
153Sensors and Materials, Vol. 31, No. 1 (2019) 153–163
MYU Tokyo

S & M 1757

*Corresponding author: e-mail: anne@ncut.edu.tw
https://doi.org/10.18494/SAM.2019.1998

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

High-efficiency Vector Quantization Codebook Search Algorithms 
for Extended Adaptive Multi-rate-wideband Audio Coder

Cheng-Yu Yeh and Hsiang-Yueh Lai*

Department of Electrical Engineering, National Chin-Yi University of Technology,
No. 57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 41170, Taiwan (R.O.C)

(Received May 22, 2018; accepted September 5, 2018)

Keywords:	 audio codec, vector quantization (VQ), immittance spectral frequency (ISF), triangular 
inequality elimination (TIE), equal-average nearest neighbor search (ENNS)

	 The extended adaptive multi-rate-wideband (AMR-WB+) is a standard audio codec 
stipulated by the 3rd Generation Partnership Project (3GPP).  It has been experimentally 
validated by 3GPP that an AMR-WB+ audio codec well outperforms others when encoding 
speech or audio signals at bitrates below 24 kbps, but at the cost of high computational load, 
particularly when performing the vector quantization (VQ) of immittance spectral frequency 
(ISF) coefficients.  For this sake, by no means can an AMR-WB+ audio codec implemented on 
mobile devices meet the energy efficiency requirement.  As a solution to this problem, in this 
paper, we present two high-efficiency triangular inequality elimination (TIE)-based algorithms 
for VQ codebook search.  The first is referred to as the iterative TIE (ITIE) search algorithm, 
and the other is substantially the combined use of ITIE and the equal-average nearest neighbor 
search (ENNS) algorithm, both of which are subsequently applied to quantize the vectors of 
ISF coefficients.  Most of the codewords are ruled out herein as the candidates using one-level 
and two-level rejection criteria, leading to a significantly reduced number of codeword searches 
but still maintaining the same coding quality.  With a full search algorithm as a benchmark, 
this work shows a reduction in the total number of operations of more than 75.21%, a figure far 
beyond 60.23% using the TIE algorithm with a dynamic and an intersection mechanism (DI-TIE), 
60.85% using ENNS, and 64.88% using the equal-average equal-variance equal-norm nearest 
neighbor search (EEENNS) algorithm.  Moreover, this work can be implemented on handheld 
devices equipped with multiple sensing components, e.g., smartphones, to provide various 
multimedia and audio applications, and the energy saving requirement can be achieved as well.

1.	 Introduction

	 The extended adaptive multi-rate-wideband (AMR-WB+) is a standard audio codec 
stipulated by the 3rd Generation Partnership Project (3GPP)(1,2) and is substantially an extended 
version of the adaptive multi-rate-wideband (AMR-WB),(3,4) as its name indicates.  Similarly 
to AMR-WB, AMR-WB+ works in the speech codec mode and is also designed to code and 
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decode stereo and audio signals sampled at up to 48 kHz.  As suggested in 3GPP TR 26.936(5) 
on AMR-WB+ and Enhanced aacPlus (Eaac+)(6) audio codecs, an AMR-WB+ encoder has been 
validated to well perform in general when encoding speech or audio signals at bitrates below 
24 kbps.  Accordingly, AMR-WB+ is seen as an advantageous candidate when implemented on 
mobile devices.
	 As explicitly stated in Ref. 1, an AMR-WB+ encoder takes a mono or stereo signal sampled 
at 16–48 kHz and outputs a bit stream at bitrates between 6–48 kbps.  This is because audio 
signals can be well encoded using the hybrid algebraic code-excited linear-prediction (ACELP)/
transform coded excitation (TCX) technique, meaning that the encoder must be smart enough 
to identify the type of input signals and then choose the right coding technique, so as to well 
maintain the signal decoding quality.  As indicated in TR 26.936,(5) however, an extremely high 
computational complexity occurs in the encoding procedure of AMR-WB+.  In short, an AMR-
WB+ codec cannot meet the energy saving requirement for mobile devices.
	 As described in Ref. 1, an AMR-WB+ encoder mainly involves 3 coding units, that is, a low-
frequency unit using ACELP/TCX encoding, a high-frequency unit using bandwidth extension 
(BWE) encoding, and a stereo coding unit.  These involve an enormous computational load to 
perform the vector quantization (VQ) of immittance spectral frequency (ISF) coefficients.(7–9)  
This is simply for the reason that the VQ of ISF coefficients is required in both the high-
frequency coding unit and particularly the low-frequency one, where VQ of ISF is performed 
up to 7 times in each frame, which possess the same VQ structure as an AMR-WB encoder.  
A combination of the split VQ (SVQ) and multistage VQ (MSVQ) techniques, referred to 
as the split-multistage VQ (S-MSVQ), is employed therein to quantize the ISF coefficients.  
Conventionally, VQ conducts a full search to ensure that a codeword best matches an arbitrary 
input vector, but the full search requires an enormous computational load.
	 Over the years, much effort has been made to address the issue of computational load 
reduction for VQ codebook search, including those based on the equal-average equal-variance 
equal-norm nearest neighbor search (EEENNS) algorithms(10–14) and the triangular inequality 
elimination (TIE) algorithms.(15–18)  The EEENNS algorithm, derived from the equal-average 
nearest neighbor search (ENNS) and the equal-average equal-variance nearest neighbor search 
(EENNS) approaches, uses three significant features of a vector, i.e., the mean value, the 
variance, and the norm, as a three-level elimination criterion to reject impossible codewords.  
Thus, the aim of the computational load reduction can be reached.
	 As presented in Ref. 18, the TIE algorithm with a dynamic and an intersection mechanism, 
abbreviated as DI-TIE, was well validated to outperform the multiple TIE (MTIE) algorithm 
and EEENNS.  Nevertheless, there was hidden computational cost in DI-TIE when ruling out 
codewords as candidates.  As will be illustrated later, the computational complexity reduction 
in Ref. 18 is not as much as it seems to be.  On the other hand, a binary search space-structured 
VQ (BSS-VQ) algorithm is adopted to reduce the complexity of ISF quantization in AMR-WB.(19)  
In this manner, a trade-off can be made between the quantization accuracy and the search 
load to meet a user’s need when performing a VQ encoding.  However, this coding quality is 
expected to decline.
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	 To prevent this decline, in this paper, we present two improved versions of TIE-based 
algorithms to further improve the codebook search performance when quantizing ISF vectors.  
The first is referred to as the iterative TIE (ITIE) algorithm, and the second is substantially a 
combined use of ITIE and ENNS, both of which are expected to remarkably enhance the coding 
efficiency of an AMR-WB+ audio codec, namely, reduce the computational complexity of 
AMR-WB+ encoding.  The codebook search performance of this proposal is tested in S-MSVQ 
of ACELP/TCX encoding.  For comparison purposes, the search performance of the algorithms 
herein is assessed in terms of the total number of operations, that is, addition + subtraction, 
multiplication + division, comparison, and square root.  The presented algorithms are ultimately 
validated to well outperform their counterparts, and are expected to meet the energy efficiency 
requirement when implemented on an AMR-WB+ codec of mobile devices.  In addition, the 
applications of audio/voice communication can be provided on smartphones by means of audio 
sensing components and the AMR-WB+ audio codec.
	 This paper is outlined as follows.  The ISF coefficient quantization in AMR-WB+ is 
described in Sect. 2.  In Sect. 3, we present two search algorithms for ISF quantization.  
Experimental results are demonstrated and discussed in Sect. 4.  This work is summarized at 
the end of this paper.

2.	 Procedure of ISF Quantization in ACELP/TCX Encoding

	 In AMR-WB+, a linear prediction analysis is made as follows.  As the first step, a frame 
is applied to evaluate linear predictive coefficients (LPCs), which are then converted into ISF 
coefficients.  Subsequently, quantized ISF coefficients are obtained following a VQ process, 
which is detailed below.

2.1	 Linear prediction analysis

	 In a linear prediction, a Levinson–Durbin algorithm is used to compute the 16th-order LPC, 
ai, of a linear prediction filter, defined as
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	 Subsequently, the LPC parameters are converted into the immittance spectral pair (ISP) 
coefficients for the purposes of parametric quantization and interpolation.  The ISP coefficients 
are defined as the roots of the following two polynomials.
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1( )F z′  and 2( )F z′  are symmetric and antisymmetric polynomials, respectively.  It can be proven 
that all the roots of such two polynomials lie and alternate successively on a unit circle in the 
z-domain.  Also, 2 ( )F z′  has two roots at z = 1 (ω = 0) and z = −1 (ω = π).  Such two roots are 
eliminated by introducing the following polynomials, with eight and seven conjugate roots on 
the unit circle expressed respectively as
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where the coefficients qi are referred to as the ISPs in the cosine domain and a16 is the last 
predictor coefficient.  A Chebyshev polynomial is used to solve Eqs. (4) and (5).  Finally, 
derived from the ISP coefficients, 16th-order ISF coefficients ωi can be obtained by taking the 
transformation ωi = arccos(qi).

2.2	 Quantization of ISF coefficients

	 Before a quantization process, the mean-removed and first-order moving average (MA) 
filtering process are performed on the ISF coefficients to obtain a residual ISF vector,(1,3) that is,

	 ( ) ( ) ( )n n n= −r z p ,	 (6)

where z(n) and p(n) respectively denote the mean-removed and predicted ISF vector at frame n 
by a first-order MA prediction,(1,3) defined as

	 1 ˆ( ) ( 1)
3

n n= −p r ,	 (7)

where ˆ( 1)n −r  is the quantized residual vector at the previous frame.
	 Subsequently, S-MSVQ is performed on r(n).  The structure of S-MSVQ is presented in Table 1.  
In stage 1, r(n) is split into two subvectors, namely, a 9-dimensional subvector r1(n) associated 
with codebook CB1 and a 7-dimensional subvector r2(n) associated with codebook CB2, for 
VQ encoding.  As a preliminary step of stage 2, the quantization error vectors are split into five 
subvectors, symbolized as (2) ˆ , 1,2i i i i= − =r r r .  For instance, r(2)

1,1–3 in Table 1 represents the 
subvector split from the 1st to the 3rd components of r1, and then VQ encoding is performed 
thereon over codebook CB11 in stage 2.  Likewise, r(2)

2,4–7 stands for the subvector split from 
the 4th to the 7th components of r2, after which VQ encoding is performed over codebook CB22 
in stage 2.  Finally, a squared error ISF distortion measure, that is, Euclidean distance, is used in 
all the quantization processes.
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3.	 Proposed Search Algorithms

	 In this paper, we present two search algorithms, the first of which is the ITIE algorithm and 
the second is the combined use of ITIE and ENNS, symbolized as ITIE + ENNS, read as ITIE 
plus ENNS and designated as the ITIEpENNS search algorithm.  As a preliminary to the ITIE 
algorithm, TIE and DI-TIE are briefly described as follows.
	 A TIE algorithm works as follows.  As presented in Ref. 15, a codeword captured from the 
preceding frame is treated as the reference codeword cr in the current frame.  Subsequently, the 
Euclidean distance between the input vector x and cr, symbolized as d(cr, x), is evaluated.  A set 
composed of all the codewords ci satisfying the condition d(cr, ci) < 2d(cr, x) is referred to as a 
candidate search group (CSG), denoted by CSG(cr) and formulated as

	 TIE: ( ) { | ( , ) 2 ( },, )r i r i rCSG d d= <c c c c c x 1 i CNum≤ ≤ ,	 (8)

where CNum represents the total number of codewords.  CSG(cr) is the search space over which 
a current codebook search is performed.  In addition, a lookup table listing all the codewords 
sorted by the Euclidean distance is prebuilt for the TIE search algorithm.
	 As stated explicitly previously, the mean-removed and first-order MA filtering processes are 
performed on the ISF coefficients in AMR-WB+ to obtain a residual ISF vector r(n) before a 
quantization process.  Consequently, the correlation between neighboring input vectors is gone, 
meaning that the TIE algorithm has a poor performance when applied to a codebook search.
	 As shown in Algorithm 1 for readers’ convenience, the DI-TIE algorithm, suggested in 
Ref. 18, works in a different way.  That is, a dynamic mechanism is enabled during a TIE 
codebook search.  A CSG is automatically updated once a condition is met, and the intersection 
of the updated CSG and the previous one is found as a way to reduce the number of candidate 
codewords, denoted by N(cr).  The aim of DI-TIE is then to reduce the value of N(cr) as much as 
it can during codebook search.

Algorithm 1: Search procedure of DI-TIE
Step 1:	 Build a TIE lookup table.
Step 2:	 Compute the d(cr, x), and then determine the initial search space according to Eq. (8), 

that is,

Table 1
Structure of S-MSVQ in ACELP/TCX encoding.

Stage 1
CB1:

r1 (1–9 order of r)
(8 bits)

CB2:
r2 (10–16 order of r)

(8 bits)

Stage 2
CB11:
r(2)

1,1–3
(6 bits)

CB12:
r(2)

1,4–6
(7 bits)

CB13:
r(2)

1,7–9
(7 bits)

CB21:
r(2)

2,1–3
(5 bits)

CB22:
r(2)

2,4–7
(5 bits)
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	 ( ) { | 1,2,..., ( )}r k rCSG k N= =c c c ,	 (9)

where ck and N(cr) denote the codewords and the number thereof in CSG(cr), 
respectively.

Step 3:	 Starting at k = 1, assign ck as a new reference codeword, compute d(ck, x), and then 
determine CSG(ck) and N(ck).

Step 4:	 If N(ck) < N(cr) − k, then perform the set intersection operation in Eq. (10), update 
N(cr), let k = 1, and repeat Step 3.

	 ( ) ( ) ( )r k rCSG CSG CSG= ∩c c c 	 (10)

	 Otherwise, let k = k + 1, and then repeat Steps 3 and 4, until k = N(cr).	

	 Even though DI-TIE does as it claims to significantly reduce the number of codeword 
searches, there is a hidden computational cost, i.e., the operations in Steps 3 and 4.  In short, the 
overall computational complexity reduction is not as much as it seems to be.  As a solution to 
this issue, two high-efficiency search algorithms are developed and detailed as follows.

3.1	 ITIE search algorithm

	 As illustrated in Fig. 1 and stated in Algorithm 2, codeword captured from the preceding 
frame is treated as the reference codeword cr in the current frame, just as in the TIE case.  A 
codebook search is performed over CSG(cr) using Eq. (8).  As in the TIE and DI-TIE cases, 
the condition d(cr, ck) < 2d(cr, x) is checked.  If the condition is true, then compute d(ck, x), and 
check another condition d(ck, x) < d(cr, x).  If the condition is true, then cr is replaced with ck, 
and the search scope CSG(cr) is updated.  CSG(cr) updates and shrinks each time through the 
above-stated loop.  In this manner, ITIE requires a smaller number of codeword searches but at 
the cost of the additional operations through the loop, and turns out to well outperform the TIE 
and DI-TIE counterparts with respect to the overall computational complexity.
Algorithm 2: Search procedure of ITIE
Step 1:	 Build a TIE lookup table.
Step 2:	 Given a cr, compute d(cr, x), and then CSG(cr) is found directly in the TIE lookup 

table.
Step 3:	 Starting at k = 1, then obtain d(cr, ck) from the lookup table.
Step 4:	 If d(cr, ck) < 2d(cr, x), then compute d(ck, x), and then perform Step 5.

Otherwise, let k = k + 1, and then repeat Step 4, until k = N(cr).
Step 5:	  If d(ck, x) < d(cr, x), then replace cr with ck, update new CSG(cr), let k = 1, and repeat 

Step 3.
Otherwise, let k = k + 1 and then repeat Step 4 until k = N(cr).
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3.2	 ITIEpENNS search algorithm

	 The ITIEpENNS algorithm is developed as a way to further reduce the overall computational 
complexity.  First, the ENNS search algorithm is briefly described as follows.
	 Equal average is treated as a requirement to filter candidate codewords in ENNS using

	 min min
x i x

d dm m m
Dim Dim

− < < + ,	 (11)
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Fig. 1.	 Flowchart of the ITIE search approach.
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where dmin represents the shortest Euclidean distance so far, Dim denotes the dimension of 
vectors, and mi and mx symbolize the average of all the elements contained in the codeword ci 

and the input vector x, respectively.
	 If the condition in Eq. (11) is met, ci is likely to be the best codeword, and d(ci, x) is 
evaluated subsequently.  Otherwise, there is a zero possibility that ci can be the best codeword, 
and certainly, there is no need to compute d(ci, x).  For the sake of computational complexity 
reduction, a prebuilt lookup table is constructed so as to rapidly reference mi.  As a result, Eq. 
(11) merely takes a square root, 2 additions, those for mx in Eq. (13) and a smaller number of 
compare operations.  In this work, ITIE is integrated with ENNS, simply for the reason that it 
requires a smaller number of operations than EENNS and EEENNS.
	 The ITIEpENNS search algorithm is illustrated as a flowchart in Fig. 2.  As compared with 
Fig. 1, d(ck, x) is evaluated in Fig. 2 only if the condition d(cr, ck) < 2d(cr, x) in ITIE and the 
other condition, given in Eq. (11), are met.

Fig. 2.	 Flowchart of the ITIEpENNS search approach.
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4.	 Experimental Results

	 Performance is compared among the presented ITIE and ITIEpENNS, a DI-TIE, an ENNS, 
and an EEENNS.  Since TIE-based and ENNS-based VQ codebook searches are conducted, 
a 100% search accuracy is obtained by such five algorithms in comparison with a full search 
approach.  For this sake, performance is compared in terms of computational complexity.  The 
test objects are those selected from a speech database with one male and one female speaker, 
containing 600 sentences for a duration of over 121 min and 363,012 frames.
	 Firstly, Table 2 gives the average number of operations for various search algorithms, i.e., 
addition + subtraction, denoted by Add, multiplication + division, denoted by Mul, compare, 
denoted by Comp, and square root, denoted by Sqrt in CB1 and CB2, i.e., stage 1 of S-MSVQ, 
codebook search.  For comparison purposes, Table 3 gives the average number of respective 
total operations required in a complete S-MSVQ codebook search, namely, a search over all the 
codebooks.
	 As indicated in Tables 2 and 3, a codebook search requires a significantly larger number of 
operations in stage 1 than in stage 2.  For instance, the full search algorithm in stage 1 performs 
6912 (CB1) + 5376 (CB2) = 12288 out of 15840 operations, the total required in a complete 
S-MSVQ codebook search, meaning that the computational complexity is dominated by stage 1.  
As such, a way must be found to significantly cut the number of operations in stage 1 as the key 
to a notable overall computational complexity reduction.

Table 2
Comparison of the average numbers of respective operations over the CB1 and CB2 codebook searches among 
various algorithms. 

Codebook Method Operations
Add Mul Comp Sqrt Total

CB1

Full search 4352.00 2304.00 256.00 0.00 6912.00
DI-TIE 982.87 424.60 721.98 0.00 2129.45 
ENNS 1298.75 684.15 330.53 3.38 2316.81 

EEENNS 1037.13 545.72 448.62 8.76 2040.23 
ITIE 986.07 525.88 173.85 0.00 1685.80 

ITIEpENNS 750.24 397.56 216.05 3.84 1367.69 

CB2

Full search 3328.00 1792.00 256.00 0.00 5376.00
DI-TIE 821.77 342.52 852.47 0.00 2016.76 
ENNS 1128.13 604.87 340.59 4.72 2078.31 

EEENNS 871.62 462.80 469.77 11.44 1815.63 
ITIE 806.45 439.19 185.95 0.00 1431.59 

ITIEpENNS 656.81 356.00 234.25 4.94 1252.00 

Table 3
Comparison of the averages of the total numbers of operations over a complete S-MSVQ codebook search among 
various algorithms.

Method Operations
Add Mul Comp Sqrt Total

Full search 9664.00 5280.00 896.00 0.00 15840.00
DI-TIE 2439.42 1025.72 2835.17 0.00 6300.31 
ENNS 3223.68 1756.66 1189.62 30.85 6200.81 
EEENNS 2540.21 1344.54 1603.22 75.69 5563.66 
ITIE 2146.47 1198.96 580.58 0.00 3926.01 
ITIEpENNS 1744.31 971.56 719.64 32.96 3468.47 
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	 As also revealed in Table 3, the full search algorithm ranks first with respect to the total 
number of operations among the first 4 search algorithms, and it is as well noted that the 
remaining two, the presented ITIE and ITIEpENNS, outperform the others to a great extent 
as intended.  A close observation also reveals that DI-TIE, ENNS, and EEENNS require the 
greatest number of Comp, Add/Mul, and Sqrt operations, respectively.  In contrast, ITIE and 
ITIEpENNS turn out to have the smallest number of Comp/Sqrt and Add/Mul operations, 
respectively.
	 Eventually, Table 4 gives a comparison on the total number of operations required by a 
complete S-MSVQ codebook search among various algorithms.  With the full search algorithm 
as a benchmark, a high computational complexity reduction is reflected by a high value of the 
computational saving (CS), and CS is tabulated in the last row of Table 4 and illustrated as a 
bar graph in Fig. 3.  As can be seen in Fig. 3, ITIEpENNS with a CS of 78.10% and ITIE with 
75.21% rank first and second, respectively, and are experimentally validated to well outperform 
the counterparts, EEENNS with 64.88%, ENNS with 60.85%, and DI-TIE with 60.23%.

Table 4
Overall performance comparison among various methods.
Method Full search DI-TIE ENNS EEENNS ITIE ITIEpENNS

Stage 1 CB1 6912.00 2129.45 2316.81 2040.23 1685.80 1367.69 
CB2 5376.00 2016.76 2078.31 1815.63 1431.59 1252.00 

Stage 2

CB11 576.00 386.88 297.36 280.72 154.76 163.04 
CB12 1152.00 627.93 517.88 459.17 179.82 191.74 
CB13 1152.00 578.30 493.32 433.47 169.10 180.53 
CB21 288.00 221.78 189.40 203.39 111.51 120.62 
CB22 384.00 339.21 307.73 331.05 193.43 192.85 

Overall 15840.00 6300.31 6200.81 5563.66 3926.01 3468.47 
CS (%) benchmark 60.23 60.85 64.88 75.21 78.10

Fig. 3.	 (Color online) A bar graph representation of Table 4.
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5.	 Conclusions

	 In this paper, we present two improved versions of TIE-based algorithms, namely, ITIE and 
ITIEpENNS, for VQ codebook search, and both are then applied to ISF coefficient quantization 
in an AMR-WB+ audio codec.  A multitude of codewords are ruled out as candidates using 
a one-level rejection criterion in ITIE and a two-level in ITIEpENNS, giving rise to a much 
smaller number of codeword searches, i.e., a significant computational complexity reduction 
but with the same coding quality.  The improved versions are validated by experiments to well 
outperform the DI-TIE, ENNS, and EEENNS counterparts.  Furthermore, the improved AMR-
WB+ audio codec can be applied to mobile devices equipped with a variety of sensing elements, 
e.g., smartphones, to provide various multimedia and audio applications, and the energy saving 
requirement can be fulfilled as well.
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