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	 Human–computer interaction (HCI) is a trend of technology evolution toward making our 
life more convenient and easier.   In some circumstances where hands cannot conveniently 
touch equipment, the hand gesture recognition system is a good solution for HCI.  A real-time 
hand gesture sensing and recognition system is proposed and its application to TV channel 
and volume control is examined in this study.  The digital signal processor (DSP) DM6437 of 
Texas Instruments is used in our portable hand gesture recognition system.  For the real-time 
recognition of hand gestures, we propose a novel finger skin pixel algorithm to quickly and 
easily distinguish the hand in a complex image.  The region of interest is used to reduce the 
amount of computation.  Hand features are detected in two steps.  First, the thumb and pinkie 
are recognized on the basis of significant shape features.  Second, a circle is defined from the 
hand center for threshold decomposition to count the number of fingers.  The hand gesture 
recognition rate is 94.3%.  The hand trace direction can be found easily by using a hand gesture 
center point in our system.  Finally, our system is applied to TV channel and volume control 
using hand gestures and hand tracing.

1.	 Introduction  

	 In some circumstances where hands cannot conveniently touch equipment, such as in 
medical environments and in the kitchen, the hand gesture recognition system is a good solution 
for human–computer interaction (HCI).  Hand gesture recognition is also popularly applied in, 
for example, virtual simulation, sign language recognition, and computer games.(1)

	 Data gloves and vision-based recognition are popular and frequently used to capture images 
for hand gesture recognition.  Although data gloves have higher accuracy, those equipped with 
many sensors are expensive.  Data gloves(2) are also inconvenient for users who must wear them 
for gesture recognition.  Therefore, the vision-based gesture recognition system for a user’s 
bare hand is adopted in our research.  Recently, a popular peripheral device called Microsoft 
Kinect(3) for Xbox 360 was developed for hand gesture recognition.   The Kinect depth map 
improves the robustness of hand capture; it is, however, expensive. Thus, a low-cost CCD 
camera is used in our system.  
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	 References 3–7 describe studies on image or gesture recognition mostly developed on PCs.  
In Ref. 8, a digital signal processor (DSP)-based gesture recognition system is described.   It 
only traces the hand but does not identify hand gestures.  Other DSP-based systems, which only 
recognized four hand gestures, are proposed in Refs. 9 and 10.  TV channel control using the 
numbers 0 to 9 is difficult to accomplish remotely using only four hand gestures.
	 A DSP, DM6437 of Texas Instruments, is used for our portable hand gesture recognition 
system.  For the real-time hand gesture sensing and recognition system, we propose a finger 
skin pixel algorithm to quickly and easily distinguish the hand in a complex image and use the 
region of interest to reduce the amount of computation.  The hand trace direction can be found 
easily using a hand gesture center point in our system.  Finally, our system is applied to TV 
channel and volume control using hand gestures and hand tracing.

2.	 System Hardware Platform

	 The system hardware framework is shown in Fig. 1.  The DSP evaluation module (EVM) 
DM6437 EVM is developed by Texas Instruments.
	 First, the camera captures phase alternating line (PAL) images and transfers them to the 
DM6437 EVM for computation and recognization. The computation and recognition results 
are displayed on a monitor.  The monitor is optional and can be removed after the system is 
fine tuned.  The computation and recognition processes will be described in later sections.  
The 89SC51 and SC51P0304 circuits are designed as an infrared remote controller, which is 
connected to the DM6437 EVM with an RS-232 serial interface.  The infrared remote controller 
achieves TV channel and volume control using the DM6437 EVM recognition results.
	 The single-core DSP-board DM6437 EVM DaVinci™ platform was developed by Texas 
Instruments (TI) in 2006.   It is belongs to the TMS320C64x+™ series with corresponding 
function libraries for image processing.  The clock rate of DM6437 can be up to 700 MHz, and 
it can realize 5600 million instructions per second (MIPS).(11)  The integrated development 
environment of the DSP-board DM6437 is Code Composer Studio.

Fig. 1.	 Hardware framework.
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3.	 Hand Region Detection 

	 For a hand gesture recognition system, it is important to distinguish a hand from a complex 
background.  The flowchart of hand region detection is shown in Fig. 2.  First, the CCD camera 
captures dynamic images.  Second, the image preprocessing step makes the images stabler and 
clearer.  Third, the hand detection step identifies the hand region from the dynamic images with 
a complex background image.  

3.1	 Image preprocessing

	 The image preprocessing steps are as follows.  First, a more stable color image is obtained 
by an automatic white balance (AWB) process.  Second, the skin color regions in the image are 
detected, and then the image is changed into a binary image.  Finally, the noise of the binary 
image is removed using morphological erosion and dilation.  

3.1.1	 AWB

	 The color space YUV is used for DM6437.   Y means luminance, and U and V are 
chrominance.  For reducing the amount of computation, the subsample method YUV422 is used 

Fig. 2.	 (Color online) Flowchart of hand region detection.
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for DM6437.  A group of UY or VY is one pixel.  A macropixel combines a UY pixel and a VY 
pixel, as shown in Fig. 3.
	 The captured image colors might differ owing to various light sources.  Hence the perfect 
reflector assumption algorithm(12) is used to correct the white balance of the captured images.  
The brightest pixel in an image is considered as a white pixel.   If the brightest pixel is not a 
white pixel, then correct its brightness.   If the Y value of the brightest pixel is not 255, we 
correct it to 255, and the U and V of the brightest pixel are corrected to 128 in the macropixel.  
The corrected error values are applied to each pixel in the image to finish AWB.  
	 An AWB example is shown in Fig. 4.  The baseball is light yellow before AWB, as shown in 
Fig. 4(a).  After AWB, as shown in Fig. 4(b), the color temperature of the baseball is changed.  
The captured images with AWB have stable luminance characteristics and improve the 
recognition results.  

3.1.2	 Skin color detection

	 The skin color model is used to determine whether a macropixel of a color image is a skin 
color pixel or nonskin color pixel.  According to Ref. 13 and our experiments, the ranges of skin 
color are as follows.

	


65 < Y < 170
85 < U < 140
85 < V < 160

	 (1)

Fig. 3.	 (Color online) Order for YUV422.

Fig. 4.	 (Color online) (a) Before AWB.  (b) After AWB.

(a) (b)
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	 When the Y, U, or V in a macropixel satisfies Eq. (1), the macropixel is a skin color pixel.  
The skin color pixels are converted to white pixels and the others are converted to black pixels.  

3.1.3	 Noise cancellation

	 Noise is a troublesome problem in image processing.  To obtain a cleaner image with a 
smoother contour, we adopt morphological erosion and dilation.  The source image is shown in 
Fig. 5(a).  Erosion can eliminate noise and small convex points in an image.  The image will be 
shrunk after erosion, as shown in Fig. 5(b).  Dilation can fill cavities in an image and then the 
image contours will be smoother.  The image will be expanded after dilation, as shown in Fig. 
5(c).

3.2	 Hand detection

	 After image preprocessing, we obtain a clean skin color binary image and the hand region 
can be identified by hand detection described in Fig. 2.  First, the continuous skin color regions 
from the skin color binary image are sectioned by the region growing method, and then the hand 
region is detected using the finger skin pixel algorithm.  After determining the hand region, the 
computing region is reduced by the region of interest method.  Finally, the hand counters are 
detected using 4-Neighbor.

3.2.1	 Region growing method

	 Region growing is a region-based image segmentation method.   It can gradually expand a 
small region into a large one.  When a neighbor pixel of a region conforms to requirements, the 
pixel will become part of the region, until no pixel conforms.  The region growing(14) conditions 
are as follows.

i)	
⋃n

i=1
Ri = R

ii)	Ri is a connected region, i = 1, 2, …, n
iii)	Ri

⋂
R j = ∅ for all i = 1, 2, …, n

(a) (b) (c)

Fig. 5.	 (Color online) (a) Source image, (b) use erosion, and (c) dilation to reduce noise.



874	 Sensors and Materials, Vol. 30, No. 4 (2018)

iv)	P(Ri) = TRUE for i = 1, 2, …, n
v)	 P

(
Ri

⋃
R j
)
= FALSE for any adjacent region Ri and Rj

i) Each region must be present in the image R.  ii) Each region is connected.  iii) Each pixel can 
only be classified into one region.  iv) The pixels have the same characteristics within the same 
region.  v) The pixels in different adjacent regions have different characteristics.  
	 First, we scan entire image pixels.  An arbitrary white pixel is set as a starting point for 
region growing, and it expands outwards until it has no neighboring white pixels.  We can 
identify skin color regions from an image, as shown in Fig. 6(a).  Figure 6(b) shows face and 
hand regions after noise in Fig. 6(a) is removed with a threshold.

3.2.2	 Identify a hand using finger skin pixel algorithm

	 The hand and face are identified after region growing, and then the hand will be 
distinguished by hand detection.   The finger skin pixel (FSP) algorithm is proposed to 
determine whether the area is a hand or a face using hand features, as follows.  
	 First, the hand and face regions found by region growing are divided into two identification 
regions shown by the red blocks in Fig. 7(a).  We further divide each identification region into 2 

Fig. 6.	 (a) Region growing result.  (b) After removing noise.

(a) (b)

Fig. 7.	 (Color online) (a) Identification regions for FSP.  (b) Identification results of the 2 × 1 matrices.

(a) (b)
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× 1 matrices, as shown by the green matrices in Fig. 7(a).  The percentage of skin color pixels in 
each rectangular matrix box is calculated.  The hand gestures are defined in our research with 
the fingers pointing upwards and natural stretch characteristics.
	 Table 1 shows the occupancy rates of skin color pixels in the 2 × 1 matrices of the hand 
performing different hand gestures.  The occupancy rates are less than 30% in the upper 
rectangle, and are greater than 40% in the lower rectangle.  Table 2 shows the occupancy rates 
of skin color pixels in the 2 × 1 matrices of the face with and without glasses.  The occupancy 
rates of the upper and lower rectangles are both higher than 40%.  Hence, the occupancy rate of 
40% is defined as the threshold.  The rectangle is set as a black block when the occupancy rate 
of skin color pixels is lower than 40%; otherwise, it is set as a white block.  The identification 
results of the 2 × 1 matrices are shown in Fig. 7(b).  The hand has a black and white matrix, and 
the face has only a white block; therefore, the black and white matrix is the first feature matrix 
of a hand.  
	 The FSP identification regions with 2 × 1 matrices only can roughly identify a hand or a 
face from a skin color image, and the identification rate cannot reach 100% when using 2 × 1 
matrices.  A more sensitive detection is required.  The identification regions of FSP are then 
divided into 8 × 8 matrices, and the threshold of the occupancy rate of skin color pixels is the 
same as the 40% of the 2 × 1 matrices.  The identification results for different hand gestures 
using 8 × 8 matrices are shown in Fig. 8.  
	 The black and white matrices are defined as feature matrices.   In accordance with the 
features of the face and hand, the feature matrices of FSP are categorized into four groups, 
as shown in Fig. 9.   The first feature matrix is the 2 × 1 matrix, which is used to roughly 
identify the skin color region of a hand or a face, as in Fig. 7.  The black and white blocks of 
8 × 8 matrices in Fig. 8 are categorized into the second, third, and fourth feature matrices.  
The second feature matrix is used to identify the vertical fingers, and this feature is the most 
frequently occurring in our recognition samples.   The third feature matrix group is used to 
identify the lower left corner or the lower right corner of the hand.  The fourth feature matrix 
group is used to identify a thumb, a pinkie or a sloping finger.  

Table 1
Occupancy rates of skin color pixels in the hand 
matrices for different hand gestures.

Gesture Rectangle 
Upper (%) Lower (%)

Gesture 0 27.35 43.25
Gesture 1 12.56 52.53
Gesture 2 28.87 57.65
Gesture 3 27.76 57.35
Gesture 4 29.44 57.85
Gesture 5 27.63 42.39
Gesture 6 15.61 61.51
Gesture 7 14.04 57.54
Gesture 8 21.84 60.38
Gesture 9 24.14 44.32

Table 2
Occupancy rates of skin color pixels in the face 
region.

Glasses Rectangle 
Upper (%) Lower (%)

With glasses 49.88 74.99
Without glasses 63.11 66.71
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	 Figure 10 shows the identification results with different hand gestures using the FSP feature 
matrices with complex backgrounds.  The identification results with the second feature matrix 
are shown in the first row of Fig. 10, the third feature matrix in the second and third rows of Fig. 
10, and the fourth feature matrix in the fourth and fifth rows of Fig. 10.
	 Finally, the total weightings in the FSP identification regions are calculated for a more 
accurate identification of the hand region.  The weighting of each feature matrix is defined by 
the feature occurrence probability, as shown in Fig. 9.  An FSP identification region is the hand 
region if it has a larger total weighting equal to or greater than 0.6 and the face region has a 
smaller total weighting.  

3.2.3	 Hand contour detection

	 The region of interest (ROI) is used to reduce calculation time. The operation region is 
focused on the hand.  The ROI is limited to inside the rectangle whose sides are 50 pixels from 
the FSP frame.  ROI will be the next frame search region, as shown in Fig. 11(a).  The image 

Feature matrix group
First Second Third Fourth 

Feature  matrix

Weighting 0.4 0.3 0.2 0.1
Occurrence matrix 2 × 1 matrix 8 × 8 matrix 8 × 8 matrix 8 × 8 matrix

Fig. 8.	 (Color online) Identification results of 8 × 8 matrices.

Fig. 9.	 FSP algorithm feature matrices.
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Fig. 10.	 (Color online) Identification results of the FSP feature matrices of images with complex backgrounds.

(a) (b)

Fig. 11.	 (Color online) (a) The ROI is limited to inside the rectangle whose sides are 50 pixels from the FSP frame.  (b) 
Use 4-Neighbor to find the hand contour.

process can be reduced by about 65% by adopting ROI.  The distance between the hand and the 
camera is 80 cm in our experiments.  
	 The hand contour is detected as follows.  We scan each pixel in the ROI binary image, and 
set the pixel with a value of zero as the center point of 4-Neighbor.  We use 4-Neighbor to 
examine neighbor pixels for the center point.  When one of the four neighbor pixels has a value 
of 1, it is a boundary pixel.  Finally, the hand contour is found by 4-Neighbor, as shown in Fig. 
11(b).  
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4.	 Hand Gesture Recognition and Gesture Tracing

4.1	 Hand gesture recognition 

	 After the hand contour is found, the hand gesture recognition process is as follows.  First, we 
define the operation regions for finger identification, and the thumb and pinkie are recognized 
on the basis of significant shape features.  Second, a circle is defined from the hand center for 
threshold decomposition to count the number of fingers.  Then, hand gestures are recognized.

4.1.1	 Thumb and pinkie 

	 First, we remove the wrist part whose width is less than 75 pixels.   Then, we draw two 
rectangles with 30 pixel width from the left and right edges of the frame, as shown in Fig. 12.
	 The operation regions are the yellow and red boxes in Fig. 12.  The skin color proportion in 
the operation regions is calculated to determine whether a thumb or a pinkie exists using the 
shape parameter method.(4)  When the area of skin color pixels in the operation region is smaller 
than 13% in our experiments, a thumb or a pinkie exists in it.  Otherwise, when the area of 
skin color pixels is larger than 13%, the hand gesture does not have a thumb or a pinkie.  The 
identification method can quickly and effectively determine the existence of the thumb and 
pinkie, and improves recognition accuracy and variability.  

4.1.2	 Center point 

	 To reduce the amount of calculation, the gesture center point C(xc, yc) is found using 
the frame proportion.  The y-coordinate yc is set at the 25% height of the frame, and the 
x-coordinate xc is chosen by the following three methods.  i) When the hand gesture has a 
thumb without a pinkie, xc is set at the 40% width from the left edge of the frame.  ii) When the 
hand gesture has a pinkie without a thumb, xc is set at the 60% width.  iii) If the hand gesture 
has no thumb and no pinkie, or has both a thumb and a pinkie, xc is set at the half-width.  For 
example, the gesture center point C shown in Fig. 12 is the center point of the hand gesture with 
all fingers extended, including the thumb and pinkie.  

Fig. 12.	 (Color online) Identification ranges of the thumb and pinkie.
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4.1.3	 Threshold decomposition  

	 A contour circle is defined as a circle with the radius β and a center at the gesture center 
point C(xc, yc).  The radius β is calculated by dividing the length L of the long side of the hand 
frame by the threshold α.  The values of the threshold α in the range of 2.0 to 2.5 have high 
identification rates in our experiments, and the identification rate is the highest when α is equal 
to 2.3.  Therefore, we use the α value of 2.3 to determine the radius β, i.e., β = L/2.3, and then 
we draw the contour circle as shown in Fig. 12.  The arbitrary point (xb, yb) on the contour circle 
can be calculated using

	 β =

√
(xb − xc)2 + (yb − yc)2 .	 (2)

	 We calculate the number of crossover points of the contour circle and the hand contour for 
counting fingers.  Hand gestures are recognized on the basis of the number of fingers and the 
significant shapes of the thumb and the pinkie.  

4.2	 Gesture tracing 

	 The calculation of the hand gesture center point C(xc, yc) was described in Sect. 4.1.2.  The 
points C1(xc1, yc1) and C2(xc2, yc2) are the gesture center points of the first frame and last frame 
for one hand gesture, respectively.  The slope m is defined as Eq. (3).  The angle θ between the 
line C1C2 and the X-axis is defined as Eq. (4).  The coordinate differences Δx and Δy between 
C1(xc1, yc1) and C2(xc2, yc2) are defined as Eq. (5).  

	 m =
yc2 − yc1

xc2 − xc1
	 (3)

	 θ = tan−1 m	 (4)

	 ∆x = xc2 − xc1,∆y = yc2 − yc1	 (5)

	 The hand trace is calculated using the coordinate differences Δx and Δy.   When Δx is 
positive, then the hand trace direction is toward the right; otherwise, it is toward the left.  When 
Δy is positive, the hand trace direction is downward; otherwise, it is upward.  We define the 
hand trace directions as right, upward, left, and downward in the white area in Fig. 13.  The 
black areas with θb are confusion areas with no effect on hand tracking, where

	 θ − π
12
< θb < θ +

π

12
, θ =

(2n + 1)π
4

, n = 0, 1, 2, 3.	 (6)
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5.	 Experimental Results and Application Results 

	 We define hand gestures using the data presented in Sect. 4.   First, we use threshold 
decomposition to obtain the number of fingers, and then determine whether there exists a thumb 
or a pinkie.  We define ten types of hand gestures in our experiments, as shown in Fig. 14.  The 
number at the upper right corner is the recognition result corresponding to the hand gesture in 
each picture.  The hand can be easily distinguished from a complex background and the hand 
gesture can be recognized with high accuracy.  The experiment results of the defined hand trace 
directions of upward, downward, left, and right are shown in Fig. 15 and the recognition result 
of the hand trace direction is shown in the upper right corner of each picture.  The hand trace 
direction can be easily traced even for a user with different hand gestures.
	 Figure 16 shows the confusion matrix of experimental results.  The number of test samples 
for each gesture is 100 from each of ten testers, and the total number of test samples is 1000.  
The mean recognition rate is 94.3%, and the average recognition time is 0.105 s.  Gestures 4, 5, 
and 8 have 100% recognition rates.  For gesture 1, the recognition system has an accuracy rate 
of 95%.  The recognition system mistakes gesture 1 for gesture 2 with a 4%, and for gesture 7 
with a 1% misrecognition rate.  Some testers show gesture 1 with a relaxed curled thumb; when 
the curled thumb is calculated as a finger, it becomes gesture 2.  When the relaxed curled thumb 
is calculated as a thumb, then it becomes gesture 7.  Gesture 9 consists of holding the ring finger 
curled while extending the thumb and other fingers.  Similarly, gesture 0 consists of holding the 
ring and middle fingers curled.  Some testers find it difficult to curl the ring finger or middle 
finger without curling the thumb, and it contributes to the low recognition rates of gestures 9 
and 0.  The hand recognition rates can be improved by training users to match the defined hand 
gestures.  
	 The DSP DM6437 is used in our hand gesture recognition system.  The output of DM6437 is 
transferred to an infrared remote control circuit through RS-232.  The infrared remote controller 

Fig. 13.	 Identification range of moving direction of one hand.
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Fig. 14.	 (Color online) Defined hand gestures in our experiments.

Fig. 15.	 (Color online) Defined hand tracing directions in our experiments.

Fig. 16.	 Confusion matrix of experimental results.
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designed with 89SC51 and SC51P0304 circuits is used to control the TV functions.  The CCD 
camera and the DM6437 EVM are set on a table, as shown at the bottom right of the images 
in Fig. 17(a).  The CCD camera captures images, and the images are transferred to DM6437 to 
identify the hand gestures.  To achieve channel and volume control, the infrared commands are 
created by the DM6437 in accordance with the predefined gestures, and are emitted through the 
89C51 and SC51P0304 circuits.  
	 Figure 17 shows the experimental results of TV channel control using hand gestures.  Figure 
17(a) shows a user gesturing with his right hand to control the TV channel, and Fig. 17(b) shows 
a user gesturing her left hand to control the TV channel.  The TV channel number is shown at 
the upper right corner of the TV.  The user changes the TV channels using only hand gestures, 
which is more user-friendly than a remote controller.  The TV channel and volume can also be 
easily controlled by hand tracing in our experiments, as shown in Figs. 18 and 19.  One user 
controls the TV channel by right-hand tracing, as shown in Figs. 18(a)–18(c), and another user 
controls the TV channel by left-hand tracing, as shown in Figs. 18(d)–18(f).  Figures 18(a) and 
18(d) show the original TV channel; the user increases the TV channel number by moving his/
her hand up, and decreases it by moving his/her hand down, as shown in Figs. 18(b) and 18(e), 
and Figs. 18(c) and 18(f), respectively.  TV volume is decreased when the user moves his/her 
hand to the left, as shown in Figs. 19(a) and 19(c), and increased when he/her moves his/her 
hand to the right, as shown in Figs. 19(b) and 19(d).  A user can easily change the TV channel 
and volume through hand gestures and hand tracing.  

Fig. 17.	 (Color online) Results of TV channel control experiment using hand gestures.

(a) (b)
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(a) (b) (c)

(d) (e) (f)

Fig. 18.	 (Color online) Results of TV channel control experiment using hand tracing.

(a) (b) (c) (d)

Fig. 19.	 (Color online) Results of TV volume control experiment using hand tracing.

6.	 Conclusions

	 The real-time hand gesture recognition system based on DSP and its application is described 
in our research.   We propose an FSP algorithm to quickly and easily distinguish the hand 
in a complex image.  The ROI is used to reduce the amount of computation.  To detect hand 
features, we use significant shape features to recognize a thumb or a pinkie.  Then a contour 
circle is defined from the hand contour center for threshold decomposition to count the number 
of fingers.  Our hand gesture sensing and recognition system has a high recognition rate and 
detects the hand trace direction easily.  
	 The results of our research show that our hand gesture recognition system can conveniently 
control the TV channel and volume through hand gestures and hand tracing.  It will be handy 
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when the remote control is lost and will also increase the amount of exercise for a person.  Our 
research successfully establishes a good HCI that can be applied in other situations, such as a 
medical environment, where the hand cannot touch equipment.
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