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	 Potassium is an important nutrient element for plant growth.  The traditional integer-order 
differential transformation methods at first order and second order tend to reduce the accuracy 
of the total potassium content quantitative inversion model, and there are few reports on the 
use of  the fractional differential algorithm for the prediction of soil total potassium content.  
In this paper, the use of the fractional differential algorithm to predict total potassium content 
is introduced.  Field soils collected in the Xinjiang Uygur Autonomous Region from May 
9 to 23, 2017, were used as the data sources.  Firstly, we calculated the correlation between 
spectral reflectance and total potassium content for the original spectrum (R) and the root 
mean square spectrum ( R ) under different fractional differential orders.  Secondly, bands 
whose maximum absolute correlation coefficient was greater than 0.5 were selected as sensitive 
bands.  R had seven bands: 562, 596, 1177, 2155, 2156, 2364, and 239 nm.  R  had six bands: 
596, 1177, 2155, 2156, 2364, and 2398 nm.  Finally, a multiple regression analysis method was 
employed to quantitatively estimate the optimal model.  The ratio of performance to deviation 
(RPD) evaluation index of a good model should be greater than or equal to 1.4.  The simulation 
results showed that the optimal models for R and R  were the 0.8-order differential and the 
0.6-order differential, respectively.  The corresponding RPD values were 1.700182 and 1.783319, 
respectively.  We found that the prediction model of R  was more accurate.  
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1.	 Introduction

	 Precision agricultural variable fertilization depends on the understanding of soil nutrient 
distribution in farmland.  Potassium is an indispensable nutrient element throughout the whole 
growth period of crops.(1)  The traditional soil laboratory chemical measurement method 
is not suitable for the development of precision agriculture because it is time-consuming, 
labor intensive, and inefficient.  Hyperspectral remote sensing technology can yield rapid, 
accurate, and extensive nondestructive estimation of soil nutrients.(2,3)  Some scholars have 
tried to quantitatively analyze the soil potassium content using spectral analysis technology.  
Confalonieri et al. used near-infrared reflectance spectroscopy to determine total organic 
carbon, total nitrogen, exchangeable potassium, and available phosphorus in different soils.  
Their results showed that the predictive effects of exchangeable potassium and available 
phosphorus were unsatisfactory.(4)  Malley et al. found that the correlation coefficient of the 
calibration dataset was relatively high, but the prediction accuracy of the validation dataset 
was not very high.(5)  Rossel et al. used different-wavelength spectra combined with partial 
least squares regression to estimate a variety of soil properties.  Their results showed that near-
infrared spectroscopy achieved higher precision for exchangeable potassium and the coefficient 
of determination (R2) was 0.47, but the accuracy was much lower than that for other soil 
properties such as carbon and pH.(6)

	 These hyperspectral inversion models for total potassium are mainly based on the original 
spectral reflectance, reciprocal, logarithmic transformation, and its first-order and second-order 
differential spectral preprocessing methods.  However, the traditional integer-order differential 
transformations at the first order and the second order ignore the fractional differential 
information, which may cause some information loss and difficulty in extracting effective 
spectral information, thus restricting the accuracy of the modeling.(7)  The fractional differential 
method is an extension of the concept of the integer differential.  Regarding spectral analysis, 
Schmitt adopted the fractional derivative in the process of diffuse reflectance spectroscopy and 
found that it could effectively eliminate the effect on baseline drift, and separate overlapping 
peaks.  At the same time, the order choice of the fractional derivative was more flexible, which 
provided a broader space for band selection.(8)  Zheng et al. used the Savizzy–Golay (SG) 
fractional derivative to preprocess near-infrared spectral based on corn, wheat, and diesel.  He 
pointed out that the accuracy of infrared spectral data after fractional differential processing 
was improved compared with the integer-order operation.(9)  Zhang et al. applied the fractional 
differential in the pretreatment of hyperspectral data of saline soils, and indicated that it was 
desirable to use fractional differentials to excavate the potential information of soil spectra data.(10)

	 At present, there are few reports on the estimation of total potassium content in soils 
using the fractional differential algorithm.  In this study, we selected desert soils in Xinjiang 
Fukang as the research target.  The multiple regression analysis method based on the fractional 
differential algorithm was adopted to estimate the quantitative inversion total potassium content 
combined with field hyperspectral data and lab total potassium content data, which provided 
scientific support and an application reference for local precision agriculture.  
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2.	 Materials and Methods

2.1	 Soil samples and field spectra collection

	 We conducted field surveys and soil sampling from May 9 to 23, 2017, at a total of 25 sample 
points.  Location information is shown in Fig. 1(a).  The sampling depth of soils was 0–10 cm, 
and the measurement of total potassium content was conducted by the Xinjiang Institute of 
Ecology and Geography.  Hyperspectral data was acquired using ASD Field Spec® 3Hi-Res in a 
spectral range of 350 to 2500 nm and at a test time of 11:00 to 15:00 local time in cloudless and 
windless weather on a sunny day.
	 To reduce the influence of spectral noise, the edge bands with low signal-to-noise ratios 
(350–399 and 2401–2500 nm) and the bands near the moisture absorption band (1355–1410 and 
1820–1942 nm) were eliminated.  At the same time, the hyperspectral data was subjected to 
Savitzky–Golay smoothing to eliminate spectral noise, as shown in Fig. 1(b).  The root mean 
square transform of original spectra was used to enhance the difference information between 
the spectra.  

2.2	 Multiple linear regression and fractional differential algorithm

	 Multiple linear regression is the most basic and most commonly used method in visible/near-
infrared spectroscopy modeling.  Its basic formula can be expressed by

	 0 1 1 j j n ny x x xβ β β β ε= + + + + + +� � ,	 (1)

where y is the chemical composition of soils, xj is the spectral reflectance value at the j-th band, 
βj is the regression coefficient of the spectral reflectance value at the j-th band, and ε is the 
residual.  

(a) (b)

Fig. 1.	 (Color online) (a) Remote sensing map of sampling points and (b) spectral curves.
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	 The common Grünwald–Letnikov (G–L) fractional differential(11) is defined as
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	 Let the function s(x) define a domain as x ∈ [a,t], so that h = 1 (consistent with the 
resampling interval of 1 nm for the ASD Field Spec® 3Hi-Res spectrometer employed in this 
study) and n = [t − a].  Then, the v-order fractional differential difference expression of function 
s(x) is
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2.3	 Model performance evaluation

	 The performance of the visible/near-infrared spectroscopy model is usually evaluated using 
R2, ratio of performance to deviation (RPD), and root mean square error (RMSE).(12)  A good 
prediction model should have R2 and RPD as large as possible, and RMSE as small as possible.  
When R2 is greater than 0.8 and RPD is greater than or equal to 1.4, the model exhibits good 
predictive performance.  RPD < 1 indicates that the model prediction ability is very poor, and 
the model is unreliable.  1 < RPD < 1.4 indicates that the model prediction ability is poor, and 
only the high and low contents of the sample can be roughly estimated.  When 1.4 < RPD < 2, 
the model has satisfactory predictive ability and can estimate the contents of the sample.  When 
RPD ≥ 2, the model has a good quantitative prediction ability.

3.	 Experimental Results and Discussion

3.1	 Modeling sensitive band selection

	 We calculated the maximum absolute correlation coefficient bands of two spectral 
transformations under different fractional differential orders (Table 1).  The correlation 
between spectral ref lectance and soil total potassium content was improved by R  at 
0.6-, 0.8-, 1.2-, 1.6-, 1.8-, and 2nd-order differential transformations, and the remaining 
differential transformations reduced the correlation.  On the basis of Table 1, bands whose 
maximum absolute correlation coefficient was greater than 0.5 were selected as sensitive bands.  
The original spectrum R had seven bands: 562, 596, 1177, 2155, 2156, 2364, and 2398 nm.  The 

R  transform spectrum had six bands: 596, 1177, 2155, 2156, 2364, and 2398 nm.
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3.2	 Establishment of multiple regression model based on fractional differential

	 The total number of samples was 25, and the numbers of samples in the calibration set 
and verification set were 15 and 10, respectively.  Using the total potassium content as the 
dependent variable, the spectral reflectance of even sensitive bands for R and six sensitive 
bands of R  were used as independent variables, and 15 total potassium samples were adopted 
to establish a multiple regression model (Table 2).  R2 of the original spectrum in the first 
order and second order was 0.756794 and 0.394952, respectively.  After calculation using the 
0.4-, 0.6-, 0.8-, 1.6-, and 1.8-order fractional differentials, R2 showed a certain improvement; the 
0.6-order differential yielded the maximum improvement to 0.968126, and the corresponding 
RMSE minimum was 0.194502.  R2 of the root mean square transformation in the first order 
and second order was 0.806077 and 0.736822, respectively.  After calculation using 0.6-, 0.8-, 
1.4-, 1.6-, and 1.8-order fractional differentials, R2 showed a certain improvement; the 0.6-order 
yielded the largest improvement differential that reached 0.910981, and the corresponding 
RMSE minimum was 0.325050.  
	 After calculations using the 0.4-, 0.6-, 0.8-, 1.6-, and 1.8-order fractional differentials, the 
following multiple regression equations based on R can be defined.
	 The 0.4-order regression equation can be expressed as

	 Y	 = 16.822 − 509.946 × X562 + 412.949 × X596 
		  + 448.143 × X1177 − 4320.380 × X2155  	 (4)
		  + 3817.874 × X2156 + 504.500 × X2364 − 120.535 × X2398.

	 The 0.6-order regression equation can be shown as

	 Y	 = 18.717 − 1884.551 × X562 + 1744.387 × X596 
		  + 1086.512 × X1177 − 3492.583 × X2155	 (5)
		  + 2870.572 × X2156 + 554.344 × X2364 − 85.510 × X2398.

Table 1
Maximum absolute value correlation coefficient and corresponding band.

Order R R
maximum absolute Band maximum absolute Band

0 	 0.436273 	 2399 	 0.419476 	 2399
0.2 	 0.474988 	 2398 	 0.457701 	 2398
0.4 	 0.537779 	 2398 	 0.520629 	 2398
0.6 	 0.599456 	 2364 	 0.604893 	 2364
0.8 	 0.613119 	 596 	 0.658464 	 596
1 	 0.702791 	 596 	 0.698334 	 596
1.2 	 0.712503 	 1177 	 0.721542 	 1177
1.4 	 0.711144 	 562 	 0.689548 	 1177
1.6 	 0.723515 	 2156 	 0.723707 	 2156
1.8 	 0.734595 	 2156 	 0.741477 	 2156
2 	 0.689147 	 2155 	 0.694199 	 2155
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	 The 0.8-order regression equation can be described as 

	 Y	 = 22.527 − 3890.042 × X562 + 5306.955 × X596 
		  + 384.953 × X1177 − 2557.774 × X2155	 (6)
		  + 1701.045 × X2156 + 356.483 × X2364 + 49.625 × X2398.

	 The 1.6-order regression equation can be expressed as

	 Y	 = 23.149 − 2265.096 × X562 − 7393.560 × X596 
		  − 23296.602 × X1177 − 1907.850 × X2155	 (7)
		  + 3921.336 × X2156 − 254.973 × X2364 − 78.750 × X2398.

	 The 1.8-order regression equation can be shown as

	 Y	 = 23.591 − 5989.505 × X562 − 12410.633 × X596 
		  − 22785.443 × X1177 − 1093.441 × X2155	 (8)
		  + 4123.362 × X2156  − 218.430 × X2364 − 80.432 × X2398.

Here, Y represents the total potassium content.  X562, X596, X1177, X2155, X2156, X2364, and X2398 

represent spectral reflectance values of the 562, 596, 1177, 2155, 2156, 2364, and 2398 nm 
bands.
	 After calculation using the 0.6-, 0.8-, 1.4-, 1.6-, and 1.8-order fractional differentials, the 
following multiple regression equations based on R  can be defined.
	 The 0.6-order regression equation can be described as

	 Y	= 19.153 + 657.644 × X596 + 253.014 × X1177 
		  − 4057.905 × X2155 + 2950.064 × X2156	 (9)

		  + 377.524 × X2364 + 79.139 × X2398.

Table 2
Multiple regression model accuracy of calibration dataset.

Order
R R

R2 RMSE R2 RMSE
0 	 0.620731 	 0.670938 	 0.058936 	 1.056863 
0.2 	 0.709743 	 0.586949 	 0.012481 	 1.155442 
0.4 	 0.853964 	 0.416332 	 0.728539 	 0.567626 
0.6 	 0.968126 	 0.194502 	 0.910981 	 0.325050 
0.8 	 0.880573 	 0.376496 	 0.876839 	 0.382336 
1 	 0.756794 	 0.537274 	 0.806077 	 0.479759 
1.2 	 0.740234 	 0.555265 	 0.769490 	 0.523063 
1.4 	 0.649099 	 0.645358 	 0.857238 	 0.411637 
1.6 	 0.885461 	 0.368711 	 0.896732 	 0.350100 
1.8 	 0.858124 	 0.410358 	 0.878534 	 0.379696 
2 	 0.394952 	 0.847430 	 0.736822 	 0.558899 



Sensors and Materials, Vol. 30, No. 11 (2018)	 2485

	 The 0.8-order regression equation can be expressed as

	 Y	= 22.290 + 1600.325 × X596 − 1218.430 × X1177 
		  − 3052.278 × X2155 + 1955.578 × X2156	 (10)
		  + 245.908 × X2364 + 149.643 × X2398.

	 The 1.4-order regression equation can be shown as

	 Y	= 20.943 − 2307.233 × X596 − 24037.384 × X1177 
		  − 2745.460 × X2155 + 4135.181 × X2156	 (11)
		  − 232.746 × X2364 − 35.343 × X2398.

	 The 1.6-order regression equation can be described as

	 Y	= 22.621 − 4330.822 × X596 − 25400.851 × X1177 
		  − 2337.303 × X2155 + 4806.951 × X2156	 (12)
		  − 298.778 × X2364 − 85.985 × X2398.

	 The 1.8-order regression equation can be expressed as

	 Y	= 23.472 − 7444.538 × X596 − 25011.298 × X1177 
		  − 1340.174 × X2155 + 5053.557 × X2156 	 (13)
		  − 308.412 × X2364 − 106.964 × X2398.

Here, Y represents the total potassium content.  X596, X1177, X2155, X2156, X2364, and X2398 

represent spectral reflectance values of the 596, 1177, 2155, 2156, 2364, and 2398 nm bands, 
respectively.

3.3	 Predictive model accuracy

	 Evaluation indicators of the predictive model are shown in Table 3.  In the original spectral 
transformation, the RPD values were greater than 1.4 through the 0.4-, 0.6-, 0.8-, and 1.4-order 
fractional differential calculations, indicating that the multiple regression prediction models 
based on the four fractional differential processes can give quantitative estimates of soil total 
potassium content.  In the root mean square transformation, the RPD values were greater than 1.4 
after the 0.4-, 0.6-, and 0.8-order fractional differential calculations, indicating that the multiple 
regression prediction models based on these three fractional differential treatments can yield 
quantitative estimates of the total potassium content of the soils.  
	 To obtain the best prediction model of soil total potassium content, a test was carried out 
with 10 samples.  The 0.8- and 1.4-order of R and the 0.6- and 0.8-order of R  were taken as 
examples to analyze and verify the relationship between predicted values and measured values 
for total potassium content in the validation dataset (Figs. 2 and 3).  In the original spectral 
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transformation, the sample data points of the 0.8-order verification set were all distributed on 
both sides of the 1:1 line.  The model verified that the sample had higher R2, lower RMSE, and 
maximum RPD.  However, in the root mean square transformation, the sample data points of the 
0.6-order verification set were distributed on both sides of the 1:1 line.  The model verified that 
the sample had the largest R2, low RMSE, and maximum RPD.  At the same time, in the original 
spectral transformation, the corresponding maximum PRD at the 0.8-order was 1.700182.  In the 
root mean square transformation, the corresponding maximum PRD at the 0.6-order was 1.783319.  
The multiple regression model based on the 0.6-order root mean square transformation was the 
best model for predicting soil total potassium content.

(a) (b)

Fig. 2.	 (Color online) Relationship between predicted value and measured value of R: (a) 0.8- and (b) 1.4-order.

Table 3
Multiple regression model accuracy of validation dataset.

Order
R R

R2 RMSE RPD R2 RMSE RPD 
0 	 0.499215 	 0.795456 	 0.721053 	 0.063619 	 1.245733 	 0.283655
0.2 	 0.388472 	 0.871812 	 0.581725 	 0.004929 	 1.154239 	 0.309768
0.4 	 0.842945 	 1.820689 	 1.476974 	 0.839827 	 1.920983 	 1.440459
0.6 	 0.848096 	 1.493849 	 1.489513 	 0.847846 	 0.823432 	 1.788319
0.8 	 0.747722 	 0.768436 	 1.700182 	 0.678190 	 0.706277 	 1.453245
1 	 0.575259 	 0.723959 	 1.263356 	 0.711493 	 0.668999 	 1.467967
1.2 	 0.703224 	 0.656794 	 1.284884 	 0.600819 	 0.733024 	 0.985541
1.4 	 0.636047 	 1.575316 	 1.496350 	 0.276688 	 1.063404 	 0.925765
1.6 	 0.152691 	 1.302738 	 0.923140 	 0.159993 	 1.268080 	 0.913092
1.8 	 0.186358 	 1.215575 	 0.941686 	 0.147648 	 1.307531 	 0.930454
2 	 0.318387 	 1.181475 	 1.207771 	 0.604784 	 0.980351 	 1.469555
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4.	 Conclusions

	 We explored the effectiveness of the fractional differential algorithm for predicting total 
potassium content in desert soils.  The 0.8-order differential model of R was the optimal model, 
and the 0.6-order differential model of R  was the best prediction model.  These were used to 

quantitatively predict the total potassium content of desert soils.  The R2 and RPD for R and R  
in the verification set were 0.747722 and 1.700182, and 0.847846 and 1.783319, respectively.  It 
was shown that R  was better for improving the accuracy of the prediction model than R.  This 
study fills the research gap of determining soil total potassium content using the fractional 
differential algorithm, and provided a novel idea for quickly and accurately measuring the total 
potassium content of desert soils in Xinjiang.
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