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	 An energy harvesting antenna array for wireless sensor applications is presented in this 
paper.  The microstrip line feeding network excites four slots to achieve wireless local-area- 
network (WLAN) 2.4/5.2/5.8 (2.4–2.484/5.15–5.325/5.725–5.825 GHz) bands.  The design is 
printed on a flame retardant 4 (FR4) substrate with thickness of 1.6 mm, permittivity of 4.4, 
and loss tangent of 0.0245.  The overall size of the antenna array is only 60 × 60 × 1.6 mm3 and, 
with dual-ports, consists of two antenna arrays; port 1 is designed for a WLAN 2.4 GHz band 
and port 2 is designed for a WLAN 5.2/5.8 GHz band.  The feeding network (electric length 
= λg/4) was used to connect the array network and antenna, and for the purpose of in phase 
excitation, we used microstrip lines (electric length = λg/2) to adjust the phase difference of 
these two antenna elements to 180°.  Finally, 8 mm above the antenna array, we placed a metal 
reflector the same size as the antenna to adjust the radiation patterns to the −y direction and to 
enhance the radiation directivity and gains.

1.	 Introduction

	 With the continuous progress of the Internet of Things (IoT), sustainable electric power has 
played an important role in the development of all kinds of electronic products.  Additionally, 
by energy harvesting and wireless power transmission techniques, environmental energies (solar 
energy, heat, electromagnetic energy, vibration energy, etc.) may be harvested and transformed 
to electrical energy for the applications of the modern products of the IoT.  The dipole design 
technique has been used to develop antennas applied to energy receivers or transducers.(1,2)  For 
converting and harvesting the RF energy, a rectenna array with high gains, linear polarization, 
and miniature structure was designed, which can be matched to rectifier circuits.(3–6)  A dual-
band Yagi antenna was designed for the global system for mobile communications (GSM-1800) 
and for universal mobile telecommunications system (UMTS-2100) bands.  The antenna gains 
for GSM-1800 and UMTS-2100 bands are up to 10.9 and 13.3 dBi, respectively.  Hence, through 
the circuits, this antenna can be used in energy harvesting for  electric power of 300–400 
mW.(7)  An antenna with a simple structure, a central frequency of 2.45 GHz, a gain of 8 dBi, 
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and an efficiency of 50% was presented and applied to energy conversion.(8)  An antenna was 
developed for energy harvesting systems and for cooling performance concerns, for which the 
authors used a vertical metal plate to diminish the inference of back-lobe effects.(9,10)  Using the 
microstrip structure, the authors developed an antenna with high gains that can be applied to 
WiFi and to the Portuguese digital terrestrial television (DTT) signal of 0.754 GHz.(11,12)  The 
combination of patch and slot techniques was achieved, a dual-fed slotted circular polarization 
antenna was designed and with the reflector, high antenna gains were easily obtained.(13,14)  
The signal transmitted from a cell tower can be received easily through the energy harvesting 
system; its operating band was 0.877–0.998 GHz and the optimum gain was up to 9.1 dBi.(15)  
As mentioned, it can be seen that, by using an antenna array and rectified circuits, AC 
electromagnetic energy can be received and transformed to DC energy for application to low 
power electronic products.  In this paper, using the slots and two pairs of antenna arrays, we 
excite triple bands of wireless local-area-network (WLAN) 2.4–2.484, 5.15–5.35, and 5.725–5.825 
GHz.  Finally, for sensing and converting electromagnetic energy effectively, we also used a 
metal reflector to enhance the gains, modify the radiation patterns, and improve the directivity 
for future energy harvesting applications.

2.	 Antenna Design

	 The proposed 60 × 60 × 1.6 mm3 slot antenna operating at WLAN 2.4–2.484, 5.15–5.325, 
and 5.725–5.825 GHz was fabricated on a flame retardant 4 (FR4) substrate, which was 1.6 mm 
thick and has a permittivity of 4.4 and a loss tangent of 0.0245.  As indicated by the geometry 
shown in Fig. 1(a), the 50 Ω microstrip line was used to feed into ports 1 and 2.  Additionally, 

Fig. 1.	 (Color online) Geometry of the designed antenna array.  (a) Top and (b) 3-D views.

(a) (b)
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two pairs of antennas (leveled Antenna 5.15/5.825-a, Antenna 5.15/5.825-b, Antenna 2.4-a, and 
Antenna 2.4-b) were designed, and the total length of the slot was λg/2 (the electric lengths of 
2.4 and 5.15 GHz are 60 and 29 mm, respectively).  For antenna gains, radiation efficiency, 
and directivity improvement, a metal reflector (60 × 60 × 0.8 mm3) of the same size as the 
substrate was placed upon the proposed antenna at a distance of d from the array, as Fig. 1(b) 
shows.  The design is composed of two pairs of arrays of antennas; in addition, Antenna 2.4-
a and Antenna 2.4-b are operated at the WLAN 2.4 GHz band, while Antenna 5.15/5.825-a and 
Antenna 5.15/5.825-b are operated at the WLAN 5.2/5.8 GHz bands.  In this array, the same 
impedance was designed for these two pairs of antennas, but because of the different operating 
bands (2.4 and 5.2/5.8 GHz), their electric lengths were unequal.  Figure 2 shows the microstrip 
line feeding network; sections bc and fh are 100 Ω micristrip lines with electric lengths of λg/4 
and widths of 0.7 mm; they connect to upper slots.  Because the phase differences between 
these two pairs of antennas (Antenna 5.15/5.825-a and Antenna 5.15/5.825-b, Antenna 2.4-a and 
Antenna 2.4-b) are all equal to 180°, we inserted λg(2.4)/2 (theoretical value) into section bd and 
λg(5.15/5.825)/2 (theoretical value) into section fg to adjust their phase differences, as Eqs. (1)–
(4) described.  Hence, for these antenna pairs, in-phase excitation and gains improvement can 
be obtained easily and, at this point, the impedances of point b and point f are equal to 50 Ω 
because the two 100 Ω (bc in parallel with bd; fh in parallel with fg) are in parallel.

Fig. 2.	 Microstrip line feeding network and impedance of nodes.
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	 fh =
1
4
λg(5.15/5.825)	 (1)

	 fg =
3
4
λg(5.15/5.825)	 (2)

	 bc =
1
4
λg(2.4)	 (3)

	 bd =
3
4
λg(2.4)	 (4)

3.	 Results and Discussion

	 To investigate the inferences corresponding to different distances (d values) of the metal 
reflector, Figs. 3–5 show the simulated return loss (S11 and S22) and antenna gains (at −y 
direction) at low operating frequency (2.4–2.484 GHz) and high operating frequency (5.15–5.325 
and 5.725–5.825 GHz).  Figure 3 shows that, as the distance increases, the bandwidth of 2.4–2.484 
GHz bands increases from 120 MHz (d = 6 mm) to greater than 620 MHz (d = 30 mm).  But 
the overall dimensions are too large for practical applications when d = 30 mm.  The simulated 
optimum antenna gain (4.5 dBi) occurs at d = 8 mm for the 2.4–2.484 GHz bands.  Figures 4 
and 5 show the simulated S22 values and antenna gains (in the −y direction) of 5.15–5.325 and 
5.725–5.825 GHz bands.  It can be seen that the bandwidth reveals the same tendency as at low 
frequency.  The simulated optimum antenna gains are 6 dBi (d = 6 mm) and 5.7 dBi (d = 8 mm) 
for the 5.15–5.325 GHz bands and 5.725–5.825 GHz bands, respectively.  By considering the 
simulated antenna characteristics and the final overall dimensions, in this study we chose 8 mm 
as the optimum distance between the metal reflector and the antenna array.

Fig. 3.	 (Color online) (a) Simulated S11 and (b) antenna gains (in the −y direction) for different d values (2.4–2.484 
GHz).

(a) (b)
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	 When the metal reflector was placed in the +y direction at a distance of 8 mm, Fig. 6 shows 
the simulated and measured S parameters (S11, S12, and S22) of the proposed antenna in the −y 
direction.  It can be observed that all the measured S parameters are in good agreement with 
the simulated ones for the 2.4–2.484 GHz bands.  All the S11 values are below −10 dB, and the 
measured isolation (S12) is lower than −24 dB; this means that the mutual effect of these two 
antennas is only 0.4%.  On the other hand, for the 5.15–5.825 GHz bands, all the S11 values 
are below −10 dB and some disagreement in the S parameters is observed due to fabrication 
errors.  Finally, the measured S12 is lower than −25 dB; this means that the mutual effect of 
these two antennas is only 0.32%, which is low enough for modern sensor or energy harvesting 
applications.
	 Figure 7 shows the measured 2-D radiation patterns of the designed antennas with a metal 
reflector at 8 mm distance for 2.45, 5.15, and 5.82 GHz, respectively.  Comparing all the X–Y 
and Y–Z planes, it can be observed that, owing to the metal reflector, all the radiation patterns of 
these bands become more focused in the −y direction, especially the 2.45 GHz radiation.  This 
means that the proposed antenna has the advantage of good directivity in the −y direction.  For 

Fig. 4.	 (Color online) Simulated S22 parameters (in the −y direction) for different d values (5.15–5.825 GHz).

Fig. 5.	 (Color online) Simulated antenna gains (in the −y direction) for different d values.

(a) (b)
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Fig. 6.	 (Color online) Measured and simulated S Parameters (in the –y direction) of the proposed antenna (d = 8 
mm).

Fig. 7.	 (Color online) Measured 2-D radiation patterns (d = 8 mm).  (a) 2.45, (b) 5.25, and (c) 5.75 GHz.

(a) (b)

(c)
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high frequencies, the wavelength of the 5 GHz band is only about 14 mm, but the dimensions 
of the proposed antenna are 60 × 60 × 1.6 mm3, which is bigger than the wavelength.  As the 
microstrips couple with ground plane and generate high frequency bands, more null points and 
shifts of radiation patterns are observed for 5.25 and 5.75 GHz.
	 The measured antenna gains and radiation efficiencies (in the −y direction) of the proposed 
design with metal reflector at 8 mm distance (in the +y direction) are shown in Fig. 8 and 
collated in Table 1.  For the 2.4–2.484 GHz bands, the antenna gains varied between 3.5 and 4 
dBi, and the radiation efficiencies varied from 60 to 69%.  For the 5.15–5.35 GHz bands, the 
antenna gains varied between 5.1 and 6 dBi, and the radiation efficiencies varied from 52 to 
59%.  Finally, for the 5.725–5.825 GHz bands, the antenna gains varied between 5.2 and 5.8 

Fig. 8.	 (Color online) Measured antenna gains and radiation efficiencies with reflector (d = 8 mm).  (a) 2.38–2.5, (b) 
5.1–5.4, and (c) 5.7–5.9 GHz.

(a) (b)

(c)

Table 1
Results of measured antenna gains and efficiencies (d = 8 mm).
Bands (GHz) Max. gain (dBi) Min. gain (dBi) Max. efficiency (%) Min. efficiency (%)
2.4–2.484 4 3.5 69 60
5.15–5.35 6 5.1 59 52
5.725–5.825 5.8 5.2 61 50
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dBi, and the radiation efficiencies varied from 50 to 61%.  As mentioned previously, because 
the variations of antenna gain and efficiency are only 0.5 dBi and 9% for 2.4–2.484 GHz bands, 
0.9 dBi and 7% for 5.15–5.35 GHz bands, and 0.6 dBi and 9% for 5.725–5.825 GHz bands, 
the proposed antenna reveals good and very stable gains and radiation efficiencies in the −y 
direction.  These are important properties for sensor or energy harvesting applications.

4.	 Conclusions

	 A design of a triple-band (WLAN 2.4, 5.2, and 5.8 GHz) slot antenna array with good 
and stable antenna gains and radiation efficiencies for modern energy harvesting of wireless 
sensor applications was presented.  A metal reflector at a distance of 8 mm is added above 
the antenna array to enhance the array’s radiation directivity and gains.  The simulated and 
measured return losses are in good agreement, and the measured and simulated S11 and 
S22 values are all lower than −10 dB.  As listed in Table 1, at lower frequencies (2.4–2.484 
GHz bands), the optimum gain and efficiency are 4 dBi and 69%, and its isolation is about 
−24 dB.  Furthermore, at higher frequencies (5.15–5.35 and 5.725–5.825 GHz bands), the 
array’s optimum efficiencies are 59 and 61%, the optimum gains are 6 and 5.8 dBi, and the 
isolation is only −25 dB.  Finally, the proposed antenna array can involve all the WLAN 2.4, 
5.2, and 5.8 GHz bands for sensing even converting electromagnetic energy effectively for 
the IoT or applications to low power electronic products.
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