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	 Ideally, a mechanically coupled array-composite resonator can improve linearity and 
motional resistance by a factor equal to the number of constituent resonators used in the 
array.  Owing to fabrication nonidealities, however, random variations in the dimensions of 
resonators and coupling beams often compromise the actual increase in output current.  As a 
result, previous array composites have fallen short of their expected impedances and linearity 
improvements, particularly when the number of constituent resonators used in the array is 
large.  Therefore, in this paper, we present a detailed theoretical analysis on the centroid offset 
of beams caused by process variations and some related substantive issues.  Specifically, an 
equivalent circuit model for a coupling trapezoid beam is first deduced in the case of an offset 
centroid.  Then, a model for a coupled double-disk resonator including a beam with an offset 
centroid is established by combining the equivalent circuit model with an existing circuit model 
of a radial-contour mode disk resonator.  Finally, numerical results are obtained by simulations 
using ANSYS and PSpice with the mechanical and electrical models, respectively.  It is shown 
that the resonant frequency varies by 45.7, 110, and 250 ppm when the beam centroid shifts by 
6, 12, and 18‰, respectively.  When the centroid shifts towards one disk by 18‰, the output 
current amplitude of this disk decreases by 38.7‰ to 1.657 μA (compared with 1.724 μA at zero 
offset), while the output current amplitude of the other disk increases by 35.9‰ to reach 1.785 
μA.  In addition, when there is an offset, the Q of the resonator decreases.  In particular, when 
the centroid has an 18‰ offset, Q decreases by nearly 19‰.

1.	 Introduction

	 The micromechanical resonators based on the capacitive transduction method are very 
attractive for various applications owing to their small size, on-chip integration potency with 
a CMOS circuit, and a high quality factor (Q) at a very high frequency compared with those 
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based on other transduction mechanisms.(1–4)  Although micro-electromechanical system (MEMS) 
resonators were reported to be used in the area of narrowband low-insertion-loss filters(5) and 
low-power oscillators,(6) there still exist some problems in micromechanical disk resonators:(7) a 
limited frequency range, a decrease in Q with increasing operating frequency, and a very high 
motional resistance, which obstructs direct coupling or coupling using on-chip networks.  As 
indicated in the literature,(3,8) mechanically coupled array-composite resonators were also used 
to improve the motional resistance.  
	 With this method, the linearity and motional resistance can be theoretically improved by a 
factor equal to the number of constituent resonators used in an array as shown in the literature.(3)  
However, owing to fabrication nonidealities, random variations in the dimensions of resonators 
and coupling beams across the array often reduce the output current of the resonator array.  As 
a consequence, previous array composites have fallen short of their expected impedance and 
linearity improvements, especially when the number of constituent resonators used in the array 
is large.  Akgul et al. have conducted a voltage-controlled tuning method to optimize the output 
power of MEMS resonators.(9)  In particular, the problems caused by changes in disk radius and 
coupling beam length were studied, and a method of improving the overall performance of the 
resonator through electric stiffness tuning is proposed.  Herein, we will focus on the problems 
of a centroid offset of coupling beams caused by process variations and explain its impact on 
the performance of array composite resonators with the main design parameters including 
resonance frequency, disk amplitude (or the amplitude of the output current), and Q.  
	 The rest of this paper is organized as follows.  The radial-contour mode disk resonator and 
its equivalent circuit model are introduced in Sect. 2, followed by some necessary formulae for 
later calculations.  In Sect. 3, an ideal extensional-mode coupling beam and its equivalent circuit 
model are introduced.  By further derivation, a beam model with cross-sectional area variations 
is established.  Specifically, for simplification, in this study, a trapezoidal coupling beam model 
is adopted.  Then, the equivalent circuit model of a double-disk coupled resonator is obtained 
in Sect. 4 using the equivalent circuit design method introduced by Wang and Nyugen.(10)  
Finally, the numerical results from ANSYS and PSpice simulations are presented along with a 
discussion.  
	 It is shown that the resonant frequency varies by 45.7, 110, and 250 ppm when the beam 
centroid shifts by 6, 12, and 18‰, respectively.  When the centroid shifts towards a disk, the 
output current amplitude of this disk decreases, while that of the other disk increases.  All these 
changes are nearly linear versus the centroid offset.  Typically, when the centroid shifts towards 
one disk by 18‰, the output current amplitude of this disk decreases by 38.7‰ to 1.657 μA 
(compared with 1.724 μA at zero offset), while the output current amplitude of the other 
disk increases by 35.9‰ to reach 1.785 μA.  In addition, when there is an offset, the Q of the 
resonator decreases.  In particular, when the centroid has an 18‰ offset, Q decreases by nearly 
19‰.

2.	 Radial-contour Mode Disk Resonators

	 In general, verification is accomplished through mechanical and electrical simulations.  To 
perform these simulations, some consistent boundary conditions, which involve the conversions 
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between the mechanical and electrical parameters, must be provided.  In this section, radial-
contour mode disk resonators are introduced and the boundary condition conversion method is 
given.

2.1	 Design and operation

	 Figure 1 depicts a schematic perspective view of a disk resonator, with its key dimensions 
labeled, under a two-port bias and excitation scheme.  As shown in Fig. 1, this device consists of 
a polysilicon disk suspended by a stem, aligned with its center, and enclosed by two polysilicon 
capacitive transducer electrodes with the gap d0 (i.e., 87 nm) from the disk circumference.  
Herein, it is assumed that the disk radius Rdisk is 18 μm, the thickness t is 2.1 μm, and the stem 
has a diameter of 2 μm and a height of 0.7 μm from the substrate to the disk bottom.
	 To excite this disk resonator, a direct current (DC) bias voltage VP and an alternating current (AC) 
signal voltage vi are applied to the disk and input electrode, respectively.  Note that the DC bias 
VP serves only to charge the electrode-to-disk capacitance and thereby does not incur power 
consumption.  Together, these voltages generate an electrostatic input force Fi in the radial 
direction (pointing outward from the disk) as follows:(11)
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where only the dominant term is retained at resonance (i.e., the components at DC and at 
frequencies different from vi are neglected) and ∂C1/∂r is the change in electrode-to-resonator 
overlap capacitance per unit radial displacement at the input port (i.e., port 1).  
	 Furthermore, ∂C1/∂r can be approximated as follows:(12)

Fig. 1.	 (Color online) Schematic perspective view of a micromechanical disk resonator under a two-port bias and 
excitation scheme.
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where Rdisk and t are respectively the radius and thickness of the disk, ε0 is the permittivity in 
vacuum, d0 is the electrode-to-resonator gap spacing, and ϕ1 is the angle defined by the edges of 
the input electrode (i.e., electrode 1) as shown in Fig. 1.  
	 To realize the loading of the drive force on the disk in the ANSYS simulation, the above 
electrostatic force is converted to pressure as

	 P F
W ti

i
e

� � ,	 (3)

where We denotes the electrode width.
	 When the frequency of the AC signal voltage vi matches the radial-contour mode resonance 
frequency of the disk, the resulting force drives the disk into a vibration mode in which it 
expands and contracts radially around its circumference, as shown in Fig. 2.  The radial 
displacement amplitudes at point (r,θ) on the disk and at the perimeter (i.e., r = Rdisk) in phase 
form are respectively given by(13)

	 � �( , ) ( )r AhJ hr� 1 ,	 (4)
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Fig. 2.	 (Color online) First-order mode shape of the radial-contour mode disk resonator.
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where kre is the effective stiffness at the perimeter, Jn(y) is the Bessel function of the first kind 
of order n, A is the drive-force-dependent ratio(13) (specified later in the tables in Sect. 5), and h 
is a constant defined as

	 h E E�
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,	 (6)

where ω0 = 2πf0 is the angular resonance frequency and ρ, σ, and E are the density, Poisson 
ratio, and Young’s modulus of the structural material, respectively.
	 The radial vibration of the disk creates a DC-biased time-varying capacitance between the 
disk and the output electrode, which generates an output motional current io proportional to the 
amplitude of vibration as

	 i V C
r

R
to p
disk� �

�
�
�
�

�
�
�
��

�
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where ∂C2/∂r is the change in electrode-to-resonator overlap capacitance per unit radial 
displacement at the output port (i.e., port 2), which takes a form similar to that of Eq. (2) but 
with ϕ1 replaced by ϕ2.  Note that, by using this formula, the ANSYS simulation results can 
be converted to the corresponding current values, which can be compared with the PSpice 
simulation results.
	 In summary, this disk resonator operates by first converting the input electrical signal 
vi to the mechanical force Fi, which is filtered by the high-Q mechanical response of the 
resonator to pass only the components at the disk resonance frequency being converted to 
the disk displacement ℜ(r,θ) [or velocity v(r,θ)].  Then, this displacement is converted from 
the mechanical domain back to the electrical domain into the output current io via the output 
electrode capacitive transducer.(14,15)

2.2	 Electrical equivalent circuits

	 To perform the circuit simulation, it is necessary to convert the mechanical model of the disk 
resonator into an equivalent circuit model.  Despite its mechanical nature, the disk resonator 
in Fig. 1 still has the appearance of an electrical device owing to its ports.  It can be modeled 
by the electrical inductor-capacitor-resistor (LCR) equivalent circuits shown in Fig. 3.  The 
element values in the LCR equivalents are governed by the total integrated kinetic energy in the 
resonator, its mode, and the parameters associated with its transducer ports.(11,14,16)

	 The equivalent mass at a location (r,θ) can be obtained by dividing the total kinetic energy 
by half of the square of the velocity at that location.(16)  Thus, the equivalent mass on the 
circumference of the disk yields
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where KEtot is the kinetic energy of the disk and v(r,θ) is the velocity magnitude.
	 From Eq. (8), expressions for the equivalent stiffness and damping at a location on the disk 
can be obtained using the relations

	 k mre re��02 ,	 (9)
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re re re� ��0 .	 (10)

An expression for the electromechanical coupling factor at port n can be obtained as
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	 The quantity C0 in Fig. 3 represents the capacitance from an I/O electrode to the AC 
ground, and as such, is primarily composed of combinations of electrode-to-resonator overlap 
capacitance and electrode-to-substrate capacitance.

3.	 Extensional-mode Coupling Beams

3.1	 Ideal model

	 Because a radial-contour-mode disk vibrates in the radial direction, the required coupler 
modes are of the extensional type.  The characteristics of a thin coupling beam (as a spring) are 
similar to those of an electrical transmission line, as shown in Fig. 4.
	 Hence, the extensional-mode beam vibration can be described by the following transmission 
(ABCD) matrix form,(16,17)

Fig. 3.	 (Color online) Physically consistent model using mass and stiffness for elements.
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where F and x denote the force and displacement, AC and LS represent the cross-sectional area 
and length of the beam, respectively, Z A E mk v E k m vC p p0 � � � � �� � � �, / / , / , and 
β = ω/Vp.
	 Then, the Z-parameters of the general coupling beam model (i.e., the T network shown in Fig. 5) 
can be calculated from the ABCD parameters in Eq. (12) as
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	 When modeling an electrical equivalent circuit, the impedances Za, Zb, and Zc can be 
replaced with capacitors or inductors as follows:

	 Z j L� �  or Z j C� 1
� .	 (16)

Fig. 4.	 (Color online) Transmission line models: (a) mechanical and (b) electrical.
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3.2	 Coupling beam model under cross-sectional area variation

	 Typically, resonators are fabricated in the same process and thus their material properties are 
generally consistent.  As a consequence, the centroid offset of the coupling beam is often caused 
by the dimension deviation of the beam instead of material density variation.  In general, the 
cross-sectional area AC in the transmission matrix (12) can be considered as a function of position x, 
i.e., Ac(x).  By dividing the beam into N equal segments (i.e., each segment has a length of LS/N), 
the transmission matrix for each section is then given as
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where Z x A x EC0 � � � � � � � .  From the characteristics of the transmission matrix, the matrix of 
the entire beam can be obtained as follows by cascading each sectional matrix equation in the 
beam:
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where N is a sufficiently large integer such that the actual beam shape can be well approximated.  
Theoretically, it tends to be infinite.
	 In the absence of research about how the beam centroid actually becomes offset due to 
the process variations, and considering that the beam usually has a high aspect ratio and is 
fabricated by some manufacturing technology,(18,19) which leads to inclination effects,(20,21) in 
the actual beam, a trapezoidal beam is utilized here for simplification, as shown in Fig. 6.

Fig. 5.	 (Color online) General coupling beam model.
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	 Specifically, the cross-sectional area AC(x) of the coupling beam is set as a linear function of 
the beam length as follows:

	 A x t W W
N x NW W

NC � � � � �
� � �

�
�
�
�

�
�
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,	 (19)

where W1 and W2 denote the beam widths at the two ends as shown in Fig. 6.

4.	 Coupled Double-disk Resonator

4.1	 Construction

	 Without loss of generality, consider a coupled double-disk resonator as an example of an 
array composite resonator, as shown in Fig. 7, which consists of two single-disk resonators 
connected through a coupling beam.  The two single-disk resonators are of the same type as the 
resonator shown in Fig. 1.  Moreover, the two single-disk resonators use the same input source vi 
and share the same bias voltage VP, while the output electrodes are connected in parallel in 
order to increase the output current and thus reduce the dynamic impedance of the resonator 
linearly.  
	 To make the single-disk resonators resonate at the same frequency with the same amplitude 
and phase, the dimension of the coupling beam must be adjusted to make it act as a spring 
with infinite effective stiffness.(22,23)  Specifically, it must satisfy the following conditions:  
βLS = (2n + 1)π, n = 0, 1, 2, 3, …, Za = Zb = −2Zc.  That is,
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Fig. 6.	 (Color online) Top view of the trapezoidal coupling beam model (with thickness t).
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where the modulus of each impedance tends to positive infinity.  Furthermore, the coupling 
beam length is calculated as follows:

	 L n
f

E nS �
� � � �2 1 1

0 1 2 3
0� � , , , , ...,	 (23)

where f0 is the resonant frequency and also the operating frequency.  When the length of the 
coupling beam is equal to an odd multiple of the half-wavelength (and normally takes a half-
wavelength), the entire array-composite resonator theoretically behaves similarly to each of its 
constituent single-disk resonators, but with lower impedance, better linearity, and better power 
handling capability.(9)

	 By following the guidelines on how to select the length of the coupling beam on the basis of 
Eq. (23), the desired array-composite resonator can be established with the coupled double-disk 
resonator in Fig. 7.  Specifically, the length of the beam is set to λ/2, where λ is the wavelength 
corresponding to the operating frequency of the resonator.  To make the result more intuitive, 
the mode shape of the coupled double-disk resonator is shown in Fig. 8.  By comparing with Fig. 2, 
one can observe in Fig. 8 that the resonant frequency and mode shape of the coupled resonator 
are unchanged.

4.2	 Equivalent circuit model

	 Using the design method that Wang and  Nguyen mentioned in Ref. 10, the equivalent circuit 
model of the coupled double-disk resonator can be established, as shown in Fig. 9, in which the 
circuit model of each single-disk resonator is connected to that of the coupling beam by a linear 
transformer(24) with ηcn = 1:1 turn ratio, where n = 1 and 2 denote the two electrodes.
	 Furthermore, by replacing the mechanical model in Fig. 7 with the circuit model in Fig. 9 
and assuming that the dimension of the coupling beam has no deviation, the entire circuit is 
symmetrical, i.e., ica = icb = icc/2.  Thus, from  Eqs. (20)–(23), the equivalent impedance at each 

Fig. 7.	 (Color online) Coupled double-disk resonator (LS = λ/2, where λ is the corresponding wavelength of the 
resonant frequency of the resonator).
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end of the coupling beam from the disk resonator is zero when the length of the coupling beam 
is set to λ/2, implying that the entire coupled double-disk resonator should behave similarly to 
one of its constituent single-disk resonators.
	 Owing to process variations, however, the centroid of the coupling beam may shift slightly, 
which causes the asymmetry of the circuit and ultimately affects the vibration of each disk.  To 
study this problem, the model of the coupling beam with cross-sectional area variations in Sect. 3.2 
is adopted and then a circuit simulation is performed using PSpice.

Fig. 8.	 (Color online) Mode shape of the ideal coupled double-disk resonator.

Fig. 9.	 (Color online) Equivalent circuit model of the coupled double-disk resonator.
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5.	 Results and Discussion

	 The ideal coupled double-disk resonator has identical disks and an ideal coupling beam with 
its length equal to half the wavelength corresponding to the operating frequency.  In this ideal 
case, the two disks resonate with the same amplitude and phase at the same frequency, and 
produce a consistent output current to reduce the equivalent dynamic impedance.  In practice, 
however, various process variations in lithography, etching, and so forth lead to deviations from 
a perfect match between the array elements.  As a result, the disk radius and the dimension of 
the beam in the array structure may have random distributions around the ideal design values.  
Herein, the performance of the coupled double-disk resonator is evaluated when the dimension 
of the coupling beam has some deviation.  Specifically, the performance is mainly examined 
from three aspects: (1) the resonant frequency, (2) the current amplitude of each disk, and (3) Q.
	 To simulate the case of the centroid offset of the coupling beam, a trapezoid beam is adopted 
here [see Fig. 10(a)], in which the width at its left end is fixed at W1 = 2.00 μm and that at its 
right end is denoted by a variable W2 to model the trapezoid beam (i.e., the centroid offset of the 
beam).  Specifically, W2 takes a value from the list in Table 1.  Ideally, when W2 = W1 = 2.00 μm, 
the coupling beam centroid has no offset; thus, it can be used as the reference for comparisons.  
For all other cases with W2 > W1, the centroid of the beam shifts to the right.  To clearly illustrate 
the actual beam centroid offset, the offset distances and the ratios of the offset distances to the 
beam length are both given in Table 1.

Fig. 10.	 (Color online) Coupling beam centroid offset model and diagram of partial mode shapes (colors represent 
degrees of deformation).

(b)

(a)
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	 Table 2 shows the design parameters of the resonator, including the dimensions of the 
resonator structure, the material parameters, and the associated model parameters, whereas the 
parameters of the circuit model of the coupling beam for the PSpice simulation are summarized 
in Table 3.

5.1	 Resonant frequency

	 When the dimension of the coupling beam changes, the overall geometry of the resonant 
structure is affected accordingly, which may shift the resonant frequency of the resonator.  

Table 1
Centroid offsets.
W2 (μm) Centroid offset (μm) Offset degree (‰)
2.00 +0 +0
2.02 +0.0342 +1.242
2.04 +0.0681 +2.474
2.06 +0.1016 +3.692
2.08 +0.1348 +4.899
2.10 +0.1677 +6.094
2.20 +0.3273 +11.895
2.30 +0.4793 +17.419
Note: offset degree = centroid offset / LS; the symbol "+" means to the right.

Table 2
Resonator design parameters.
Row No. Parameters Results Unit
1 Disk diameter, 2Rdisk 36 μm
2 Disk and beam thickness, t 2.1 μm
3 Stem diameter, 2Rstem 2 μm
4 I/O electrode width, We (ϕ1 = ϕ2) 53.4 μm
5 Electrode-to-resonator gap, d0 87 nm
6 Coupling beam length, LS 27.5155 μm
7 Density, ρ 2300 kg/m3

8 Young’s modulus, E 150 GPa
9 Poisson ratio, σ 0.226 —
10 Frequency scalar, k 0.342 MHz/μm
11 Mode-dependent factor, α 1 —
12 h (6) 0.115 μm−1

13 Force/dependent ratio, A 0.0111 μm2

14 AC input amplitude, Vi 1 V
15 Biased voltage, VP 6 V
16 ∂Cn/∂r (2) 1.3118e-07 F/m
17 Fi (1) 7.8709e-07 N
18 Pi (3) 7.0189 KPa
19 Ideal Q-factor, Q (5) 10361.3 —
20 Resonator mass, mre (8) 3.8971e-12 kg
21 Resonator stiffness, kre (9) 3.3135e+06 N/m
22 Damping factor, cre (10) 3.5935e-07 kg/s
23 Coupling factor, ηen(11) 7.9709e-07 C/m
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Figure 11 shows the calculated resonant frequencies obtained from the ANSYS and PSpice 
simulations versus the centroid offset.  One can observe that both curves give the same trend: 
when the width W2 at the right end of the coupling beam increases (i.e., the centroid shifts to the 
right), the resonant frequency of the resonator increases.
	 Nevertheless, one can see that there is some discrepancy between the simulation results from 
ANSYS and PSpice.  Specifically, the relative difference between the two simulation results 
increases as the coupling beam offset increases.  Herein, the ANSYS simulation results are 
taken as the standard reference since the PSpice circuit model ignores the change in resonant 
frequency to simplify the calculations.  In particular, the parameters of the circuit models of the 
disk and coupling beam are strongly related to the resonant frequency, as indicated by Eqs. (8)–
(10) and (12).  Nevertheless, the resonant frequency is still considered to be reasonable for such 
treatment in PSpice since the error is only on the order of one in a million as can be seen later.
	 As shown in Fig. 11(a), when the centroid offset is less than 6‰, the resonant frequency 
changes by 45.7 ppm.  Such a deviation can be corrected by tuning the electric stiffness in 
accordance with Ref. 9, in which a tuning voltage excursion of 8 V from −3 to 5 V can provide 
a 25.4 ppm change in resonant frequency.  It is expected that further improvement in tuning 
voltage excursion may enable the accommodation of 45.7 ppm deviation in resonant frequency.  
When the offset further increases to 12‰, there is a 110 ppm change in resonant frequency, 
which is difficult to correct by electric stiffness tuning.  To illustrate this argument, assume that 
the tuning method in Ref. 9 is linear, i.e., the correction rate is 3.175 ppm/V.  To correct a 110 
ppm deviation in resonant frequency, a voltage range of no less than 34.6 V would be required.  
Certainly, this is still acceptable for some applications.  In the case of 18‰ centroid offset, 
however, the derivation in resonant frequency is nearly 250 ppm, and thus a tuning voltage 
range of 78.7 V for performing correction would be required, which is hardly acceptable in 
most practical applications.  Moreover, the practical tuning method can be more complicated, 
especially when the number of resonators used in the array is large.

Table 3
Electrical equivalent model of the coupling beam (N = 30).

Width of right end of beam (W2) unit
Parameters 2.00 2.02 2.04 2.06 2.08 2.10 2.20 2.30 μm

Transmission matrix (ABCD)(18)

A −1.000 −0.994 −0.989 −0.984 −0.979 −0.974 −0.950 −0.927 —
B (3.78e-20)i (1.04e-09)i (4.17e-09)i (9.33e-09)i (1.65e-08)i (2.56e-08)i (1.01e-07)i (2.20e-07)i —
C (6.22e-12)i −0.056i −0.223i −0.496i −0.870i − 1.340i − 4.994i −10.495i —
D −1.000i −1.005 −1.010 −1.015 −1.021 −1.026 −1.052 −1.077 —

Components of T network(13)–(15)

Za 3.2e11i −35.09i −8.88i −3.99i −2.27i −1.473i −0.390i −0.183i Ω
Zb 3.2e11i −35.28i −8.97i −4.05i −2.32i −1.512i −0.410i −0.197i Ω
Zc −1.6e11i 17.59i 4.46i 2.01i 1.14i 0.746i 0.200i 0.095i Ω

Equivalent components(16)

Ca — 3.09e-11 1.22e-10 2.71e-10 4.76e-10 7.36e-10 2.77e-09 5.90e-09 F
Cb — 3.07e-11 1.20e-10 2.67e-10 4.66e-10 7.17e-10 2.63e-09 5.47e-09 F
Lc — 1.90e-08 4.84e-09 2.18e-09 1.24e-09 8.09e-10 2.17e-10 1.03e-10 H
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(a)

(b)

Fig. 11.	 (Color online) Resonant frequency versus centroid offset: (a) ANSYS and (b) PSpice simulations.

5.2	 Amplitude

	 Random variations in the dimensions of resonators and coupling beams often compromise 
the amount that the output currents actually add, as mentioned in Ref. 9.  Specifically, it was 
reported in Ref. 9 that a nine-disk array composite using three output resonators achieved 
only an output current of 2.78× (in contrast to ideally 3×) that of a single-constituent resonator.  
According to Eq. (7), there are three factors that determine the output power, i.e., the bias 
voltage VP, the change in ∂C2/∂r in electrode-to-resonator overlap capacitance per unit radial 
displacement at the output port, and the disk amplitude.  For the first two factors, the voltage VP 
is shared by all the disks and introduces no error, while the term ∂C2/∂r, which depends on the 
channel width between the disk and the electrode, is mainly related to the radius of the disk and 
has already been studied in Ref. 9.  Herein, the effect of the disk amplitude on the output current 
is studied.
	 By ANSYS simulation, the disk amplitudes corresponding to various centroid deviations of 
the coupling beam are obtained and then converted into the output currents through Eq. (7).  On 
the other hand, the output currents can also be obtained directly by PSpice simulation.  Figures 
12(a) and 12(b) depict the output currents of the left and right disks, respectively, obtained from 
both the ANSYS and PSpice simulations, versus the centroid offset.  From Figs. 12(a) and 12(b), 
one can observe that the two results from ANSYS and PSpice are very close and show the same 
trend.  When the beam centroid shifts towards the right disk, the output current of the right disk 
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decreases, while the output current of the left disk increases.  Specifically, when the centroid 
shifts towards the right with offset 18‰, the output current amplitude of the left disk increases 
by 35.9‰ to reach 1.785 μA (in reference to 1.724 μA at zero offset), while the output current 
amplitude of the right disk decreases by 38.7‰ to 1.657 μA.  Moreover, all these changes are 
nearly linear versus the centroid offset.
	 On the basis of the concept of equivalent mass, the results can be explained as follows.  
When the beam centroid shifts to the right, the equivalent mass of the right disk increases.  
If the total kinetic energy does not change, Eq. (8) implies that the velocity of the right disk 
decreases, and thus the amplitude of the right disk also decreases.  In contrast, the equivalent 
mass of the left disk decreases, leading to increases in both the velocity and amplitude of the 
left disk.  Comparing the mode shapes in Figs. 8 and Fig. 10(b), one can conclude that, when the 
coupling beam centroid shifts, the amplitude of one disk increases, while that of the other disk 
decreases.

Fig. 12.	 (Color online) Amplitude versus centroid offset. (a) Amplitude of the left disk, (b) amplitude of the right 
disk, and (c) overall change.

(a)

(b)

(c)
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	 Note that the deviation can become more severe when there are more resonators used in 
the array.  According to Ref. 9, the average amplitude of the disks decreases by nearly 85% 
for array-composite resonators with a 1% worst-case dimensional mismatch between the array 
elements when the number of resonators increases to seven.  The relative mismatch between 
the left and right disks can be defined as the quotient of the difference between the amplitudes 
of the left and right disks divided by the disk amplitude under zero offset.  Figure 12(c) shows 
the relative mismatch between the left and right disks obtained from the ANSYS and PSpice 
simulations versus the coupling beam centroid offset.

5.3	 Quality factor

	 The quality factor is an important parameter in measuring the performance of a resonator.  A 
high quality factor of a resonator implies a high frequency selectivity, good short-term stability, 
and a relatively low dynamic impedance.  Therefore, it is necessary to study the quality factor 
variation caused by the centroid offset of the coupling beam.  In this subsection, the PSpice 
simulation of the equivalent circuit of the resonator is utilized to obtain the spectral results, and 
then the corresponding quality factor is calculated as

	 Q f
BW

f
f fdB

� � �
0

3

0

2 1
,	 (24)

where f0 is the resonant frequency of the resonator, BW3dB is the 3 dB bandwidth, and f2 and f1 
are the upper and lower bound frequencies of the 3 dB bandwidth, respectively.
	 Figure 13 shows the quality factor obtained from the PSpice simulation versus the coupling 
beam centroid offset.  Obviously, when the dimension of the coupling beam is not changed (i.e., 
W2 = 2.00 μm), the corresponding quality factor is highest (i.e., Q = 10361.3); here, the coupling 
beam does not contribute to the energy loss of the resonator.  However, when the centroid shifts, 
the overall quality factor of the resonators decreases.  From Fig. 13, one can see that severe 
performance degradation occurs when the centroid shifts to the right with an offset degree of 
18‰, resulting in a decrease of nearly 19‰ in quality factor.  

Fig. 13.	 (Color online) Quality factor versus centroid offset.
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6.	 Conclusions

	 The performance variations of an array composite resonator and the coupling beam centroid 
offset caused by process variations have been studied.  Firstly, an equivalent circuit model for 
the trapezoid coupling beam was deduced to model the beam under the centroid offset.  Then, 
a model for a double-disk coupled resonator including the beam centroid offset was established 
by combining the equivalent circuit model with the existing circuit model of the radial-contour 
mode disk resonator.  Finally, numerical results were obtained by simulations using ANSYS and 
PSpice with the mechanical and electrical models, respectively.  
	 It has been shown that the resonant frequency varied by 45.7, 110, and 250 ppm when the 
beam centroid shifted by 6, 12, and 18‰, respectively.  When the centroid shifted towards one 
disk by 18‰, the output current amplitude of this disk decreased by 38.7‰ to 1.657 μA (compared 
with 1.724 μA at zero offset), while the output current amplitude of the other disk increased 
by 35.9‰ to reach 1.785 μA.  In addition, when there was an offset, the Q of the resonator 
decreased.  In particular, when the centroid had an 18‰ offset, Q decreased by nearly 19‰.  
	 When there are more resonators in the array, a small deviation can be amplified and severely 
affects the performance of the array-composite resonator.  The aim of this work is to provide 
resonator designers with a detailed understanding of the effects of the coupling beam centroid 
offset so that the performance of multidisk array-composite resonators can be maximized.
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