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 Remote sensing has been providing solutions in a variety of sectors as a result of the 
recent growth in technology and available data.  Land cover mapping is the most widely used 
application of remote sensing, yet it has always been a challenging task owing to various 
complexities.  Consequently, constant studies have been conducted for the improvement of land 
cover classification accuracy using new datasets or algorithms in various cases.  Because of free 
availability and high temporal coverage, Landsat data series are frequently chosen in studies 
of land cover mapping.  In addition, various spectral indices (SIs) have been developed to 
separate a single feature very efficiently.  Some of the derived SIs were stacked with an original 
multispectral image in some studies, in expectation of better classification results.  In this study, 
we investigate whether the stacking of layers with different SIs derived from reflectance data 
could improve the land cover classification of Landsat OLI image in a hilly region of South 
Korea.  A decision tree was used for the selection of SIs that aid classification.  For that, five 
supervised classifiers, namely, Mahalanobis distance (Mahd), maximum likelihood (ML), 
minimum distance to means (MinD), parallelepiped (PP), and support vector machine (SVM), in 
three cases of a study area were applied with the same training and validation data to compare 
the accuracy of the results for original and two derived composites.  Out of 45 land cover cases, 
28 cases showed improvements by layer stacking indices.  PP showed improvement in all cases 
but at the cost of unclassified pixels.  MahD and SVM showed improvement in most cases 
with higher classification accuracy.  ML was unable to classify the composite with all derived 
bands.  In conclusion, layer stacking of the derived bands, even two normalized difference 
vegetation index and normalized difference water index, was able to improve the overall 
accuracy.  Improving the accuracy of land cover maps would provide accurate information and 
is beneficial to authorities for a better understanding and analysis of the environment.
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1. Introduction

 Remote sensing is a rapidly growing space technology that has been providing significant 
solutions in the areas of natural resource management and environmental assessments.  With 
the availability of remotely sensed data from different sensors of various platforms with a wide 
range of spatiotemporal, radiometric, and spectral resolutions, the technology has been applied 
to a variety of sectors such as agriculture, forestry, geology, hydrology, land use, and land cover.(1)

 In the past two decades or so, land cover mapping has been the most popular application 
of remote sensing research.(2)  “Land cover” is a separate yet interchangeable terminology 
that refers to the physical characteristics of the earth’s surface, together with the distribution 
of vegetation, water, desert, ice, and other physical features of land, including those of 
anthropogenic origins, e.g., settlements, industries, and mines.(3)  Accurate and up-to-date land 
cover maps provide better visualization of the environment and aid in planning, modeling, and 
decision-making processes in natural resource management.  The production of frequent and 
more accurate land cover maps has always been a challenging task due to terrain, landscape 
complexity, land cover pattern, selection of suitable bands (original or derived), image 
processing, and classification approaches, for example.(4,5)  Examples of the most common 
classification algorithms include the k-means, iterative self-organizing data analysis technique, 
Mahalanobis distance (MahD), maximum likelihood (ML), parallelepiped (PP), and minimum 
distance to means (MinD), while advanced classification algorithms include artificial neural 
networks (ANN), decision trees (DT), support vector machine (SVM), and object-based image 
analysis (OAA).(6,7)  A review of different classification approaches has been given by Lu and 
Weng.(4)  Gómez et al.(8) have provided a comprehensive review of optical remotely sensed time 
series data for land cover classification, along with studies, strengths, and weaknesses of these 
methods.
 In the past, several contributions have been made toward the improvement of land cover 
classification accuracy from remotely sensed images through the use of indices derived from 
the same or different data sets, ancillary data, and combined data from two or more sensors.(9–12) 
Spectral indices (SIs) are derivatives from satellite data that have been widely used to estimate 
environmental variables of interest such as water, soil, and built-ups.(13–15)  However, these SIs 
are effective only in separating one type of feature.  Hence, the stacking of layers with different 
SIs in accordance with the specific land cover in a study area can aid in the improvement of 
classification accuracy.
 Because of free-of-charge availability, longer history, and higher archiving frequency, the 
Landsat series has been providing earth imagery regularly since the 1970s.  The images are 
frequently used for land cover classification on regional, continental, and global scales.(16–20)  
In addition, technical advances in the past decade have yielded precise spatial and calibrated 
radiometric alignment of Landsat images.  The most recent operational land imager (OLI) 
onboard Landsat 8 launched on 11 February 2013(21) has several improvements over its 
predecessors, namely, the thematic mapper (TM; Landsat 4 and 5) and the enhanced thematic 
mapper (ETM+; Landsat 7).  The main changes include an increased number of spectral 
bands, a higher radiometric resolution (12 bits), and an improved signal-to-noise ratio resulting 
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from the use of a push-broom sensor.  Because of the various sensor characteristics, there 
are differences in SIs derived from multiple sensors for the same target.(22)  The differences 
in spectral reflectance and normalized difference vegetation index (NDVI) values have also 
been observed in OLI data compared with ETM+.(23–25)  Hence, the SIs derived from improved 
reflectance may enable better characterization and mapping of environmental variables, states, 
and conditions.
 Layer stacking has been frequently used in the classification of single or multiple land 
cover features from satellite images.  Zhou et al.(26) used NDVI, enhanced vegetation index 
(EVI), and land surface water index (LSWI) for each image used to demonstrate the potential 
of the phenology-based rice paddy mapping algorithm, obtained by integrating MODIS and 
Landsat 8 OLI images, to map paddy rice fields in complex landscapes comprising rice paddies 
and natural wetland in a temperate region.  Rawat and Kumar(27) applied NDVI, normalized 
difference water index (NDWI), and normalized difference built-up index (NDBI) derived from 
Landsat TM images to monitor the change in land cover by the supervised ML method.  Ko et 
al.(28) used top-of-atmosphere (TOA) reflectance and water indices [NDWI and two modified 
NDWI (MNDWI)] derived from the Landsat 8 OLI sensor and its corresponding random 
forest classifiers for robust water-body classification.  Otukei and Blaschke (11) used the first 
three principal components (PCs), the first three tasselled cap (TC)-transformed bands, NDVI, 
and the texture band based on spectral variance with a 3 × 3 moving window in Landsat TM 
and ETM+ images in DT, SVM, and ML to assess land cover change in the Pallisa District, 
Eastern Uganda.  However, the use of these derived bands were only assumptions for better 
classification without comparison with raw data.  Recent multispectral image and classifiers 
provide higher classifications, yet even a slight improvement in the result would be highly 
beneficial in mapping communities.
 The objective of this study is to investigate the hypothesis that the stacking of layers with 
different SIs derived from TOA reflectance data could improve the land cover classification of 
Landsat OLI image in hilly regions of South Korea.  For this objective, a suitable study area 
was selected.  Obtained data were converted to TOA reflectance and various SIs were derived 
and then stacked into one.  Training and validation data from high-resolution images available 
in Google Earth Pro (GEP) acquired on the same date were used for the classification and 
accuracy assessment of the results.  Finally, the five most common classifiers, namely, MahD, 
ML, MinD, PP, and SVM, were applied on the original and two stacked composites to compare 
the accuracy of results.  The overall workflow of the study is shown in Fig. 1.

2. Materials and Methods

2.1 Study area

 A total area of 2944 sq. km in the central south region of South Korea was selected for study.  
Most of the area lies in Jeollabuk province and a few adjacent portions of adjacent provinces.  
The area is geographically bounded by 35°14’8.43”N to 36° 1’40.32”N and 127°21’9.64”E to 
127°42’36.69”E.  The elevation in the study area varies from 33 to 1799 m above sea level.  The 
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area is mostly hilly with forest and agricultural land.  In addition, few large water reservoirs and 
dense built-up areas also lie in the area.  The area was selected for its typical land cover that is 
representative of hilly regions of South Korea.
 To better understand the role of SIs in the classification process, the study area is divided 
into two halves (Fig. 2).  The complete classification process was carried out on three study 
areas, i.e., upper (1513 sq. km), lower (1431 sq. km), and combined.

2.2 Data and preprocessing

 The data used in the study was of the Landsat 8 image obtained from the United States 
Geological Survey (USGS) EarthExplorer portal and the high-resolution georeferenced image 
available in GEP.  The Landsat 8 data was of the geometrically corrected level-1T image, 
acquired on May 26, 2015 in the worldwide reference system path 115 and row 35 and pre-
georeferenced to the UTM zone 52 North projection in the WGS84 datum.  The spectral 
wavelength ranges and the spatial resolution bands of Landsat 8, along with the applications, are 
presented in Table 1.
 In Environment for Visualizing Images (ENVI) version 5.1 image processing software, a 
Landsat calibration tool was used to convert the digital numbers (DNs) of the OLI bands into 
TOA reflectance.  The required coefficients and values, including the Data Acquisition Date 
and Sun Elevation, were obtained from the Landsat MTL header file.  After that, a subset image 
was extracted from the scene as the study area.  The image quality of the study area was good 
and cloud free.
 The high-resolution georeferenced image available in GEP was used as training data for 
image classification and training data for overall accuracy assessment.  The images available in 
GEP were acquired on the same day as the Landsat 8 image, i.e., May 26, 2015.  Thus, the two 
same-date images ensure identical land cover conditions.

Fig. 1. Overall work flowchart adopted in this study.
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Table 1
Spectral bands of Landsat 8 OLI.

Band No. Band name Spectral ranges 
(μm)

Spatial resolution 
(m) Applications

1 Deep blue 0.43–0.45 30 Coastal and aerosol studies

2 Blue 0.45–0.51 30
Bathymetric mapping, distinguishing 

soil from vegetation and deciduous 
from coniferous vegetation

3 Green 0.53–0.59 30 Assessment of vegetation vigor

4 Red 0.64–0.67 30 Chlorophyll absorption 
for vegetation discrimination

5 Near infrared (NIR) 0.85–0.88 30 Emphasizes biomass content and 
waterbodies/shorelines

6 Short-wave infrared 1 
(SWIR_1) 1.57–1.65 30 Discriminates moisture content of soil 

and vegetation; thin cloud penetration

7 Short-wave infrared 2 
(SWIR_2) 2.11–2.29 30

Improved discrimination of moisture 
content of soil and vegetation; 

thin cloud penetration

8 Panchromatic 0.50–0.68 15 Sharper image definition 
for visual interpretation

9 Cirrus 1.36–1.38 30 Improved detection of cirrus cloud 
contamination

10 Thermal infrared 1 
(TIR_1) 10.60–11.19 100* Thermal mapping and estimated soil 

moisture

11 Thermal infrared 2 
(TIR_2) 11.50–12.51 100* Improved thermal mapping and 

estimated soil moisture

BQA Quality assessment Quality assessments for every pixel 
in the scene

*TIRS bands are acquired at 100 m resolution, but are resampled to 30 m in the delivered data product.(29,30)

Fig. 2. (Color online) Location map of the study area in Korea, with sampling polygons on Landsat 8 scene 
natural color composite image taken on May 26, 2015.
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2.3 Spectral index and layer stacking

 SIs have been successfully used in several classification studies.  To achieve better 
classification results, 13 SIs resulting in 16 derivative layers from TOA reflectance were also 
created.  The selection of the indices was based on the condition of the land cover class present 
in the study area.  Table 2 shows the spectral reference, formulae, and reference of the TOA 
reflectance-based SIs of Landsat 8 OLI bands applied in the study area.
 As the season of the study area is early summer, most of the forest area is green, and 
different vegetation indices (VIs) were calculated to enhance vegetation spectral distribution.  
VIs have been used in vegetation studies, especially to assess the health of vegetation, which 
could provide valuation information in classification approaches.  VIs used in the studies are 
shown in Table 2, along with the formulae and references.  The use of multiple VIs could also 
help in identifying the VIs with higher information gain during classification.  
 For water detection, LSWI, NDWI, and two MNDWIs were used.  NDWI is designed to 
maximize the reflectance of a water body by using a green wavelength, minimize the low 
reflectance in NIR, and take advantage of the high reflectance in NIR of vegetable and soil 
features.(42)  The modified version of NDWI, MNDWI, was developed to enhance open water 
features by efficiently suppressing and even removing built-up, land noise as well as vegetation 
and soil noise.  Two bands for each LSWI and MNDWI were derived on the basis of two SWIR 
bands.

Table 2
TOA reflectance-based SIs of Landsat 8 OLI bands applied in the study area.
SI No. Spectral index Formula Reference

1 Enhanced vegetation index
(three bands) (EVI) 2.5 × (NIR − Red)/(NIR + 6 × Red − 7.5 × Blue + 1) (31) 

2 Enhanced vegetation index
(two bands) (EVI2) 2.5 × (NIR − Red)/(NIR + 2.4 × Red + 1) (32) 

3 Land surface water index (LSWI) (NIR − SWIR)/(NIR + SWIR) (33) 

4 Modified normalized difference water 
index (MNDWI) (Green − SWIR)/(Green + SWIR) (34) 

5 Modified simple ratio (SR) (NIR/Red) − 1)/( √ (NIR/Red) + 1) (35) 

6 Normalized difference built-up index 
(NDBI) (SWIR − NIR)/(SWIR + NIR) (36) 

7 Normalized difference vegetation index 
(NDVI) (NIR − Red)/(NIR + Red) (37)

8 Normalized difference water index 
(NDWI) (Green − NIR)/(Green + NIR) (38) 

9 Soil-adjusted vegetation index (SAVI) 1.5 × (NIR − Red)/(NIR + Red + 0.5) (39) 
10 Simple ratio (SR) NIR/Red (40) 

11 Tasselled cap transformation brightness 
(TCT_B)

0.3029× Blue + 0.2786 × Green + 0.4733 × Red + 
0.5599 × NIR + 0.508 × SWIR_1 + 0.1872 × SWIR_2 (41) 

12 Tasselled cap transformation greeness 
(TCT_G)

−0.2941 × Blue − 0.243 × Green −0.5424 × Red + 
0.7276 × NIR + 0.0713 × SWIR_1 − 0.1608 × SWIR_2 (41) 

13 Tasselled cap transformation wetness 
(TCT_W)

0.1511 × Blue + 0.1973 × Green + 0.3283 × Red + 
0.3407 × NIR − 0.7117 × SWIR_1 − 0.4559 × SWIR_2 (41) 
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 NDBI was used for the detection of built-up areas.  It highlights urban areas where there is 
typically a higher reflectance in the SWIR region than in the NIR region.  Like the MNDWI, 
two NDBIs were derived as per two SWIR bands in OLI data.
 Similarly, the three tasselled cap transformed (TCT) bands were chosen since they 
represent the “greenness”, “brightness”, and “wetness” axes, and therefore provide a measure 
of the presence or absence of vegetation as well as of areas with high moisture content.  The 
coefficients to derive TCT bands for OLI were taken from the result obtained by Baig et al.(41)

 As suitable bands, whether original or derived ones, play an important role in improving the 
classification,(4) DT could yield the minimum bands with high information gain and the decision 
threshold for classification in the composite dataset.  In this study, the J48 model available in 
the data mining software Waikato Environment for Knowledge Analysis (WEKA)(43) was used.  
Derived bands with only information gain for the classifications were selected to form a new 
final composite through layer stacking.

2.4 Sampling training and validation dataset

 Training and validation data for the associated classes were delineated on the basis of an 
analyst’s prior knowledge of the study area.  First, polygonal regions of interest (ROI) were 
selected on the image in GEP.  For all four ROIs, 70% of the pixels were selected for training 
and the remaining 30% were selected for validation, as shown in Table 3.

2.5	 Classification	and	accuracy	assessment

 A total of five supervised classifiers were selected for the classification of the multispectral 
image without and with layer-stacked SIs (newly derived after DT), namely, MahD, ML, MinD, 
PP, and SVM.  The ENVI was used in all classifications.  All the classifiers are well known and 
widely used for land cover classification and are available in ENVI.
 MahD classification is a direction-sensitive distance classification in which statistics are 
used for each class and all class covariances are assumed to be equal; therefore, it is a faster 
method.(7)  All pixels are classified to the closest ROI class unless a distance threshold is 
specified, in which case, some pixels may be unclassified if they do not meet the threshold.(44)

 The MinD classfier uses the mean vectors of each end member and calculates the Euclidean 
distance from each unknown pixel to the mean vector for each class.  All pixels are classified 
to the nearest class unless a standard deviation or distance threshold is specified, in which case, 
some pixels may be unclassified if they do not meet the selected criteria.(44)

Table 3
Number of ROI polygons in the study.

Study area Land cover polygons Sampling pixels
Water Forest Built-up Land Training Validation Total

Upper 12 10   6 10   7400   3172 10572
Lower 12 10   6 10 23032   9870 32902
Combined 24 20 12 20 30432 13042 43474
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 ML is one of the most commonly used parametric classifiers for supervised classification 
because of its simplicity and robustness.(7)  It assumes that the statistics for each class in each 
band are normally distributed and calculates the probability that a pixel or object belongs to 
each class and then assigns the pixel or object to the class with the highest probability.  If the 
highest probability is smaller than a specified threshold, the pixel remains unclassified.(44)

 PP classification uses a simple decision rule to classify a multispectral image.  The decision 
boundaries form an n-dimensional parallelepiped classification in the image data space.  The 
dimensions of the parallelepiped classification are defined on the basis of a standard deviation 
threshold from the mean of each selected class.  If a pixel value lies between the low and high 
thresholds for all n bands being classified, it is assigned to that class.  If the pixel value falls into 
multiple classes, ENVI assigns the pixel to the first matched class.  Areas that do not fall within 
any of the parallelepiped classes are designated as unclassified.(44)

 The SVM is also a non-parametric learning algorithm used for classification and regression.  
The success of the SVM depends on how well the process is trained.  The SVM often yields 
good classification results from complex and noisy data, and thus, is often used as the reference 
state-of-the-art method for the comparison of various object identification and classification 
results in different cases.(11,45)

 The study area was classified into four land cover classes: water, forest, built-up area, and 
land (Table 4).  These classes represent the most dominant and important types of land cover 
in the area.  The selection of only four classes was for the sake of ease and to decrease the 
possibility of misclassification.
 Finally, we used the producer’s accuracy (PA), user’s accuracy (UA), and overall accuracy (OA), 
and Kappa statistics, which were calculated from error matrix, to compare the performance of 
classified maps.  A score table was also prepared to visualize the improvement in classification 
of each classifier and study area.

3. Results and Discussion

 First, all the pixels from the sampling polygons were transformed into table format along 
with all the pixel values from 23 individual layers.  Three different tables were formed as per 
upper, lower, and combined study area.  Each table was processed in WEKA using the J48 
model to form the DT.  The suitable SIs for layer stacking were selected on the basis of the sum 
of the number of repetitions in the DT.  Figure 3 show the example of DT for the combined 
study area.

Table 4
Land cover classes in this study.
Class No. Class Name Description
1 Water River, ponds, lakes, and reservoirs
2 Forest Mixed grasslands and forests
3 Built-up area Residential, commercial, industrial, roads, and mixed urban areas
4 Land Crop fields, fallow lands, exposed soil, and barren areas
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 In the DT for all three cases, five derivative bands (MSR, NDBI1, NDBI2, SAVI, and SR) 
were rejected and not even used once, and TCT Brightness and Greenness were used only a 
few times.  Consequently, the deep blue, NDWI, and red bands were most repeated in the DTs.  
With the selected SIs, these were stacked with the original multispectral image in two ways: 7 
original bands with two SIs (NDVI and NDWI) so that the new image comprises 9 bands (Comp9), 
and 7 original bands with 11 SIs so that the new image has 18 bands (Comp18).
 For the original (Comp7), and two new stacked composite (Comp9 and Comp18) images, 
each of the three areas (i.e., upper, lower, and combined) were classified on the basis of the five 
classification models trained using the 70%-pixel samples.  A total of 45 classified land cover 
maps were derived.  Figures 4–6 show examples of the classification results of upper, lower, 
and combined study areas using MahD, PP, and SVM classifiers, respectively, for all three 
composites.
 The remaining 30% of the pixels from the sampled polygons were used in the accuracy 
assessments.  The results of the accuracy assessment are shown in Tables 5–7 where PA, 
UA, and OA for each class and the Kappa coefficient for each classifier are shown.  The 
classification accuracies of MahD, ML, and SVM seem to be high, whereas MinD and PP 
show poor classification accuracy.  To our surprise, the ML was unable to classify the Comp18 
composite image and PP was unable to classify some pixels in all study areas.  Similarly, the 
PAs of water and forest seem to be very high, even 100% in some cases, whereas built-up 

Fig. 3. Example of DT for the combined study area using all 23 bands based on sampled polygon pixels.  The 
bands used in all the three cases of DT were only used for final Comp18.
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Fig. 4. (Color online) Results of land cover in upper study area using MahD classification for composite data: (a) 
original OLI (Comp7), (b) OLI bands with NDVI and NDWI (Comp9), and (c) OLI bands with all SIs (Comp18).

(a) (b) (c)

(a) (b) (c)

Fig. 5. (Color online) Results of land cover in lower study area using PP classification for composite data: (a) 
original OLI (Comp7), (b) OLI bands with NDVI and NDWI (Comp9), and (c) OLI bands with all SIs (Comp18).

area and land showed poor results and the classification results were often interchanged with 
each other.  In particular, MinD and PP classified land as built-up in all cases.  The common 
misclassifications in the results are shown in Fig. 7.
 From the accuracy assessment tables, a score table is prepared, as shown in Table 8, which 
shows whether there is improvement in classification or not.  An improvement in the OA 
is scored as 1 whereas a decrease in accuracy is scored as 0.  As seen in the table, there is 
improvement in the overall accuracy for all classifiers except ML.  Out of 45 cases, 62% showed 
improvement, and if ML is removed from the evaluation, 77% of the cases were improved.  
The most improved classification is PP but at a cost of unclassified pixels.  MahD showed only 
improvement with the Comp18 composite, but not the Comp9 composite in the upper and lower 
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Fig. 6. (Color online) Results of land cover in combined study area using SVM classification for composite data: (a) 
original OLI (Comp7), (b) OLI bands with NDVI and NDWI (Comp9), and (c) OLI bands with all SIs (Comp18).

(a) (b) (c)

Table 5
(Color online) Accuracy assessment statistics of classification algorithms of original OLI band composite (Comp7).

Study area Classifier
Water Forest Land Built-up

OA
Kappa

coefficientPA UA PA UA PA UA PA UA

Upper

MahD 100 94.63 100 97.77 93.05 97.39 89.15 90.55 96.95 0.949
ML 98.45 100 99.5 99.86 93.94 97.59 94.96 78.78 97.04 0.955

MinD 100 74.19 95.01 95.63 60.78 88.34 92.25 49.38 83.29 0.757
PP 96.65 100 98.72 99.78 63.99 97.03 96.12 39.18 85.97 0.798

SVM 99.23 100 100 99.72 97.86 96.32 84.88 91.63 97.92 0.968

Lower

MahD 100 96.53 100 99.51 91.78 97.43 87 83.65 98.95 0.954
ML 98.56 100 99.78 99.98 92.94 97.24 98 75.1 99.07 0.961

MinD 100 48.94 85.45 99.55 61.01 31.5 95 49.74 83.5 0.503
PP 97.12 100 99.6 100 49.95 95.37 97.5 29.82 94.75 0.78

SVM 100 100 100 99.93 97.05 97.05 86 88.66 99.43 0.976

Combined

MahD 100 97.59 100 98.86 90.83 97.56 88.65 85.84 98.14 0.951
ML 98.86 100 99.69 99.96 92.85 97.27 96.29 75.38 98.45 0.96

MinD 100 66.54 86.06 98.96 61.9 47.41 93.45 49.65 83.05 0.625
PP 96.77 100 99.54 99.97 55.53 95.99 96.94 33.36 92.35 0.807

SVM 99.81 99.62 100 99.89 96.96 96.54 84.5 88.56 98.96 0.973
All are represented as a percentage (%).
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Table 7
(Color online) Accuracy assessment statistics of classification algorithms of original OLI bands with all SI compos-
ite (Comp18).

Study area Classifier
Water Forest Land Built-up

OA Kappa 
coefficientPA UA PA UA PA UA PA UA

Upper

MahD 100 100 99.79 99.57 97.15 97.06 88.37 89.76 97.95 0.969
ML 0 0 0 0 0 0 0 0 0 0

MinD 99.23 80.88 100 94.8 57.75 98.78 98.06 45.26 84.8 0.779
PP 95.1 100 95.73 99.85 79.95 95.53 91.86 55.24 89.75 0.85

SVM 100 100 100 99.65 98.13 96.49 84.5 93.16 98.08 0.971

Lower

MahD 98.56 100 100 99.74 94.2 98.03 91 83.87 99.24 0.967
ML 0 0 0 0 0 0 0 0 0 0

MinD 99.28 55.87 99.79 99.58 61.54 96.53 99 47.37 96.09 0.834
PP 97.12 100 98.24 100 74.39 99.16 96.5 48.86 95.9 0.84

SVM 100 100 100 99.93 97.26 97.57 88.5 89.85 99.5 0.979

Combined

MahD 99.81 100 99.99 99.73 95.46 97.58 89.52 85.77 98.9 0.971
ML 0 0 0 0 0 0 0 0 0 0

MinD 99.43 73.6 99.64 98.8 59.63 96.48 98.69 46.17 93.24 0.826
PP 93.55 100 98.02 99.97 75.81 92.41 94.76 49.83 94.2 0.855

SVM 100 100 100 99.9 96.96 96.45 83.84 87.87 98.95 0.973
All are represented as a percentage (%).

Table 6
(Color online) Accuracy assessment statistics of classification algorithms of original OLI bands with NDVI 
and NDWI band composite (Comp9).

Study area Classifier
Water Forest Land Built-up

OA
Kappa

coefficientPA UA PA UA PA UA PA UA

Upper

MahD 98.97 100 100 97.57 94.39 97.07 89.15 89.15 97.01 0.954
ML 99.74 100 99.79 99.79 91.53 98.28 94.57 72.62 96.44 0.95

MinD 100 98.73 100 92.8 74.87 97.56 91.86 58.52 90.45 0.857
PP 96.65 100 96.87 99.78 67.91 95.61 95.74 42.08 86.51 0.805

SVM 100 100 100 99.72 98.13 96.49 84.5 92.77 98.08 0.971

Lower

MahD 97.12 100 100 99.44 90.73 97.62 91 81.61 98.89 0.952
ML 100 100 99.81 99.99 92.1 97.54 97 72.39 99.02 0.958

MinD 100 99.29 100 99.43 80.72 98.33 93.5 58.44 98.01 0.914
PP 97.12 100 99.48 100 59.85 99.13 97.5 35.14 95.59 0.82

SVM 100 100 100 99.93 97.15 97.05 86 89.12 99.44 0.976

Combined

MahD 98.29 100 100 98.78 90.83 96.96 89.08 85.89 98.09 0.95
ML 99.24 100 99.77 99.97 90.44 97.7 96.29 69.34 98.14 0.952

MinD 100 98.87 100 98.4 77.02 98.03 93.01 58.04 96.1 0.898
PP 96.58 100 99.3 99.97 64.9 96.62 96.29 39.17 93.62 0.839

SVM 100 100 100 99.92 97.2 96.73 85.15 88.64 99.03 0.975
All are represented as a percentage (%).

study areas.  Similarly, MinD and SVM showed improvement upon adding derivative bands.  
However, in the case of SVM, adding any of the bands reduced the accuracy.
 The classification of the three study areas in ENVI software showed variable results in each 
case.  Most of the classifications improved upon adding derivative bands; some also showed 
decreases in OA.  In a special case, in addition to a great improvement, PP showed an increased 
number of unclassified pixels.  The ML was unable to classify any pixels at all in the composite 
with all 18 bands.  In the case of PP, the unclassified pixels did not fit in any of the decision 
boundaries in the image data space.  Similarly, in the case of the ML, which assumes a normal 
distribution of pixels of each class and calculates the probability, the threshold seems to be 
higher than the highest probability calculated for a pixel to fit in any class.
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Fig. 7. (Color online) Common misclassifications in results: (a) completely unclassified (ML in Comp18), (b) some 
unclassified areas (PP in Comp9), and (c) incorrect classification (MinD in Comp7).

(a) (b) (c)

Table 8
(Color online) Score table to show the improvement for three composite images.
Study area Upper Lower Combined

SumClassifier
Comp7

Vs
Comp9

Comp7
Vs

Comp18

Comp9
Vs

Comp18

Comp7
Vs

Comp9

Comp7
Vs

Comp18

Comp9
Vs

Comp18

Comp7
Vs

Comp9

Comp7
Vs

Comp18

Comp9
Vs

Comp18
MahD 1 1 1 0 1 1 0 1 1 7
ML 0 0 0 0 0 0 0 0 0 0
MinD 1 1 0 1 1 0 1 1 0 6
PP 1 1 1 1 1 1 1 1 1 9
SVM 1 1 0 1 1 1 1 0 0 6
Sum 4 4 2 3 4 3 3 3 2 28
1 indicates improvement, and 0 indicates decrease in accuracy.

 Recent studies have shown that SVM performs better than many other algorithms, especially 
with a small training data set.  The main advantage for land cover mapping is the production of 
more accurate classification.(46–48)  In our study also, the performance is better.  MahD, which 
is a direction-sensitive distance classifier that uses statistics for each class and assumes that all 
class covariances are equal and therefore is a faster method, has also shown better performance 
and improvement.  The increase in the accuracies of MinD and PP needs to be further 
optimized with the correct threshold value for assigning class to all pixels.

4. Conclusions

 Land cover mapping has been the most often conducted study in remote sensing thanks to 
the availability of much data, algorithms, and advanced computing technology.  Improving the 
accuracy of classification has been a challenging task among researchers.  In this study, we 
conducted 45 land cover analyses with five classifiers, in three study areas with original and 
two derived composites.  Among these, 28 cases showed improvements upon stacking of layers 
with different SIs.  PP showed improvement in all cases but at a cost of unclassified pixels.  
MahD and SVM showed improvement in most cases with higher classification accuracy.  ML 
was unable to classify the composite with all derived bands.  In conclusion, layer stacking 
of the SIs, even two NDVI and NDWI, improved the overall accuracy.  Improving the land 
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cover classification accuracy is beneficial to authorities for better analyzing the environment.  
Such an increase in accuracy could be very helpful for environmental and natural resource 
authorities to provide land cover maps with accurate information quickly, thus enabling a better 
understanding of the environment. Future works require the selection of a variety of cases with 
different sensors, different seasons, and individual comparisons of the accuracy of individual or 
combined SIs.
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