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 Shear horizontal (SH) surface acoustic wave (SAW) sensors formed by combining (100) 
AlN films with a diamond substrate have been developed in this research.  The propagation 
characteristics of SAW in four composite structures according to the positions of interdigital 
transducer (IDT) electrodes and/or thin metal films were investigated theoretically.  Those 
composite SAW substrates exhibited excellent SH SAW properties and have the potential for 
further application in biological and liquid SAW sensors.

1. Introduction

 Some special piezoelectric crystals with a special cut can excite shear horizontal (SH) 
surface acoustic waves (SAWs), which are very good for liquid and biological SAW sensors.(1–10)  
SAW sensors are based on the mass loading effect.  Therefore, a high SAW velocity will make 
SAW sensors work at a high frequency to have a high sensitivity.  Therefore, a high-velocity SH 
SAW is important for the development of high-sensitivity liquid and biological SAW sensors.
 AlN films have been widely investigated for application in SAW and film bulk acoustic wave 
(FBAW) devices because of their high SAW velocity and suitable piezoelectric coupling factor.  
Diamond is an attractive non-piezoelectric material for high-velocity SAW devices because it 
has the highest SAW velocity among all materials and needs to add a piezoelectric layer on the 
top to excite SAWs.  There are many researchers studying the Rayleigh SAW of (002) AlN films 
on (111) diamond for application in high-velocity SAW substrates.(11–20)  Different orientations 
of piezoelectric films will form different acoustic properties.  Recently, the Rayleigh SAW 
mode of (100) AlN films on (111) diamond with propagation along the z-axis has been studied 
and excellent SAW properties were exhibited.(21–23) 
 Hexagonal crystalline substrates with the z-axis parallel to the surface have a pure SH 
SAW propagating along the direction perpendicular to the z-axis.(24–27)  AlN films are also 
hexagonal crystalline structures.  In our previous research, (100) AlN films on (111) diamond 
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with propagation along the y-axis can excite high-velocity SH SAWs.(28)  For a composite thin-
film SH SAW substrate, there are four basic structures, namely, interdigital transducer (IDT)/
(100)AlN/(111)diamond, (100)AlN/IDT/(111)diamond, IDT/(100)AlN/metal/(111)diamond, and 
metal/IDT/(100)AlN/(111)diamond.  Different composite structures will form different SH SAW 
properties.  The first five SH SAW modes in the four-layered structures with propagation along 
the y-axis will be theoretically analyzed in this research.

2. Method of Analysis

 Following an approach similar to that developed by Campbell and Jones,(29) the matrix 
method is effectively employed here to calculate the SH SAW velocity in a layered piezoelectric 
structure.  
 The acoustic and electric fields in mediums 1 and 2 can be expressed as
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where u is the acoustic displacement, ϕ the electric potential, v the phase velocity, k the wave 
number in the x-direction, P = 1 + iγ, γ the attenuation coefficient, β the wave number ratios, and 
α the associated partial field amplitude.  Substituting Eqs. (1) and (2) into stiffened Christoffel 
equations yields an eight-order algebraic equation for the wave number ratio b.  Thus, for each 
pair of (v, γ) values, there are eight real or complex b values.  For a semi-infinite piezoelectric 
crystal, i.e., medium 1 in this structure, four complex roots with negative imaginary parts are 
selected for the Rayleigh type.  In medium 2, all eight roots of β are selected.
 The boundary conditions require that the acoustic displacements and stresses should be 
continuous at d = 0, and that the stress-free surface is d = h.  In addition, the electric potential 
and normal component of electric displacement must be continuous at the interface for an 
electrically free surface.  For a metalized (thin metal film) surface, the electric potential is not 
observed.  By substituting Eqs. (1)–(4) into the boundary conditions, the phase velocity v and 
the attenuation coefficient γ can be obtained numerically.  The electromechanical coupling 
coefficient (K2) can be calculated from
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where vf and vm are the phase velocities obtained when the electrical boundary conditions 
at the interface at which the IDT is placed are assumed to be electrically free and shorted, 
respectively.  For material constants, refer to Refs. 19 and 30.

3. Results and Discussion

 The phase velocity dispersion curves of SH SAW mode propagation in the IDT/(100)AlN/(111)
diamond structure are shown in Fig. 1.  The curves are plotted as functions of the film thickness 
ratio (h/λ), where h is the AlN film thickness and λ is the wavelength.  The phase velocity of 
each mode decreases as the film thickness ratio increases.  Modes 0, 1, 2, 3, and 4 show cutoff 
at the critical point, where the phase velocity is equal to the shear bulk wave velocity in diamond 
(12323 m/s).  Mode 1 occurs at h/λ > 0.37, mode 2 occurs at h/λ > 0.64, mode 3 occurs at h/λ > 0.91, 
and mode 4 occurs at h/λ > 1.12.  As h/λ increases, the phase velocity curve decreases.  The K2 
dispersion curves of the first five SH SAW modes propagating in the four composite structures 
are shown in Figs. 2–5.  As regards the IDT/(100)AlN/(111)diamond structure in Fig. 2, the 
curves become smoother and smaller as the first five SH SAW modes increase.  For mode 0, 
the K2 curve shows a maximum value (1.27%) at h/λ = 0.28.  For mode 1, the K2 curve shows a 
maximum value (0.46%) at h/λ = 0.7.  For mode 2, the K2 curve shows a maximum value (0.27%) 
at h/λ = 1.21.  For mode 3, the K2 curve shows a maximum value (0.196%) at h/λ = 1.7.  For mode 
4, the K2 curve shows a maximum value (0.153%) at h/λ = 2.19.  As regards the (100)AlN/IDT/

Fig. 1. Calculated phase velocity dispersion curves 
of first five SH SAW modes propagating in (100)AlN/
(111)diamond structure.

Fig. 2. Calculated K2 dispersion curves of first five 
SH SAW modes propagating in IDT/(100)AlN/(111)
diamond.
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(111)diamond structure in Fig. 3, the K2 of each mode decreases rapidly as the film thickness 
ratio increases and the maximum K2 occurs at the critical point.  For mode 0, the maximum K2 
is 26.82%.  For mode 1, the maximum K2 is 14.38%.  For mode 2, the maximum K2 is 10.31%.  
For mode 3, the maximum K2 is 8.17%.  For mode 4, the maximum K2 is 6.82%.  As regards the 
IDT/(100)AlN/metal/(111)diamond structure in Fig. 4, the curves become smoother and smaller 
as the first five SH SAW modes increase.  For mode 0, the K2 curve shows a maximum value (1.2%) 
at h/λ=0.29.  For mode 1, the K2 curve shows a maximum value (0.46%) at h/λ = 0.7.  For mode 2, 
the K2 curve shows a maximum value (0.27%) at h/λ = 1.26.  For mode 3, the K2 curve shows a 
maximum value (0.19%) at h/λ = 1.8.  For mode 4, the K2 curve shows a maximum value (0.15%) 
at h/λ = 2.3.  As regards the metal/(100)AlN/IDT/(111)diamond structure in Fig. 5, the K2 of 

Fig. 3. Calculated K2 dispersion curves of first five 
SH SAW modes propagating in (100)AlN/IDT/(111)
diamond.

Fig. 4. Calculated K2 dispersion curves of first five 
SH SAW modes propagating in IDT/(100)AlN/metal/
(111)diamond.

Fig. 5. Calculated K2 dispersion curves of first five SH SAW modes propagating in metal/(100)AlN/IDT/(111)
diamond.
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each mode decreases rapidly as the film thickness ratio increases and the maximum K2 occurs 
at the critical point.  For mode 0, the maximum K2 is 26.66%.  For mode 1, the maximum K2 is 
14.37%.  For mode 2, the maximum K2 is 10.25%.  For mode 3, the maximum K2 is 8.13%.  For 
mode 4, the maximum K2 is 6.79%.
 For the first five modes of the four structures, the relative maximum K2 values are 
summarized in Table 1.  It is obvious that mode 1 of the (100)AlN/IDT/diamond structure has a 
maximum K2 (26.82%) and a minimum film thickness ratio (0.1), where the velocity is 10669 m/s.  
Mode 4 of the (100)AlN/IDT/diamond structure has a maximum velocity (11901 m/s) at h/λ = 1.12, 
where K2 is 6.82%.

4. Conclusions

 In this research, (100) AlN films were combined with diamond to form high-velocity SH 
SAW substrates including four composite structures, namely, IDT/(100)AlN/(111)diamond, 
(100)AlN/IDT/(111)diamond, IDT/(100)AlN/metal/(111)diamond, and metal/(100)AlN/IDT/(111)
diamond.  The structures exhibited excellent SH SAW properties.  The research results provide 
a predictable theoretical basis for the further application of such substrates in SH SAW devices.
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Table 1
Relative maximum K2 values of the first five modes propagating in the four structures.
Propagation mode Structure h/λ K2 (%) Velocity (m/s)

Mode 0

IDT/(100)AlN/diamond  0.28  1.27  7430
(100)AlN/IDT/diamond  0.1  26.82  10669

IDT/(100)AlN/metal/diamond  0.29  1.2  7275
metal/(100)AlN/IDT/diamond  0.1  26.66  10645

Mode 1

IDT/(100)AlN/diamond  0.7  0.46  8357
(100)AlN/IDT/diamond  0.37  14.38  11436

IDT/(100)AlN/metal/diamond  0.7  0.46  8288
metal/(100)AlN/IDT/diamond  0.37  14.37  11415

Mode 2

IDT/(100)AlN/diamond  1.21  0.27  8299
(100)AlN/IDT/diamond  0.64  10.31  11687

IDT/(100)AlN/metal/diamond  1.26  0.27  8106
metal/(100)AlN/IDT/diamond  0.64  10.25  11677

Mode 3

IDT/(100)AlN/diamond  1.7  0.196  8322
(100)AlN/IDT/diamond  0.91  8.17  11818

IDT/(100)AlN/metal/diamond  1.8  0.19  8073
metal/(100)AlN/IDT/diamond  0.91  8.13  11810

Mode 4

IDT/(100)AlN/diamond  2.19  0.153  8335
(100)AlN/IDT/diamond  1.12  6.82  11901

IDT/(100)AlN/metal/diamond  2.3  0.15  8120
metal/(100)AlN/IDT/diamond  1.12  6.79  11895
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