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 The precise measurement of walking speed in daily life is essential for the health guidance 
and life prediction of the elderly.  Ultrahigh frequency (UHF) radio frequency identification 
(RFID) tags have the advantages of compact size, low cost, no battery requirement, long 
reading distance, and so forth.  In this paper, two antennas at a certain distance apart are used 
to measure human walking speed by reading the time difference of the RFID tag.  The received 
signal strength indicator (RSSI) of the RFID tag depends on the distances between the tag and 
the RFID reader.  To calculate the walking speed, the time difference at RSSI maximum points 
and the discrete generalized cross-correlation algorithm are adopted to estimate the walking 
speed.  The experimental results show that the precise measurement of the walking speed can 
be realized by employing the maximum time difference method and correlation time difference 
method.  The former combines partitioned Gaussian fitting with Kalman filter, and the latter 
uses the Phat processor along with smoothed coherence transform (SCOT) weighting.  These 
methods could be used to measure the daily walking speed of elderly individuals in senior 
health centers.

1. Introduction

 The health of the elderly is a hotspot in recent scientific research.  As population aging is 
intensifying, health care is being paid more attention.  Researchers from The University of 
Pittsburgh drew a conclusion that the health of the elderly was closely associated with their 
walking speed.(1)  The relationship between the health and walking speed of the elderly has 
also been studied and demonstrated by other researchers around the world.(2–6)  Measuring the 
walking speed of the elderly has high requirements for the system and algorithm.  However, 
there is little research on human walking speed measurement and a practicable measuring 
method has not yet been established.
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 Apart from that, almost all existing high-precision measuring instruments, such as laser 
Doppler velocimeter and radar speedometer, are designed for high-speed objects and are 
hard to popularize owing to their high cost.  Moreover, in order to guarantee accuracy, speed 
measurement needs to be conducted without being noticed by the participants.  However, 
most existing measuring instruments are easily noticeable, which causes poor accuracy of the 
results.  To address this problem, UHF RFID tags, which are compact and low-cost, are used 
and discussed in this paper.  The thickness of a tag is almost equal to that of a piece of paper, 
which makes it easy to be attached to a medical record card.  Utilizing this kind of tag, the 
measurement can be carried out without being noticed by the participants.  Furthermore, the 
maximum time difference and correlation time difference methods are adopted to calculate 
the walking speed.  By analyzing and comparing the experimental results, it is shown that the 
methods have a good performance in measuring the walking speed.

2. Mathematical Model of RFID Measurement

2.1 Space propagation loss model

 The signal propagation path loss model indicates the relation between signal propagation 
path loss and propagation distance.  The shorter the distance between a tag and an antenna, the 
lower the loss during signal propagation.  The equation of the signal propagation loss model in a 
vacuum can be expressed as Eq. (1).(7)

 PL = 20 lg(d) + 20 lg( f ) + 20 lg
(
4π
c

)
 (1)

Here, d is the distance between the tag and the antenna, f is the operating frequency, and c is the 
speed of light in a vacuum.
 The equation can only be applied in a vacuum.  In the real environment, there exist various 
propagation losses such as reflection, scattering, and absorption.  Thus, for a real environment, 
the propagation loss model is usually described as the lognormal distribution model.(8)

 Pr(d) = Pr(d0) − 10k lg
(

d
d0

)
− Xσ  (2)

Here, Pr(d) is the signal strength when the distance between the tag and the antenna is d, d0 is 
the reference distance, and k is path loss exponent.  Xσ is Gaussian random variable with zero 
means.
 In a sample space with multiple wireless transmitters and receivers, the Pr(d) of any single 
wireless transmitters and receivers follows a Gaussian distribution which can be described as 
Pr(d) ∼ (Pr(d), σ2).  As Xσ is zero mean Gaussian random variable, Pr(d) could be described as
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 Pr(d) = Pr(d) − Xσ . (3)

Combining Eqs. (2) and (3) gives

 Pr(d) = Pr(d0) − 10k lg
(

d
d0

)
.  (4)

According to Eq. (4), the relation between d and Pr(d) can be denoted as

 d = d0 × 10
Pr (d0)−Pr (d)

10k . (5)

According to Eq. (5), the time when the distance between the tag and the antenna is the shortest 
can be determined by the maximum value of Pr(d), which is of great significance for calculating 
the speed.

2.2 Speed calculation model

 As shown in Fig. 1, the reader receives signal strength Pr(d) at different distances d when 
a person with an RFID tag walks parallel to two antennas.  The average walking speed can be 
calculated from the time it takes to walk past two antennas with known distance D between the 
antennas.  The equation is shown as

 v =
D
∆t
=

D
t(dmin2) − t(dmin1)

.  (6)

Here, D is the distance between two antennas, t(dmin1) is the time when the tag is closest to antenna 1, 
and t(dmin2) is the time when the tag is closest to antenna 2.

Fig. 1. (Color online) Construction of hardware.
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3. Algorithm for RFID Speed Measurement

 Since the RFID reader receives data with non-constant time intervals and the signal strength 
is influenced by the multipath effect, the data have to be preprocessed.  In order to generate 
a sequence with the time interval of ΔT and avoid the loss of the true value, the Lagrange 
interpolation is utilized to preprocess the data.
 Assuming P, Q, and H are three adjacent points in the interpolation sequence with 
coordinates are (x0, y0), (x1, y1), (x2, y2), respectively, and x0 < x1 < x2, a parabola 
y = ax2 + bx + c could be determined by these three points.  The three parameters a, b, and c 
can be calculated by the Lagrange interpolation.(9,10)

 y =
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
y0 +

(x − x0)(x − x2)
(x1 − x0)(x1 − x2)

y1 +
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
y2  (7)

 After the calculation of three parameters a, b, and c, the interpolation will be implemented 
every ΔT in an interval [x0, x2].  Next, three new adjacent points will be chosen and the process 
will be repeated until the whole sequence is generated.
 On the basis of interpolation, the maximum time difference method and correlation time 
difference method are applied to solve the walking speed.

3.1	 Maximum	time	difference	method

3.1.1	 Partitioned	Gaussian	fitting

 The signal strength Pr(d) at a certain position can be described probabilistically.  The more 
densely Pr(d) is distributed, the more real Pr(d) will be.  Partitioned Gaussian fitting is applied 
to remove the bad data points from Lagrange interpolation sequence and find the Pr(d) value 
with high probability.  The equations are shown as below.(11,12)

 



y = y0 +
A

ω
√
π
2

e−2 (x−xc)2

ω2

xc =

∑i=k
i=1 Pr(d)i

k

ω =

√∑i=k
i=1(Pr(d)i − xc)2

k − 1

 (8)

 Then, divide the Lagrange interpolation sequence into some intervals, each of which 
approximately represents a Pr(d) value at a certain distance d.  In the end, Pr(d) of each 
interval is inserted into the fitting function and the high-probability data points which satisfy 
0.5 ≤ y ≤ 1 are retained.
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3.1.2	 Kalman	filter

 Since partitioned Gaussian fitting can only cull bad data from Lagrange interpolation 
sequence, some high-probability noises still remain.  The Kalman filter is adopted to process 
the data from Gaussian fitting, and reproduce the real state of the system by eliminating the 
effect of random interference.  According to the features of the RFID system, a discrete Kalman 
filter can be applied to the data processing.  
 By taking the average value of Pr(d) processed by Kalman filter, Pr(d) of the interval will be 
obtained.  The time corresponding to Pr(d) is the average time t corresponding to Pr(d).

3.1.3	 Speed	calculation	by	maximum	time	difference	method

 According to the monotony of Eq. (5), the calculation of dmin1 and dmin2 can be converted to 
the searching for the maximum of Pr(d).  Then, the trouble of calculating path loss exponent k 
could be avoided.  t could be determined by the maximum of Pr(d), and Eq. (6) can be rewritten 
as follows.

 v =
D

t2 − t1
 (9)

3.2	 Correlation	time	difference	method

3.2.1 Discrete generalized cross-correlation

 The cross-correlation function represents the degree of the dependence between two signal 
sequences.  The greater the function value, the higher the dependence, and the better the cross-
correlation.  When these two sequences are completely independent, the function value is zero.(14)  
Thus, the cross-correlation function is of great significance in the calculation using two signal 
sequences.
 Assuming that there are two signal sequences with time step ΔT interpolated by Lagrange 
interpolation:

 y1(n) = s(n) + m1(n) , (10)

 y2(n) = s(n + n0) + m2(n). (11)

Here, s(n) is the useful signal received by antennas, m1(n) and m2(n) are the noises without cross-
correlation, and n0 is the delay unit number of the signal cost from one antenna to the other.
 Here is the cross-correlation function of y1(n) and y2(n):

 R12 = E[y1(n)y2(n + m)]. (12)
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 Substitute Eqs. (10) and (11) into Eq. (12).  Since s(n), m1(n), and m2(n) are uncorrelated, the 
value of cross-correlation between any two components will be zero:

 R12 = Rs(n0 − m). (13)

 The cross-correlation function property shows that R12(m) will reach the maximum value 
when m = n0.  The delay τ between two signals is n0ΔT.
 The calculation of a discrete cross-correlation sequence is divided into three parts, including 
shifting, multiplying, and summing.  There is a linear correlation between two sequences y1(n) 
and y2(n).  When the displacement of sequence y2(n) is m, 

 R12(m) =
+∞∑

n=−∞
y1(n)y2(n − m). (14)

 When performing mutual correlation operation, zeros are put into the vacancies which 
appear because of shifting.  At this time y1(n) and y2(n) are linearly related.  Then, a conclusion 
could be drawn according to Cauchy–Schwarz inequality:

 |y1(n), y2(n)| ≤ ‖y1(n)‖ ‖y2(n)‖. (15)

 The equal sign is only be taken when there is a linear correlation between y1(n) and 
y2(n).  Now, the maximum cross-correlation calculation could be obtained.  The product of 
displacement m and the sampling period ΔT is the time difference between the two sequences.
 The generalized cross-correlation algorithm is based on the cross-power spectrum between 
the two signals and it gives a certain weight in frequency-domain.(15,16)  The generalized cross-
correlation algorithm can whiten the signal and noise and enhance the high signal-to-noise ratio 
component, thus suppressing the influence of noise.  And then the generalized cross-correlation 
function can be obtained by an inverse discrete fourier transform (IDFT) to the time domain:

 Rg
12(n) = IDFT [A(k)G12(k)]. (16)

Here, G12(k) is the cross-power spectral density between the two signals, and A(k) is the 
generalized cross-correlation weighting function.(17)  The selection of weighting function 
depends upon different noise and reverberation conditions.  Some commonly used weighting 
functions are shown in Table 1.

3.2.2	 Speed	calculation	by	correlation	time	difference	method

 Correlation between the frequency domain characteristics of two discrete signals can be 
described by power spectral density and cross power spectral density.  The auto power spectral 
density and autocorrelation function could form a Fourier transform pair, and the cross power 
spectral density and cross-correlation function also could form a Fourier transform pair,(18) 
giving
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 R12(n) = IDFT [G12(k)] . (17)

 According to the characteristics of the discrete time-domain circular convolution of the 
Fourier transform, Eq. (9) can be converted into Eq. (18):

 Rg
12(n) = A(n) ⊗ R12(n) =

N−1∑
m=0

A(m)R12p(n − m)RN(n) . (18)

Here, A(n) is obtained by A(k) through discrete Fourier transform (DFT), ⊗ is circular 
convolution operator, R12p(n−m)RN(n) is a circumference shift sequence, and RN(n) is a 
rectangular sequence.
 The matrix multiplication can be used to simplify the calculation of circular convolution.  
The matrix can be expressed as:

 Y = HX, (19)

where

 Y =



Rg
12(0)

Rg
12(1)

Rg
12(2)
...

Rg
12(N − 1)


, 

 H =



R12(0) R12(N − 1) R12(N − 2) . . . R12(1)
R12(1) R12(0) R12(N − 1) . . . R12(2)
R12(2) R12(1) R12(0) . . . R12(3)
...

...
...

. . .
...

R12(N − 1) R12(N − 2) R12(N − 3) . . . R12(0)


, 

 X =



A(0)
A(1)
A(2)
...

A(N − 1)


. 

A(k) = 1/
√

G11(k)G22(k)

Table 1 
Commonly used weighting functions.
Name Function expression
Basic cross-correlation  A(k) = 1
Roth processor 1  A(k) = 1/G11(k)
Roth processor 2  A(k) = 1/G22(k)
Phat processor  A(k) = 1/|G12(k)|
SCOT
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Rg
12(n) can be calculated by Eq. (14).  The delay unit number between two signals can be 

determined by the maximum value of Rg
12(n).  The speed expression is presented as follows:

 v =
D

n0∆T . (20)

4.	 Experimental	Verification

4.1 Experiment design

 The Impinj R2000 UHF Reader module is adopted in the experiment.  On the basis 
of Speedway Revolution’s Autopilot technology, the reader operation in the application 
environment can automatically be optimized to ensure the best measurement performance.  
In the experiments, the distance D between two antennas is set to 3, 5, and 8 m.  As shown 
in Fig. 2, people carrying RFID tags walk along a straight line from one antenna to the other 
at different speeds.  The real speed is calculated by the formula D/Δt, where Δt is the travel 
time timed by the stopwatch.  The data sequences of RSSI received are processed by means of 
the maximum time difference method and correlation time difference method.  Furthermore, 
through comparison, the impact caused by different methods was analyzed.  The performance 
of the algorithms is measured by the relative error defined as

 e =
|vr − ve|

vr
× 100 (%). (21)

Here, vr is the real walking speed, and ve is the estimated value of the walking speed.

4.2 Single experimental result and analysis

 The first experiment was carried out in a walking corridor environment.  The parameter D 
is set to 8 m and the real speed is 1.1662 m/s.  The experimental data was taken to analyze the 
error of the speed calculation algorithm.  

Fig. 2. (Color online) Hardware setup and algorithm.
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4.2.1 Lagrange interpolation

 The original RSSI data are discrete points with an uneven distribution and are hard 
to process.  To ensure an accurate value, the original data are interpolated by Lagrange 
interpolation to generate the sequence with a 0.001 s time interval.  The results are presented in 
Fig. 3.  

4.2.2	 Maximum	time	difference	method

 The interpolated data are divided into several sections with an equal interval of 0.05 s.  
Then, the divided data are fitted through the Gaussian fitting function.  Meanwhile, the noises 
of the results are eliminated by the Kalman filter.  As shown in Fig. 4, there is only a small 
change between the two curves.  However, some small probability data and system random 
noise are culled, which makes the curve smoother and the data more reliable.
 The average value of Pr(d) is calculated by Gaussian fitting and Kalman filter as shown in Fig. 5.  
It is shown that the times corresponding to the maximum values of Pr(d) received by the two 
antennas are 3.148 s and 9.862 s respectively.  According to Eq. (9), here is the calculation of speed v:

 v =
8

9.862 − 3.148
= 1.1915 (m/s) . 

4.2.3	 Correlation	time	difference	method

 The data sequences with ΔT generated by Lagrange interpolation are corrected by four 
weighting functions respectively as shown in Fig. 6.  As can be seen, the basic cross-correlation 
curve is relatively smooth, while the Roth processor has excessive noise.  Although the curves 
of the Phat processor and smoothed coherence transform (SCOT) are not very smooth, the peaks 

Fig. 3. Comparison of raw data and interpolated 
data.

Fig. 4. Partitioned Gaussian fitting and Kalman 
filter process.
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are very clear and easy to distinguish, which makes it possible to measure the accurate delay of 
two signals in the actual measurement.
 According to the calculation results of generalized cross-correlation and weighting functions 
processing, the delay unit number n0 values are 41, –443, –357, 689, and 690, respectively.  The 
speed can be calculated by Eq. (20) and the results are 1.2480, –1.8059, –2.2409, 1.1611, and 1.1594 
m/s.  In the light of the results of the Roth processor, it is easy to find that there is a huge error.  
So Roth processor function is inapplicable in this case while the others are relatively reasonable.

4.2.4 Comparison of algorithms

 The speeds estimated by different methods are compared in Table 2.  It can be seen from the 
table that the accuracy of the two calculation methods is relatively high.  In order to ensure a 
higher authenticity of the preserved data, Gaussian fitting is used to remove the data with low 
probability.  According to the space propagation loss model, the distance can be determined 
by the mean value of the signal intensity Pr(d).  It can reduce the random error and achieve a 
higher accuracy than the conventional polynomial fitting.  The conventional cross-correlation 
algorithm cannot suppress the effects of the noise, which can cause a relatively large error when 
calculating the delay.  However, the noise can be suppressed by generalized cross-correlation 
function derived by the inverse Fourier transform.  The peaks of Phat processor and SCOT 
are prominent, which means that the impact of the noise is suppressed effectively.  The data 
processed by the basic cross-correlation are relatively smooth, while the peak value is not so 

Fig. 5. Mean signal intensity curve. Fig. 6. Results processed by several common weighting functions.
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clear, which could easily lead to errors.  The Roth processor has excessive noises, which means 
the results of the Roth processor are unreasonable.

4.3 Multiple experimental results and analysis

 For further analysis, multiple experiments with different waking speeds and different 
antenna distances were carried out in a room space environment.  Errors of different algorithms 
and errors of different antenna distances at different waking speeds were analyzed respectively.  

4.3.1	 Errors	of	different	algorithms	at	different	walking	speeds

 The experimental data whose D is set to 5 m is taken to illustrate the results as shown in 
Fig. 7.  It can be seen that correlation time difference method using the Phat processor and 
SCOT weighting is more accurate than the maximum time difference method which combines 
partitioned Gaussian fitting with Kalman filter.  The algorithm errors of the correlation time 
difference method are less than 1%.  The main reason is that every data point is considered 
by the correlation time difference method, while the maximum time difference method only 
considers the maximum point.

4.3.2	 Algorithm	errors	at	different	distance	D

 Signal interference between the antennas changes with the distance D, and it can cause the 
measurement error.  The results of the correlation time difference method using the SCOT 
weighting at different distance D are illustrated in Fig. 8.  According to Fig. 8, the correlation 
time difference method using the SCOT weighting can maintain a relatively high accuracy at 
different distance D and it can reduce the effect of the distance D.
 The error of the correlation time difference method used in the manuscript is less than 1%, 
i.e., for the usual walking speed of the elderly, the accuracy can reach 0.02 m/s.  In the previous 
research of Studenski et al., it was found that the walking speed causes a difference with 
increments of 0.1 m/s.(1)  Therefore, this method is accurate enough for the health assessment of 
the elderly.  

5. Conclusions

Table 2 
Results of maximum time difference method and correlation time difference method.
Calculation method Speed (m/s) Error (%)
Maximum time difference method  1.1915 2.169
Basic cross-correlation  1.2480 7.014
Roth processor 1  −1.8059 Unreasonable
Roth processor 2  −2.2409 Unreasonable
Phat processor  1.1611 0.437
SCOT  1.1594 0.583
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 Walking speed measurement methods based on UHF RFID are analyzed in this paper, and 
the walking speed of the participant is calculated by the means of maximum time difference 
and correlation time difference.  The maximum time difference method combines partitioned 
Gaussian fitting with Kalman filter, and the correlation time difference method utilizes the 
Phat processor along with SCOT weighting.  Through the comparison of experimental results, 
a conclusion can be drawn that the two methods can effectively reduce errors and have good 
performance in estimating the walking speed, which can be applied to the health assessment 
of the elderly.  In daily life, however, a walking path is not a straight line, in which case a third 
antenna could be used to determine the motion in a plane and calculate the walking speed using 
pairwise cross-correlations.
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