k) =
1
N

N−1∑
i=0

uin(k − i). (2)

From Eqs. (1) and (2), it follows that

 H( jω) =
∞∑

m=−∞
h[m]e− jωm =

1
N

∞∑
m=0

e− jωm =
1
N
· 1 − e− jωN

1 − e− jω . (3)

Note that the window size N must be designed for a specific filtering purpose, which represents Eq. (3) 
by

 H( jω)
1
N
· e− jωN/2

e− jω/2 ·
sin(ωN/2)
sin(ω/2)

, (4)

where the magnitude response is

 |H( jω)| = 1
N
·

∣∣∣∣∣∣∣∣
e− jωN/2

e− jω/2 ·
sin
(
ωN
2

)

sin
(
ω
2

)
∣∣∣∣∣∣∣∣
=

1
N
·

∣∣∣∣∣∣∣∣
sin
(
ωN
2

)

sin
(
ω
2

)
∣∣∣∣∣∣∣∣
. (5)

Equation (5) shows that |H( jω)| = 0 when ωN = 2nπ, n ∈ Z+.  Equation (5) shows that, for a given N, 
specific multiband frequencies,

 ω = ωb = 2nπ/N , (6)

are removed from raw signals, as illustrated in Fig. 3.  For practical implementation, the window 
size N is determined from the results of frequency spectrum analysis.

2.2	 Cubic	spline	for	characteristic	profile	construction

 For different IEPE-type accelerometer profiles, time domain responses are represented by 
histograms.  Since a histogram provides signal distribution features for different sensor conditions, 
the following is for constructing the characteristic profile using a cubic spline.(9,10)

 For a given histogram, the tips of the bars can be connected by a general cubic spline defined as 

,
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 fi = ai + bi(t − ti) + ci(t − ti)2 + di(t − ti)3, (7)

where ai = xi and i = 1, ..., n.  The variables ai, bi, ci, and di are the profile coefficients and (ti, xi) 
represents the information of bars from the given histogram.
 To achieve a smooth and continuous characteristic profile, the following equations must be 
satisfied simultaneously.

 xi + bihi + cih2
i + dih3

i = xi+1 (8)

 bi + 2cihi + 3dih2
i = bi+1 (9)

 ci + 3dihi = ci+1, hi = ti+1 − ti  (10)

Considering that the 2nd derivatives at the first and last points are zero leads to c1 = cn = 0.
 Let di = (ci+1 − ci)/3hi.  Equations (8) and (9) can be represented by

 xi + bihi +
h2

i

3
(ci+1 + 2ci) = xi+1, (11)

 bi + (ci+1 + ci)hi = bi+1, (12)

respectively.  Equation (11) can be written as 

 bi =
xi+1 − xi

hi
− hi

3
(ci+1 + 2ci). (13)

Considering the index i−1 for Eqs. (12) and (13) gives

 bi−1 + (ci−1 + ci)hi−1 = bi, (14)
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Fig. 3. (Color online) Frequency response of the signal prefilter.
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 bi−1 =
xi − xi−1

hi−1
− hi−1

3
(ci + 2ci−1). (15)

Substituting Eqs. (13) and (14) into Eq. (15) gives

 ci−1hi−1 + 2(hi−1 + hi)ci + ci+1hi = 3
xi+1 − xi

hi
− 3

xi − xi−1

hi−1
. (16)

Equation (16) can be written as a matrix from 

     



1 0 · · · 0 0
h1 2(h1 + h2) h2 0 0
...

...
. . .

...
...

0 0 hn−2 2(hn−2 + hn−1) hn−1
0 0 · · · 0 1





c1
c2
...

cn−1
cn


=



0
3( f [t3, t2] − f [t2, t1])

...

3( f [tn, tn−1] − f [tn−1, tn−2])
0


, (17)

where f [ti,ti] = (xi − xj)/(ti − tj).

2.3	 Characteristic	profile	correlation

 From the results described in Sects. 2.2 and 2.3, the characteristic profiles of AC/DC signals for 
all the IEPE-type accelerometer conditions (i.e., normal, abnormal, and so on) can be modeled by 
Eq. (7) subject to different coefficients.  
 As a result, for a given IEPE-type sensor to be measured, the health status can be detected by 
evaluating the correlation coefficient among all the characteristic profiles as follows:

 η =
Coν(ymodel, ysensor)
σmodel · σsensor

, (18)

where ymodel and ysensor represent the characteristic profiles from the model set and new 
measurement, respectively. σmodel and σsensor are the corresponding deviations.  In other words, for 
a given IEPE-type sensor, the characteristic profile is firstly determined and then the classification 
can be carried out by calculating the correlation coefficient between all the models.
 The procedure of the IEPE-type sensor health monitoring and detection is summarized in Fig. 
4.  The automatic abnormality diagnosis technique proposed in this research can be separated into 
two main parts.  The first part is shown in the left part of the flow chart, which includes feature 
extraction and characteristic profile construction.  In order to establish the database, the first step 
is to collect datasets from accelerometers under different operation conditions.  Through noise 
filtering, multiple histograms can be established.  Next, using the cubic spline, one may extract the 
characteristic functions from the distribution results of the histograms.  Lastly, these characteristic 
functions will be used as the AC/DC signal feature golden patterns.  We may use such golden 
patterns to identify the unknown operation conditions of the accelerometer by comparing the 
unknown data with the established golden pattern.
 In the second part of the process, which is shown in the right half of the flow chart, feature 
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matching is performed.  By performing the same steps from the first part to establish the GHA 
module of the signals from the unknown accelerometer, the characteristic function of the status-
unknown accelerometer may be established.  Then, a coefficient correlation analysis between the 
generated characteristics function with the golden pattern may be performed; this then finishes the 
diagnosis.  
 Through the process described above, the IEPE-type accelerometer automatic condition 
diagnosis algorithm can effectively differentiate the four different conditions mentioned above 
and can achieve accelerometer automatic abnormality diagnosis.  Moreover, the algorithm 
adopts an independent learning method in order to provide more robust accelerometer condition 
diagnosis results, and the method also overcomes the challenge raised by the different electrical 
characteristics of the different electrical hardware sets used.

3. Experiment

 In the experiment, a NI-DAQ system shown in Fig. 5 is applied as the measurement platform 
and the algorithm is realized by LABVIEW.  To illustrate the feature of the prefilter used in the 
proposed GHA, DC signals subject to different levels of measurement noise are demonstrated.  
 Figure 6 illustrates DC excited signals of three normal sensors from a local field subject to 
clear surrounding AC current perturbations.  According to the frequency spectrum, it is clear that 
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Fig. 4. (Color online) Automatic IEPE-type accelerometer health sensing procedure.
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Fig. 5. (Color online) DAQ system setup.
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their noise levels are different.  The corresponding histograms are shown in Figs. 7(a)–7(c), which 
illustrate less feature consistency.  From the noise distribution, noise peaks are observed 59, 177, 
295, and 413 Hz.  Hence, for the given sampling rate of 1 kHz, the window size for the prefilter 
is set to be 17, which results in Figs. 7(d)–7(f).  It is evident that, by applying the prefilter, the 
robustness of the histogram can be significantly improved.
 On the basis of the given data of a few sensors, the model for each health status can be 
constructed.  Figure 8 illustrates the averaged histograms for the excited AC/DC signals collected 
from normal IEPE sensors, where the red lines represent the corresponding characteristic profiles.  
Once the models are completed, the final step is to evaluate the correlation coefficients.
 Tables 1 and 2 show the correlation evaluation results of ηAC and ηDC, respectively.  These tables 
clearly show that the correlation coefficients are mostly higher than 0.9 if the sensor conditions are 
matched.  However, since certain mismatched sensor conditions could also return η > 0.9, decision 
making must consider ηAC and ηDC simultaneously.  In other words, the final health detection result 
is made by using η = ηAC × ηDC and the maximum η returns the diagnosis class.
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4. Conclusions

 In this research, an automatic health condition diagnosis method for an IEPE-type 
accelerometer, which is widely used in CSC facilities, is developed.  By acquiring the AC/DC 
coupling charge and discharge dynamic response signals from the accelerometer, the developed 
algorithm then uses the cubic spline to compute the models corresponding to the categories.  The 
trained model can then be used for accelerometer automatic abnormality diagnosis.  While using 
this proposed diagnosis method, the excited signals acquired from the tested accelerometers 
will be compared with the trained golden patterns.  Then, the diagnosis results will be sent to 
technicians immediately, while providing suggestions on the condition of the abnormally operating 
accelerometers.  The proposed algorithm has been successfully integrated into the recent CSC-
FOMOS, increasing the completeness and performance of the vibration diagnosis function.  After 
on-field testing, the method is proved to perform robust accelerometer automatic health condition 
diagnosis.  Also, the method provides technicians with suggestions on the abnormality category.  
This results in significant reductions in time and human resources needed to perform health check 
on accelerometers.  At the same time, through programmable software, the method enables CSC 
facilities to realize fully automatic self-monitoring and diagnosis of the accelerometer health 
condition.  Finally, experiments are performed to verify the feasibility of the proposed GHA.
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