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	 In this study, we combined the extension neural network type 2 (ENN2) with the chaos 
theory in the electrocardiogram (ECG) recognition system.  The self-developed hardware 
measurement circuit and LabVIEW human–machine interface were used to measure and 
capture ECG signals.  The master–slave chaos system was adopted to change the stored ECG 
data into a chaotic dynamic error distribution graph to obtain the chaotic eye coordinates of 
specific ECG signals.  ENN2 was used for recognition.  There were 36 research subjects.  The 
first half of the data were measured using the signal capture circuit, while the second half were 
provided by the medical center of Massachusetts Institute of Technology (MIT).  According 
to the results of analysis, the proposed method has a high accuracy when applied to the 
classification of ECG recognition, with a recognition rate of up to 89%.  Hence, the automatic 
diagnosis ECG system designed in this study can effectively categorize irregular heart rhythms 
and reduce the huge labor cost for reading.

1.	 Introduction

	 Increasing attention has been paid to the prevention and diagnosis of heart disease in recent 
years.  A common diagnostic method is using medical devices to obtain the electrocardiogram 
(ECG) signs of human hearts through noninvasive methods, so as to investigate heart conditions 
and then detect and diagnose different heart diseases.  
	 In the past several years, many papers have put forward different methods of obtaining the 
eigenvalue and diagnosing heart diseases, and increasing attention has been paid to the methods 
of recognizing ECG identities in recent years.  Reference 1 proposed to adopt the linear 
discrimination classification methods to recognize the ECG eigenvalues of ECG patterns and 
RR interval lengths.  After these three kinds of eigenvalue are combined in different ways, the 
training data are used to develop an eigenvalue combination with the highest efficacy.  Then, 
the test data are adopted to demonstrate the classification system.  What is worthy of attention is 
that most of the methods of obtaining the eigenvalue integrate the RR interval length with other 
types of eigenvalue, such as the formal eigenvalue based on wavelet transformation,(2,3) the 
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coefficient based on the Hermite function,(4) and the eigenvalue directly obtained from the time 
and frequency domains of ECG.  The classification methods include the linear discrimination 
classification,(5,6) the support vector machine,(7,8) the artificial neural network (ANN),(9,10) and 
the fuzzy theory.(11,12)

	 In accordance with the Hermite function theory, in Ref. 7, the hierarchical classification 
with statistical values and the Hermite function were combined to obtain the eigenvalue of heart 
beat signals and then the support vector machine was used to classify ECG signals.  In Ref. 13, 
chaotic ECG signals were employed to recognize personal identity and combined three kinds of 
eigenvalue, including the relevance dimension analyzed by the chaos theory and Lyapunov, with 
the ANN learning and the recognition function.  
	 The data of this study can be divided into two parts.  The first part includes the data about 
irregular heart rhythm provided by the medical center of Massachusetts Institute of Technology 
(MIT).  MIT-BIH is one of the standard ECG databases recognized internationally and can be 
used to provide and test all studies on irregular heart rhythm.(14)  The other part includes actual 
subjects, and the developed hardware circuit is used to measure and obtain ECG signals.  As 
there are many methods of obtaining eigenvalue and the calculation is complicated, this study 
will combine the extension neural network type 2 (ENN2) with the chaos theory for the ECG-
based identity recognition in order to effectively obtain the eigenvalue of original signals and 
reduce the amount of data for measurement.  Additionally, to facilitate the acquisition, analysis, 
and recognition of signals in the future, in this study, we adopted LabVIEW to develop a 
human–machine interface to integrate the signals measured in real time with the proposed 
algorithm and display them in the graph control images.

2.	 System Flow

2.1	 Overall system architecture

	 The method of applying ENN2 and the chaos theory to the ECG recognition system in this 
paper includes three parts: the measurement and acquisition of ECG signals, the acquisition of 
the eigenvalue of the chaotic eye coordinate of the chaos theory, and the recognition of ENN2 
and the human–machine interface.  The overall system framework is shown in Fig. 1.
Step 1: Signal measurement and acquisition
	 The data of about 18 subjects in the first half were obtained through the hardware circuit-
based measurement of the subjects; then, the data acquisition (DAQ) of LabVIEW transmits the 
data to the server for storage.  The data in the second half were provided by the irregular heart 
rhythm databases in MIT-BIH.  The ECG signals of 36 subjects were collected.
Step 2: Chaos theory
	 The master–slave chaos system was used to turn the measured original ECG signals and 
MIT-BIH data into a chaotic dynamic error distribution graph, and the obtained chaotic eye 
coordinate was taken as the eigenvalue.  Seventy two chaotic eye coordinates were obtained.
Step 3: ENN2 and human–machine interface
	 Then, ENN2 was adopted to classify and recognize the chaotic eye coordinates.  Finally, the 
recognition results were presented on the human–machine interface.  
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2.2	 ECG signal measurement and acquisition hardware circuit

	 Figure 2 shows the actual circuit for the measurement and acquisition of ECG signals, 
including the electrode, the acquisition circuit consisting of the front-back amplifier and filter, 
and the DAQ card of analog-to-digital signals.  Finally, the signals were transmitted to the 
human–machine interface designed with LabVIEW.
	 Front-level amplifier: As some signals to be measured were very weak, the front-level 
amplifier is often adopted to amplify the ECG signals.  Therefore, in this study, we used the 
AD620 meter amplifier.  The meter is an amplifier of high gain and DC coupling, featuring 
difference input, single-end output, high input resistance, and a high common mode rejection 
ratio.  More importantly, its amplified signals are more accurate, its disturbance signals are less, 
it can operate with a low voltage, and it is easy to use.
	 Filter: AD620 was adopted to amplify ECG signals; then, the filter was used to put the 
measurement range in a frequency range.  In this study, we used the second-order Butterworth 
filter(15,16) to set the cut-off frequency of the low- and high-pass filters as 100 and 0.05 Hz, 
respectively.
	 Back-level amplifier: After going through the front-level amplifier and the filter, signals 
must be amplified with the back-electrode amplifier.  In this paper, the IC-LM324 nonreverse 
amplifier was taken as the second gain of circuit, as shown in Fig. 3.

3.	 Proposed Methods

3.1	 Chaos theory

	 The chaos theory was proposed by the American meteorologist Edward Norton Lorenz to 
discuss the instability of nonlinear dynamic systems.  Owing to chaotic attractors, the signals 
from the chaos theory would generate a sequential but noncycle movement track.  Owing to the 
minor change, this track would cause great change to the results.(17)  Therefore, it is especially 
suitable for numerical values featuring massive original signals and a small variation range.

Fig. 1.	 (Color online) System framework.
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	 The chaotic system consists of the master system and the slave system, as shown in Eqs. (1) 
and (2).  The chaotic dynamic error generated by the mutual subtraction of the numerical values 
between the two systems leads to the different tracks of the master and slave systems.  In the 
field of engineering, if the slave system follows the master system and the operational tracks of 
the two systems are adjusted to synchronize gradually, it is called a chaotic synchronous system.(18)
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f1 is a nonlinear function.  The dynamic error equation can be obtained by subtracting Eq. (2) 
by Eq. (1), as shown in Eq. (3).
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Fig. 2.	 (Color online) Hardware circuit for the 
measurement and acquisition of ECG signals.

Fig. 3.	 Actual IC-LM324 and Internal Pin.
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	 The Lorenz chaos system adopted in this study is shown in Eqs. (4) and (5).
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	 After the mutual subtraction and calculation between Eqs. (4) and (5), the dynamic error 
equation of the Lorenz master–slave chaotic system was obtained, as shown in the Eq. (6) 
matrix.
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x is the master system, and the initial value is set as “0”.  y is the ECG signal value of the slave 
system.  The coefficients of the Lorenz attractors are as follows: α = 10, β = 28, γ = (−8/3).

3.2	 ENN2

	 ENN2 combines neural networks with the extension theory within a structure very similar 
to that of ENN.(19)  The neural network enables parallel computing and learning, whereas the 
extension theory serves as the basis of a novel distance measurement for classification purposes.  
ENN2 provides stability by retaining old information in memory as well as plasticity in 
conforming to new information.(20)

	 Figure 4 presents a schematic illustration showing the architecture of the ENN2, comprising 
an input layer and an output layer.  Nodes in the input layer receive input patterns and generate 
an image of the input pattern using a set of weighted parameters.  This network includes two 
connection values (weights) between the input and output nodes.  One of the connections 
represents the lower bound and the other connection represents the upper bound.  Output nodes 

 L
mjw  and  U

mjw  provide the connections between the jth and mth input nodes.
	 This image is further enhanced in the process characterized by the output layer.  In the 
output layer, only one output node remains active to indicate the classification of the input 
pattern.
	 In the context of ENN2, unsupervised learning is based on a follow-the-leader approach, 
which does not require information pertaining to the initial number of clusters or an initial 
guess at the coordinates of the cluster center.  ENN2 employs a threshold referred to as a 
distance parameter (DP) λ as well as a novel extension distance (ED) function to oversee the 
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clustering process.  λ measures the distance between the desired boundary and the center of 
the cluster.  A pattern designated as the center of the first cluster is used to compute the initial 
weights using the distance parameter λ.  A comparison is then conducted between the first 
cluster and the next pattern.  If the distance is less than the vigilance parameter (i.e., equal to 
the number of features), it is then clustered with the first cluster.  Otherwise, it is designated as 
the center of a new cluster.  This process is then applied to all patterns until a stable cluster is 
achieved.  Before examining the learning process, a number of variables must be defined:

Xi	 ith pattern;
xij	 jth feature of the ith input pattern;
Zk	 center of the cluster k;
λ	 distance parameter;
Np	 total number of input patterns;
n	 number of features;
k	 number of existing clusters;
Mk	 number of patterns belonging to cluster k.

	 The detailed unsupervised learning algorithm of ENN2 is outlined in the following.
Step 1: After setting the desired DP, it is used to measure the distance between the center of the 
cluster and the desired boundary.  The adjustment of this user-defined parameter must be based 
on the engineering of the system.
Step 2: The first pattern is produced, and M1 = 1.  The center coordinates and weights of the 
first cluster are then calculated as follows.

	 k = 1	 (7)

Fig. 4.	 (Color online) Structure of ENN2.
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	 { } { }1 1 1 1, , . , ,.., ,. . .k k k k kn k k knZ X z z z x x x= ⇒ = 	 (8)

	 L
kj kjw z λ= −  for j = 1, 2, …, n	 (9)

	 U
kj kjw z λ= +  for j = 1, 2, …, n	 (10)

Step 3: The input pattern vectors are read by letting i = 2, and go to the next step.
Step 4: Read the ith input pattern { }1, 1,...,i i i inX x x x⇒  before calculating the extension distance 
EDm between Xi and the current mth cluster center as follows.

	

( )

( )=1

2= +1

2

U L
mj mj

n ij mj
m U L

j mj mj

w w
x z

ED
w w

 
 −
 − −
 
 − 
 
  

∑  for m = 1, 2, …, k	 (11)

	 This proposed ED is a modification of the extension distance in Eq. (11).  It can be used to 
describe the distance between x and a real interval 〈wL, wU〉.  It is possible to quantitatively 
express the concept of distance, as defined by the positional relationship between a point and 
an interval.  When using classical math to derive the distance to points within the interval, the 
distance value is calculated as zero.  The proposed extension distance can be used to describe 
the various positions of a point in the interval.

Step 5:  Find the p in which

	 EDp = min{EDm} for m = 1, 2, …, k.	 (12)

Step 6: If EDp > n, then create a new cluster center.  According to the definition of the 
proposed extension distance, if x lies in the interval, then the distance is smaller than 1.  Thus, 

if { }1, 1,...,i i i inX x x x=  has n features in the clustering process, where EDp > n indicates that  Xi 

does not belong to the pth cluster, then a new cluster center will be created.

	 k = k + 1	 (13)

	 { } { }1 2 1 2, ,..., , ,. .= . ,k k k k kn i i inZ X z z z x x x⇒ = 	 (14)

	 L
kj kjw z λ= −  for j = 1, 2, …, n	 (15)

	 U
kj kjw z λ= +  for j = 1, 2, …, n	 (16)
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	 Mk = 1	 (17)

	 Otherwise, the pattern Xi belongs to the cluster p, then update the weights and the center of 
the cluster p.
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Step 7: Changing the input pattern Xi from cluster “o” (the old one) to “k” (the new one) leads to 
the modification of the weights and the center of the cluster “o” as follows.
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	 Figure 5 presents the result of the tuning of weights in the two clusters, which clearly 
indicates changes in EDo and EDk.  The cluster xij changes from “o” to “k” owing to the fact that 
ED′o > ED′k.  From this step, it is clear to see that the process of learning is based entirely on 
adjusting the weights of the oth and kth clusters.  This gives the proposed method an advantage 
over unsupervised learning algorithms in terms of speed, thereby enabling rapid adaptation 
when new information is encountered.  Thus, the clustering process retains stability as well as 
plasticity.
Step 8: Set i = i + 1 and iteratively repeat Steps (4–8) until all of the patterns have been 
compared with the existing clusters.
Step 9: Once the clustering process reaches convergence, the algorithm ends; otherwise, return 
to Step 3.
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4.	 Experimental Results

4.1	 Chaotic dynamic error scatter diagram

	 To demonstrate the performance and accuracy of the identity recognition proposed by this 
paper, 18 subjects and 18 MIT-BIH databases of irregular heart rhythm were taken as the data 
for identity recognition, and the 36 experiment subjects were males and females ranging from 
20 to 50.  The MIT-BIH databases included four common heart beat classifications: normal 
beat (NB), heart beat resisted by the left bundle branch block beat (LBBBB), heart beat resisted 
by the right bundle branch block beat (RBBBB), and heart beat caused by the atrial premature 
contractions beat (APCB).(2)

	 The measured and collected ECG data were calculated with the Lorenz master–slave chaotic 
system of the chaos theory to obtain the chaotic dynamic error distribution graph.  Figure 6 
is the chaotic dynamic error distribution graph of a heart beat classification (LBBB).  Each 
distribution graph had two chaotic eyes, and the total number of coordinates was 4 (C1–C4).  In 
this study, Y-axis values (C1 and C3) of the left and right chaotic eye coordinates were taken as a 
new eigenvalue to obtain 72 chaotic eye coordinate eigenvalues.  The distribution of the chaotic 
eye coordinates of the four heart beat classifications is shown in Fig. 7.

4.2	 ENN2 identification classification results

	 The 72 numerical values of chaotic eye coordinates obtained were classified through ENN2.  
When λ was 4.199, the accuracy of recognition was as high as 89%.  Figure 8 shows the results 
of the ENN2-based classification.
	 As shown in Table 1, different values of λ, ranging from 2.5 to 7, can lead to different levels 
of recognition accuracy, ranging from 69 to 89%.  Figures 9 to 12 show the results of ENN2-
based recognition when λ is 3.46, 2.55, 6.998, and 5.598, respectively.

Fig. 5.	 (Color online) Results of tuning cluster weights: (a) original condition and (b) after tuning.

(a) (b)
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Fig. 6.	 (Color online) LBBB chaotic dynamic error 
distribution.

Fig. 7.	 (Color online) Distribution of numerical 
values of coordinate Y of left and right chaotic eyes.

Fig. 8.	 (Color online) Distribution of the results of 
ENN2-based recognition (λ = 4.199).

Fig. 9.	 (Color online) Distribution of the results of 
ENN2-based recognition (λ = 3.46).

Table 1
Results of ENN2-based classification and recognition.
λ (Distance 
parameter)

Number of 
types

Accuracy 
(%) Ranking

4.199 5 89 1
3.46 6 81 2
2.55 8 79 3
6.998 3 78 4
5.598 4 69 5

Fig. 10.	 (Color online) Distribution of the results of 
ENN2-based recognition (λ = 2.55).
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4.3	 Human–machine interface signal measurement and result display

	 Figure 13 shows the display image of the human–machine interface developed through the 
combination of LabVIEW and the MATLAB program, which contains the measured ECG 
signals, the dynamic error distribution graphs calculated through the chaos theory, the display 
of the numerical values of chaotic eye coordinates, and the results of ENN2-based classification 
and recognition.

Fig. 11.	 (Color online) Distribution of the results of 
ENN2-based recognition (λ = 6.998).

Fig. 12.	 (Color online) Distribution of the results of 
ENN2-based recognition (λ = 5.598).

Fig. 13.	 (Color online) Display of ECG human-machine interface.
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5.	 Conclusions

	 In this study, we finished the development of the ECG recognition system of hardware 
and software; the designed ECG measurement and capture circuit framework is simple.  The 
subjects’ heart conditions can be determined through the results of analysis using the self-
developed LabVIEW human–machine interface.  Additionally, the ECG hardware circuit 
was adopted to measure and obtain signals, and the master–slave chaotic system of the chaos 
theory was used to make a dynamic error distribution graph out of the stored data.  The chaotic 
eyes were taken as eigenvalue, and ENN2 was adopted for classification to diagnose the heart 
conditions of the subjects, with a recognition accuracy of up to 89%.  According to the empirical 
results, the chaotic dynamic error distribution graph and chaotic eyes were generated using 
the master–slave chaotic system.  The left and right chaotic eye coordinates were taken as the 
eigenvalue, which could greatly reduce the capture of the eigenvalue of the traditional ECG in 
the time domain and then reduce the calculation time and system complexity of the recognition.  
Moreover, it could effectively facilitate diagnosis.
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