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	 A three-dimensional (3-D) inverted-L multi-input multi-output (MIMO) magnetoelectric 
dipole antenna comprising two coupled monopole feed antennas is developed for energy-
harvesting applications.  Additionally, the electromagnetic band-gap (EBG) structure was 
used to improve the isolation (S21) of the antennas.  The bandwidth of the proposed antenna is 
up to 42.1% for 3–4.6 GHz, which covers the C-band (5G) applications of 3.3–3.8 GHz.  The 
advantages of the proposed antenna are the following: low cross-polarization; good radiation 
patterns; stable and high gains (9.55 ± 0.35 dBi) in the operating band; all simulated and 
measured return loss of the antennas (S11 and S22) are below −10 dB; and the isolation between 
two antennas is below −15 dB.  Finally, the proposed antenna is suitable for modern energy-
harvesting and 5G wireless sensor network systems.  

1.	 Introduction

	 With the continuous innovation of Internet of Things (IoT) technology and requirement of 
sensors, for low loss and low environmental pollution of modern electronic products, antennas 
are used to harvest the free electromagnetic energy in the surroundings, and then, it is converted 
to electric energy through radio-frequency (RF) circuits.  To harvest more electromagnetic 
energy and from greater distances, antennas with high gains have been developed by many 
researchers.  In 2006, Luk and Wong presented a novel magnetoelectric dipole antenna with 
a wideband, low cross-polarization, low backlobe, and stable radiation patterns.  A three-
dimensional (3-D) inverted-L dipole antenna was designed and fed by a quarter-wavelength (λ/4) 
inverted-L probe.  As the probe is excited, it will generate a magnetic dipole that combines with 
the electric dipole generated by the antenna; hence, its impedance bandwidth can be increased 
effectively.(1)  For a simple feed method and better antenna efficiency, the differential feed 
technique using two symmetric structures was developed for the 3-D inverted-L dipole antenna.  
The advantages of this feed technique are an increase in the impedance bandwidth, decrease 
in cross-polarization, and decrease in the backlobe.(2)  The reflection phase of the artificial 
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magnetic conductor (AMC) is 0 and can be put under the loop antenna to decrease the height 
and increase the gains of the antenna.(3)  For the Yagi antenna, the gains for GSM-1800 (1.805–1.88 
GHz) and UMTS-2100 (2.11–2.17 GHz) are 10.9 and 13.3 dBi, respectively.  The energy 
transform efficiency is as high as 40%, enabling the use of the Yagi antenna in electric energy 
harvesting.(4)  The rectenna has a simple structure, high gain of 8.6 dBi, maximum energy 
transform efficiency of 83% (operated at 2.45 GHz), and minimum energy transform efficiency 
of 50% even though the input power is only 17.2 dBm, making it applicable to energy harvesting.(5)  
The transform efficiency of energy harvesting could be increased by using high-gain antennas 
with rectified circuits, solar panels, or folded antennas.(6–9)  A wideband dipole rectenna with a 
vertical metal plate was used to reduce the backlobe to 8.4 dB, which enables an increase in its 
energy transform efficiency.(10)  A differentially fed microstrip antenna with a high gain of 8.5 
dBi, high efficiency of 80%, and operated at GSM-900 (900–960 MHz) was presented.  It could 
be applied at the front of the RF circuits and modified the impedance matching for efficiency 
improvement.(11)

	 To find the best antenna for energy harvesting, the short dipole antenna, patch antenna, 
and Yagi antenna were compared.  It was found that a small antenna could not satisfy the 
requirements of energy harvesting, but the combination of a Yagi antenna and rectifier yielded 
much better results than other antennas.(12)  In this work, to obtain better antenna efficiencies, 
gains, and a faster transmission speed of signals, we developed a 3-D inverted-L multi-input 
multi-output (MIMO) magnetoelectric dipole antenna.  On the basis of the idea of the hinge 
antenna of notebook computers, the feed technique of this proposed antenna was to use two 
coupled monopole antennas to excite the closed slots located between two hinges.(13,14)  These 
two coupled monopole feed antennas excited the slots and generated the magnetic dipole, which 
combines with the electric dipole generated by the inverted-L dipole antenna.  Two similar 
beam widths can be obtained for YZ and XZ planes, and they can cover the modern C-band (5G) 
of 3.3−3.8 GHz.  Furthermore, we also used the electromagnetic band-gap (EBG) structure to 
suppress the surface current occurring between two antennas, and finally increased its isolation 
and reduced the interference to enable energy-harvesting applications.(15–17)

2.	 Antenna Design

2.1	 Antenna structure

	 A 3-D MIMO magnetoelectric dipole antenna was designed and fabricated on a flame 
retardant 4 (FR4) substrate with a thickness of 0.8 mm, permittivity (εr) of 4.4, and loss tangent 
(tanδ) of 0.0245.  The proposed antenna was composed of an 85 × 85 mm2 metal reflector, 
four polyactide (PLA) pillars, a 42 × 17 mm2 metal ground, an EBG structure, two coupled 
monopole feed antennas, and a pair of 3-D inverted-L dipole antennas, as Fig. 1 shows.  
Additionally, four PLA pillars were added between the ground and the reflector.  They were 
made using a 3-D printer and had a height of 15 mm, tan δ of 0.25, and εr of 4.  Two inverted-L 
dipole antennas were excited by two coupled monopole antennas resonated at 3.65 GHz with an 
electric length of half the guided wavelength (λ/2).  However, on both sides of the metal ground, 
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two open slots were also excited by these two feed antennas, generating a magnetic dipole that 
resonated at 4.1 GHz with an electric length of one-quarter the guided wavelength (λ/4) and that 
combined with the electric dipole generated by the inverted-L dipole antennas.  Two similar 
and stable beamwidths can thus be generated with low cross-polarization for both YZ and XZ 
planes.  In the previous paper,(18) the authors expanded the applications of the photonic crystals 
to the microwave field because of its band-gap property, and designed some equivalent circuit 
structures for generating a band-gap effect of specified frequency.  Thus, it was called the EBG 
structure.  As shown in Fig. 2(a), the mushroom-like EBG proposed by Sievenpiper et al. is the 
most widely studied and discussed.  It is an array composed of square metal sheets that are connected 
to the ground plane through a via located at the center of each metal sheet.  This structure will 
generate capacitive effects owing to the electric field existing among the metal sheets, and the 
current flow through the via will generate inductive effects owing to the magnetic field.  These 
two effects are equivalent to a parallel LC circuit.(19) 
	 In this work, to increase the amount of coupling and generate a band gap at about 2.7 GHz, 
we used FR4 as the substrate and developed a modified EBG structure with three groups of 

Fig. 1.	 (Color online) Geometry of proposed antenna: (a) 3-D, (b) side view, and (c) top view.

(a) (b)

(c)
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compact dual spirals and vias, as shown in the center of Fig. 1(c) and enlarged in Fig. 2(b).  
The EBD structure was composed of three dual spirals and connected to the back metal plane 
through three vias with copper rods.  However, two metal grounds are connected by the 
EBG and thus two open slots existed between them.  These slots can increase the equivalent 
capacitance and the spiral structure can increase the equivalent inductance.(20,21)

2.2	 Suspending microstrip line measurement of proposed EBG

	 To investigate the isolation influences of the EBG between these two coupled monopole 
antennas, we adopted the suspended microstrip line measurement to analyze the EBG.  In 
addition, the EBG was sandwiched tightly between two FR4 substrates and connected to the 
back metal plane through the via, as shown in Fig. 3.  Then the microstrip line was fabricated on 
the upper FR4 substrate and connected to two SubMiniature version A (SMA) connectors.  The 
strong mutual coupling effect between the microstrip line and EBG reduces the parasitic effects 
generated by other devices, and hence, reveals the band-gap properties.(20,21)  The simplified 
equivalent parallel LC circuit is shown in Fig. 4 and its resonant frequency ( fs) can be derived 
as Eq. (1), where L is the inductance due to current flows through the via, C1 is the capacitance 
between the upper microstrip line and the EBG, and C2 is the capacitance between the EBG 
and the back metal ground.  It can be seen that the increasing capacitance or inductance will 
cause the decrease in resonant frequency.  Additionally, the three dual spirals also generate 
parts of inductance and capacitance for C1, C2, and L.  The measured and simulated isolation 
(S21) for 2–5 GHz are plotted in Fig. 5.  It is found that the EBG reveals better-simulated S21 
(lower than −20 dB) at about 2.7 GHz.  However, the measured S21 shifts to lower frequency 
and reveals better impedance matching and bandwidth, which is consistent with previous 
reports.(22,23)  Figure 6 shows the S21 values with and without (with metal sheet) the EBG.  It is 
seen that without the EBG, the influence between two antennas is serious (greater than −15 dB) 
for 3.3–4.7 GHz.  However, after EBG is used, the resonant frequency of the EBG is shifted 

Fig. 2.	 (Color online) Geometry of EBGs: (a) mushroom-like EBG(18) and (b) dual-spiral EBG (proposed).

(a) (b)
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Fig. 3.	 (Color online) Suspended microstrip line measurement of EBG: (a) top view, (b) side view, and (c) 3-D 
view.  

Fig. 4.	 (Color online) Simplified equivalent circuit of EBG.

Fig. 5.	 (Color online) Simulated and measured S 
parameters of EBG for suspended microstrip line 
measurement.

Fig. 6.	 (Color online) Simulated S21 values with and 
without metal sheet (with EBG).

(a) (b)

(c)
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from 2.7 to 3.8 GHz, which means that the isolation is modified and better than that without the 
EBG.  Figure 7 shows the current distribution plots in the case of with and without the EBG.  
Compared with without the EBG, we find that the surface current is obviously suppressed by 
the use of the EBG and hence, the isolation is improved.

	 ( )1 2

1=
2 +sf L C Cπ 	 (1)

3.	 Results and Discussion

	 Figure 8 shows the simulated S parameters for different distances between two inverted-L 
dipole antennas (D values) with the PLA pillar height (H) fixed at 15 mm.  From the simulated 
S11 and S22 curves shown in Fig. 8(a), with D values equal to 14–18 mm, all the S parameters 
are below −10 dB for 3.3–4.4 GHz.  This means that the excitation wavelengths of two coupling 
feed antennas will decrease owing to the increase in the distance between two inverted-L dipole 
antennas.  In addition, the first resonated mode (at about 3.65 GHz) and the second resonated 
mode (at about 4.1 GHz) are all shifted to higher frequencies as D values are decreased.  Figure 
8(b) shows S21, and we can see that as D values are decreased, the two inverted-L antennas will 

Fig. 7.	 (Color online) Simulated 3.8 GHz current distribution plots: (a) with metal sheet and (b) without metal 
sheet but with EBG.

Fig. 8.	 (Color online) Simulated S parameters for different D values (H = 15 mm): (a) S11 and S22 and (b) S21.

(a) (b)

(a) (b)
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become closer to the two feed antennas.  Thus, the isolation will gradually worsen.  Figure 9 
shows the simulated antenna gains for different D values (H is fixed at 15 mm).  It can be seen 
that for the operation band (3.3–3.8 GHz), the antenna gains clearly decrease with decreasing D 
values.  This phenomenon is caused by the variation of the radiation patterns, which is induced 
by the alterations of the electric and magnetic dipoles.  Additionally, as the D value is 18 mm, 
we can obtain high antenna gains easily and with the maximum gain of 10.4 dBi (at 3.5 GHz) 
and the minimum gain of 9.9 dBi (at 3.8 GHz).  
	 For the distance between two inverted-L dipole antennas fixed at 18 mm, Fig. 10 shows the 
simulated return loss for different H values (13, 14, and 15 mm).  We find, from the simulated 
return loss shown in Fig. 10(a), that all the S11 and S22 values are below −10 dB for 3.3–4.4 GHz.  
This means that all resonated modes of the antenna were affected by the air thickness and the 
heights of the PLA pillars.  Furthermore, we can see from the S21 plots shown in Fig. 10(b) 
that, as H values decrease, the metal reflector will become closer to the metal ground, and 

Fig. 9.	 (Color online) Simulated antenna gains for different D values (H = 15 mm).

Fig. 10.	 (Color online) Simulated S parameters for different H values (D = 18 mm): (a) S11 and S22 and (b) S21.

(a) (b)
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thus the isolation will gradually worsen (greater than −15 dB at H = 14 mm).  Figure 11 shows 
the simulated antenna gains for different H values (D is fixed at 18 mm).  It can be seen that 
for the operation band of 3.3–3.8 GHz, the antenna gains decrease with decreasing H.  This 
phenomenon may be caused by the variation in the impedance matching owing to different H 
values.  Additionally, when the H value is 15 mm, the maximum gain is 10.4 dBi (at 3.5 GHz) 
and the minimum gain is 9.9 dBi (at 3.8 GHz).
	 For H of 15 mm and D of 21 mm, the simulated and measured S parameters (S11, S22, and 
S21) of the proposed antenna are shown in Fig. 12.  It is found that for the operation band 
of 3.3–3.8 GHz, both the simulated and measured return losses (S11 and S22) are lower than 
−10 dB.  In addition, all the measured S21 values are lower than −15 dB.  Compared with the 
simulated impedance bandwidth of 32.5% (3.17–4.4 GHz), the measured impedance bandwidth 
(3–4.6 GHz) increased by about 9.6% to 42.1%.  Owing to fabrication errors and the use of 
the EBG, the resonant frequency shifted to a lower frequency but was still within the range of 
C-band (5G) applications of 3.3–3.8 GHz.  Figure 13 shows the simulated and measured 2-D 
YZ- and XZ-plane radiation patterns of the proposed antenna for 3.3, 3.4, 3.5, and 3.6 GHz.  We 
find, from the figure, that both the simulated and measured radiation patterns reveal similar 
beamwidths in both the YZ and XZ planes.  This means that this proposed antenna achieves 
stable and unidirectional radiation patterns and lower cross-polarization.
	 Figure 14 shows the simulated and measured antenna gains and efficiencies.  In the operation 
band of 3.3–3.8 GHz, on comparing these two figures, we can see that both the simulated 
results are more stable than the measured one.  For the simulated results shown in Fig. 14(a), 
the gain is stable with a variation of only 4.9%.  The minimum value is 9.9 dBi at 3.2 GHz and 
the maximum value is 10.4 dBi at 3.5 GHz.  Moreover, the lowest simulated efficiency is 80% 
at 3.8 GHz, and the highest simulated efficiency is 91% at 3.3 GHz.  However, for the measured 
results shown in Fig. 14(b), the gain is stable with a variation of 7.3%, a minimum value of 9.2 
dBi at 3.2 GHz, and a maximum value of 9.9 dBi at 3.5 GHz.  Moreover, the lowest measured 
efficiency is 61% at 3.8 GHz, and the highest measured efficiency is 75.8% at 3.3 GHz.

Fig. 11.	 (Color online) Simulated antenna gains for 
different H values (D = 18 mm).

Fig. 12.	 (Color online) Simulated and measured S 
parameters (H = 15 mm, D = 21 mm).
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Fig. 13.	 (Color online) Simulated and measured antenna radiation patterns: (a) 3.3, (b) 3.4, (c) 3.5, and (d) 3.6 GHz.

Fig. 14.	 (Color online) (a) Simulated and (b) measured antenna gains and efficiencies.

(a) (b)

(c) (d)

(a) (b)

Table 1
Simulated and measured characteristics (H = 15 mm, D = 18 mm).
Bands
(GHz)

Max. gain
(dBi)

Min. gain
(dBi)

Max. efficiency
(%)

Min. efficiency
(%)

Gain variation
(%)

3.3–3.8 Simulated 10.4 9.9 90 80 4.9
Measured 9.9 9.2 75.8 61 7.3
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4.	 Conclusions

	 With two coupling monopole antennas for excitation and the addition of a metal reflector, a 
3-D inverted-L MIMO magnetoelectric dipole antenna with stable radiation patterns and high 
antenna gains and efficiencies was achieved.  The EBG structure was used to suppress the 
surface current between two dipole antennas and hence increase their isolation.  As shown in 
Table 1, for the C-band (5G) applications of 3.3–3.8 GHz, with H = 15 mm and D = 18 mm, the 
optimum properties of the proposed antenna were high stability (simulated variation was 4.9% 
and measured variation was 7.3%), high antenna gains (simulated: 10.4 dBi; measured: 9.9 dBi), 
high efficiency (simulated: 90%; measured: 75.8%), low cross-polarization, return loss below 
−10 dB, and isolations below −15 dB.  The proposed antenna is thus suitable for future energy-
harvesting applications and 5G wireless sensor network systems.  
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