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	 Thermal error plays a deterministic role in the machining precision of computer-numerical-
control (CNC) tool machinery.  Previously, three ways had been proposed to overcome 
thermal error problems: prevention, restraint, and compensation.  The first two ways may be 
performed in the initial design stage.  The last one includes the challengeable features of case-
by-case simulation of cutting paths, searching for characteristic temperature points, thermal 
deformation measurement, and establishing an accurate thermal model.  Different from most 
of the previous studies concerning mathematical thermal models, which have many restrictions 
and disadvantages, in this study, we propose a novel hybrid thermal error modelling scheme 
of the Grey system theorem and deep-learning neural network.  Specifically, a linear-guide-
way grinding machine, never seen in previous thermal-error-compensation-related studies, was 
chosen as the target to identify the usefulness of our proposed scheme.  Results show that the 
proposed hybrid model has a comprehensive prediction ability of thermal behavior for the target 
CNC grinding machine.  

1.	 Introduction

	 For a grinding machine, the machining error means the relative position error between the 
grinding head and the workpiece.  This machining error mainly comes from, for example, 
the structure dynamic deformation, thermal distortion, grinding head error, workpiece error, 
mechanism kinematic error, controller error, and controlling rule error.  Among these errors, 
the thermal deformation error plays the most important role and is difficult to handle.  The 
thermal deformation error is as high as 70% of the total error.(1)  There are two categories of 
heat sources, internal and external, that cause the thermal deformation of machines, as shown in 
Table 1.  In general, there are three strategies to reduce the thermal error of grinding machines: 
adopting a thermally stabilized structural design, restraining heat generation from components, 
machine users, and the environment, and compensating the thermal error in real time.  Among 
these strategies, the thermal error compensation technique is the most effective and popular.  
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	 Previously, we found a few published papers concerning the issue of how to reduce the 
thermal error of a grinding machine.  Our target is the three-head grinding machine, which is 
excellent and efficient for grinding a long linear guide way (over 4 m long), as shown in Fig. 1.  
This type of machine is the key manufacturing equipment in linear-guide-way production.  The 
essential issue is how to reduce the machine thermal error.  This machine features a long and 
narrow bed and column-type three-grinding-head structures, which are different from other 
machining centers or lathes commonly found in the market and extensively investigated by 
scholars.  It is necessary and significant to investigate the thermal error of this machine and its 
compensation method.  
	 In this paper, we attempt to propose a comprehensive thermal error compensation model for 
a computer-numerical-control (CNC) grinding machine, featuring a column-type structure, a 
long bed with a large height-to-width ratio, and a three-grinding-head mechanism.
	 Moreover, the manipulation procedure of the thermal error compensation in this study is 
designed as follows: (1) select the axes or goals (three grinding heads) on the machine to be 
compensated, (2) set the proper tool (sand wheel) paths in simulation experiments as close to 
the actual grinding conditions as possible, (3) select key points for temperature measurement, 
(4) measure the thermal error of goals and temperature rise at key points, (5) formulate an 
accurate mathematical relationship between the temperature rise and the thermal error, and 
(6) compare and verify the constructed thermal error model.  It is clear that every process 
is important.  Once the target machine is selected, we need to manipulate the thermal error 
modelling via the above steps in accordance with the machine features.  
	 In the above manipulation procedures, the fifth item, the thermal error model, plays a 
deterministic role.  For machine tools with simple structures, such as CNC three-axis machining 
centers and slant-back-type lathes, various thermal error models have been proposed, including 
linear or modified linear regression, polynomial function, least-squares method, first-order 
differential equation, artificial neural networks (ANNs), fuzzy theorem, rough set theorem, and 

Table 1
Thermal error sources of a CNC grinding machine.

Heat sources
Room 

environment Heat dissipation 
of cooling system Human body

Generation in 
machine:

electronic system, 
mechanism 

system, friction 
motion, motors

Heat generation 
during grinding 

processes

Heat transfer path Heat conduction, heat convection, heat radiation

Heat transfer 
effect

Uniform heat 
transfer

Nonuniform heat transfer:
temperature gradient

static deformation effect

Uniform heat transfer: 
temperature variation

dynamic deformation effect

Temperature field
Uniform 

temperature 
distribution

Nonuniform temperature distribution

Structures Components, modules, assemblies, structure, mechanism, bed structure, vertical column 
structure, cross column structure, ram structure, head assemblies

Error types Configuration error, dimension error
Total error of whole grinding machine
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support vector machine.(2–15)  Meanwhile, many auxiliary methods for thermal error modelling 
were proposed, e.g., modelling with data preprocessed methods, different models for different 
machine parts, and multimode models [e.g., particle swarm optimization (PSO), ant colony 
optimization (ANT), genetic algorithm (GA), and Grey system theorem (GT)].(16–18)  The 
compensation accuracy of machine tools was apparently improved via the use of the above-
mentioned thermal error models.  Among the proposed thermal mathematic models, the model 
built by the ANN is known to be excellent and popular since it has excellent ability for dealing 
with multi-input and multi-output mapping problems.  This essence is particularly suitable for 
our study in building mathematic models.  However, this method has limitations: too many 
hidden layers result in training difficulty and performance degradation.  This disadvantage 
obstructs the application and development of ANN.  However, this defect has recently been 
overcome through the use of the so-called “deep neural network (DNN)”.
	 Regarding the above discussion, in this study, we aim to build a thermal error model using 
GT and DNN hybrid schemes to enhance the thermal precision of a CNC grinding machine 
with a challengeable long and narrow bed and three-head column structures.

2.	 Mathematic Method 

	 The convolutional neural network (CNN) has proven to be the state of the art of the 
comprehensive network of DNNs, and is capable of mapping multi-output with multi-input 
modelling problems.  This technique was developed in the 1980s and 1990s.(19)  Since 2012, 
when it was dramatically revived, this technique has conquered most computer vision fields and 
is growing rapidly.(20)  The CNN consists of a neural network that extracts features of the input 
image and another neural network that classifies the feature image (Fig. 2).  The fundamentals 
of the CNN are as follows.
	 The simplest neural network is called a multilayer perception (MLP).  The nth layer of an 
MLP can be expressed as

Fig. 1.	 (Color online) Target three-head grinding machine.
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	 There are many different functions chosen for φ, such as step, sigmoid, and hyperbolic 
tangent functions.  Here, we adopt a rectified linear unit (ReLU).  The ReLU function is defined 
as the positive component of its input:
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	 It was discovered that even a single hidden layer is sufficient for an MLP to express any 
continuous function with arbitrary precision (Universal Approximation Theorem).(21)  However, 
how to construct such a neural network is still trial-and-error work.  As known, expressing 
complicated functions is quite expensive for a two-layer MLP since a hidden layer needs far too 
many neurons.  Instead, DNN researchers have used networks with multiple narrow layers.  The 
trade-off and challenge with DNNs lies in how to tune them to solve a given problem.  CNNs 
adopt a machine learning algorithm that consists of a set of rules for using and updating a set 
of parameters (i.e., tune weights) in accordance with labeled data provided to it.  Moreover, the 
learning type of the CNN in this study is chosen to be reinforcement learning, which is related 
to supervised learning but decouples the form of the training outputs from that of the inference 
output.  The output of reinforcement learning is called an action, and the label for each training 
input is called a reward.  

Fig. 2.	 (Color online) Typical architecture of CNN.



Sensors and Materials, Vol. 31, No. 2 (2019)	 403

	 Training phase  ,x r M→ 	 (3)

	 Inference phase  ( )M x y′ ′→ 	 (4)

	 A model infers some output action from its input, that action produces some reward from 
the external system, and then, the initial input and subsequent reward are used to update the 
model.  Furthermore, it is difficult to decide the initial distribution of random values of model 
parameters.  It is suggested that these values should be small and random.  Moreover, we chose 
the cross-entropy loss function to evaluate the difference between the true and the estimated 
outputs.  
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	 This loss function is chosen because it is capable of dealing with the relationship between 
multi-input and multi-output.  Finally, to adjust the model weights to minimize the loss function, 
we use the stochastic gradient descent (SGD) method in conjunction with the backpropagation 
technique to finish the model training work.  A CNN is like a large MLP where many of the 
weights in a layer are tied together in a specific pattern.  In training, when a gradient update is 
applied to one of these weights, it is applied to all of them.  

3.	 Thermal Error Modelling Results 

3.1	 Experimental conditions 

	 To investigate the thermal behavior of the target grinding machine, the following specific 
machining experiment is designed.  We now consider the most frequently encountered grinding 
condition (shown in Table 2) in which the three heads operate simultaneously to perform the 
upper, right, and left surface grinding for a linear guide way.  The workpiece is made of S45C 

Table 2
Simulation test conditions of grinding.

Steps Operation time
(min)

Rotational speed 
of spindle (rpm)

Feed rate
(mm/cycle)

Bed moving speed  
in X direction
(cycle, m/min)

Rough grinding 20 1500 0.03 30
Static 10 0 0 0
Fine grinding 20 1800 0.005 15
Static 10 0 0 0
Precise grinding 20 2500 0.002 15
Static 10 0 0 0
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steel with surface heat treatment, hardness of HRC45, and narrow and long dimensions of 
60 × 50 × 1500 mm3.  The diameter of the three sand wheels is selected to be 405 mm.  Our 
simulation condition is set as the above conditions but without actual grinding.

3.2	 Temperature and thermal error measurements

	 The sensing units were composed of thermal sensors and displacement sensors.  The 
resistance thermometers (PT100) were employed as temperature sensors for detecting the 
temperature variation of thermal key points on the machine.  Moreover, the eddy current 
displacement sensors were used to detect the thermal error of the three grinding heads.  For 
temperature measurements, the thermal key points should be carefully chosen since the 
numbers and locations of the temperature sensors have a considerable influence on the accuracy 
of the thermal error modelling and compensation results.  In general, there are some potential 
rules in selecting the thermal key points:(22) (1) close to the main heat sources; (2) capable of 
reflecting the temperature field of a system; and (3) having a close relationship with the thermal 
error.  On the basis of these rules, a total of ten thermal sensors were stamped on the key points, 
as listed in Table 3 and shown in Fig. 3.  On the other hand, three displacement sensors were 
stamped at the end (near workpiece) of the three grinding heads.
	 Then, the temperature at key points as well as the thermal error at grinding-head ends 
were measured synchronously using the measurement system under the simulation test 
conditions described previously.  Figures 4 and 5 show the measurement results of machine 
temperature variation and grinding-head displacement, respectively.  In Fig. 4, it is seen that 
the environmental room temperature is about 25 ℃ and is increasing steadily to about 30 ℃.  
A maximum increase of 5 ℃ is detected.  In addition, an apparent temperature field with a 
variation from 0 to 25 ℃ forms on the machine surface, which is stimulated by all possible 
heat sources in a test run.  In Fig. 5, the thermal drifts of the three individual heads are detected 
(only considering the −Z direction for the upper head,  the +X direction for the left head, and 
the −X direction for the right head).  It is found that the upper head has the largest deformation 
(δU, max. −140 µm) compared with the other two heads (right head δR, max. +119 µm; left 

Table 3
Key locations of temperature sensors.
Sensor No. Location Sensor No. Location

T1 Room T6
Ball screw nut of 

the saddle of 
left grinding head

T2 Ball screw nut of 
working table T7 Left grinding head

T3 Bed structure T8 Right grinding head

T4 Upper grinding head T9
Ball screw nut of 

the saddle of 
right grinding head

T5
Ball screw nut of 

the saddle of upper 
grinding head

T10 Cross column
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Fig. 3.	 (Color online) Locations of thermal key points.

Fig. 4.	 Measurement results of temperature at key points.

Fig. 5.	 Measurement results of thermal displacement for three grinding heads.
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head δL, max. −109 µm).  These three deformations contribute the most error in the final 
dimension precision of the workpiece, and they should be carefully examined in the following 
compensation procedure.

3.3	 Thermal error modeling

	 First, to understand as well as trim the measured temperature data, the popular data 
mining scheme of the GT is adopted.  The GT, first proposed by Professor Julong Deng,(23) is 
a theory for analyzing a system with uncertainty due to a small amount of data or incomplete 
information.  We use the GM(1,N) scheme of GT,(16) which essentially is a first-order 
differential equation for treating the relationship between multi-input and one output, as an 
auxiliary method to mine the influence weighting of temperature on thermal deformation.  
Through the selection of high-weighting temperature, we can properly trim the obtained 
temperature data.  From the previously obtained measured temperature and deformation data 
(requires normalization), we can calculate the weight of temperature at ten key points for every 
grinding head via the GT scheme.  Most importantly, the result of the influence of ten thermal 
key points on the upper grinding head is shown in Fig. 6.  The order of influence (R means 
ranking) is

	 R(T4) > R(T8) > R(T7) > R(T9) > R(T5) > R(T1) > R(T2) > R(T10) > R(T3).	 (6)

	 The same influence sequence may be found for the other two grinding heads.  Examining 
the overall measured temperature data, we found that T3 is negligible since it has a very small 
weight of 0.17.  
	 Second, using the above relatively important nine temperature rises as input and three 
grinding head deformations as output, we can construct a CNN network.  This CNN network 
has five layers: one input layer, one convolution layer (10 neurons), one pooling layer, one 

Fig. 6.	 (Color online) Effect of increase in temperature at key points on the upper-head (UH) deformation (in the 
−Z direction).
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hidden layer (7 neurons), and one output layer (3 neurons).  Only three layers, the convolution, 
hidden, and output layers, contain weight matrices that require training.  Through training, 
the weights of neurons for each layer are determined.  We trained our model using SGD with 
a batch size of 90 examples, momentum of 0.86, and weight decay of 0.0006.  We initialized 
the weights in each required layer from a Gaussian distribution with zero mean and a standard 
deviation of 0.01.  We used an equal learning rate (initialized at 0.01) for all required layers.
	 The obtained final trained results may be expressed in the form of a prediction curve of 
thermal error.  Figure 7 shows the measured and predicted results for the upper grinding head.  
It is seen that the maximum measured thermal error is −140 µm.  Moreover, after compensation 
using our prediction model, the maximum thermal error can be reduced to −1.8 µm, which 
corresponds to a 98.7% improvement.

3.4	 Verification

	 To verify the proposed thermal error model, a new grinding test is performed.  The test 
condition is shown in Table 4.  Compared with the original modelling experiment, the spindle 
speed and bed moving speed have been changed.  This means that a possible situation of 

Fig. 7.	 (Color online) Measured and predicted results for the upper grinding head.

Table 4
Verification test conditions of grinding.

Steps Operation time 
(min)

Rotational speed 
of spindle (rpm)

Feed rate
(mm/cycle)

Bed moving speed  
in X direction 
(cycle, m/min)

Rough grinding 20 2000 0.03 30
Static 10 0 0 0
Fine grinding 20 2300 0.005 15
Static 10 0 0 0
Precise grinding 20 3000 0.002 15
Static 10 0 0 0
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grinding a hard material is considered.  Using the constructed CNN networks including all 
obtained parameters and inputting the measured temperature data of the verification test, we 
can predict the thermal deformation of the three heads.  The experimental and model-predicted 
results are shown in Fig. 8.  It is seen that the maximum measured thermal error is about 
−200 µm, and through compensation, the maximum thermal error can be reduced to −3.2 µm.  
An improvement of 98.4% of the thermal error is achieved.  This result verifies the good 
prediction ability of our proposed hybrid CNN thermal error model.

4.	 Conclusions 

	 In this study we showed a novel compensation approach for thermal errors of a CNC 
grinding machine with long guide way (over 4 m).  The thermal error, which is the main 
source of the inaccuracy of a CNC grinding machine, can be reduced effectively via our 
proposed thermal error compensation method using the hybrid modelling technique involving 
the determination of test conditions, key thermal location selection, temperature data 
reduction using the GT, and mathematic mapping using a CNN.  We found that, for the chosen 
complicated grinding machine with a specific long and narrow bed and the column-type 
three-grinding-head structure, the hybrid CNN scheme is successful in establishing a thermal 
error model that solves the problem of multiple temperature inputs and multiple thermal error 
outputs.  An apparent improvement of 98.7% in the thermal error in the simulation experiment 
was reached.  The maximum thermal error of the upper grinding head was reduced to −1.8 
µm in the simulation experiment and −3.2 µm in the verification experiment.  The prediction 
results are satisfactory.  It is conceivable that the proposed hybrid CNN thermal error modelling 
scheme can be widely applied to other complicated CNC grinding machines so as to ensure 
their machining precision.

Fig. 8.	 (Color online) Thermal deformation before and after compensation in the verification test.
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