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	 The final goal of this study is to predict marine environments in the ocean surrounding 
Indonesia by developing computational techniques based on computational fluid dynamics (CFD).  
As a preliminary step towards this goal, we have developed methodologies for simulating 
tidal flows in this paper.  The mathematical model of tidal flows is based on depth-averaged 
2D shallow water equations (SWEs).  We use a stabilized finite element formulation with the 
Nitsche-type weak imposition of the slip boundary condition to discretize these equations.  We 
propose new techniques to specify appropriate boundary conditions on curved coastlines and 
open boundaries.  We apply harmonic analysis to compact all computational results.  We also 
introduce a one-way nesting procedure to promote a higher accuracy and reflect larger scale 
effects in subsequent nested meshes.  We have applied the present methodologies to a tidal flow 
simulation in the coastal area around the northern coast of Bali, Indonesia.  In this area, we have 
been observing environmental factors and tidal current velocity in real time from September 
2018.   We compared the simulation results with the observation results, and discussed the 
prediction accuracies of the present methodologies.
 
1.	 Introduction

	 In Indonesia, marine culture and capture fisheries have been growing and creating new 
employment opportunities in fishery-related industries.  However, the country still has a 
problem with unstable productivity, because there are many environmental problems, such 
as the rising sea level, the drastic change in weather, and land-based marine pollution.  It is 
imperative to find sustainable uses of marine resources in Indonesia.  Maintaining Indonesia’s 
marine resources will be the first step towards stable income not only for fishers, but also for 
those engaged in all fishery-related industries.  The necessity of this has been seen elsewhere 
in local communities all over Indonesia.  To understand marine environments, it becomes 
increasingly practical to monitor environment factors digitally.  Local systems in a few 
scattered locations have attempted to address the issue, but there is a need for a system that is 
versatile, effective, and easy to implement.  Therefore, our research project has been developing 
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new digital systems to monitor and predict marine environments in Indonesia from 2016 (see 
https://www.jst.go.jp/global/english/kadai/h2810_indonesia.html).  Part of our research theme is 
to predict behaviors of fluid phenomena by means of computational fluid dynamics (CFD) and 
develop methodologies for predicting marine environments in the ocean surrounding Indonesia.  
As a preliminary step towards this goal, we have developed methodologies for simulating tidal 
flows in this paper.
	 The mathematical model of tidal flows is based on depth-averaged 2D shallow water 
equations (SWEs).   To discretize these equations, we use a stabilized finite element 
formulation(1–3) with the Nitsche-type weak imposition of the slip boundary condition on curved 
coastlines, which was proposed by Urquiza et al.(4) for Stokes flows.  For the specification of the 
tidal height on open boundaries, we use the NAO.99b global ocean tide model.(5)  In addition, 
for the specification of the tidal current velocity on open boundaries, we use the solutions 
obtained using the momentum equation of the linearized SWEs to input the gradient of tidal 
height obtained by NAO.99b.  We apply harmonic analysis to compact all computational results.  
We also introduce a one-way nesting procedure to promote a higher accuracy and reflect larger 
scale effects in subsequent nested meshes.  We have applied the present methodologies to a 
tidal flow simulation in the coastal area around the northern coast of Bali, Indonesia.  In this 
area, we have been observing environmental factors and tidal current velocity in real time 
from September 2018.  We compared the simulation results with the observation results, and 
discussed the prediction accuracies of the present methodologies.
 
2.	 Methodologies

2.1	 Governing equations

	 We consider that tidal flows are governed by the depth-averaged 2D SWEs derived by 
integrating 3D incompressible Navier–Stokes equations over the depth while assuming the 
hydrostatic pressure distribution and neglecting the vertical acceleration.
	 The depth-averaged continuity and momentum equations of the SWEs can be written as
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and the basic configuration and each notation of the SWEs are shown in Fig. 1, where t is time, 
x = (x1,x2)T is the horizontal Cartesian coordinate, z is the bottom height from the reference 
height, H is the total water height, ζ = H + z is the water elevation from the reference height, 
u = (u1,u2)T is the depth-averaged horizontal velocity, g (= 0.980665 m/s2) is the gravitational 
acceleration, v is the horizontal eddy viscosity, and the others are written as
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where εij is the strain rate, Sci is the Coriolis term, and Ssi is the surface and bottom shear stress 
term.  Furthermore, fc and fb are the Coriolis and bottom friction parameters, respectively; here, 
the effect of the surface shear stress is assumed to be zero.
	 We adopt the Smagorinsky model(6) for the horizontal eddy viscosity v given by

	 ( )2 2s g ij ijCν ε ε= ∆ ,	 (4)

where Cs is the Smagorinsky constant and Δg is the grid length.
	 The Coriolis parameter fc can be written as

	 2 sin ,cf ω φ= 	 (5)

where ω (= 7.2921 × 10−5 rad/s) is Earth’s rotation rate and ϕ is the latitude.
	 We consider a mixed model for the bottom friction parameter fb given by
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where Cb is the bottom friction coefficient and n is Manning’s roughness coefficient; hence, *
bC  

is derived from the Manning model that works only in a shallow water area.
	 To discretize the SWEs by the stabilized finite element formulation, we follow the first 
stabilized finite element formulation for compressible flows proposed by Hughes and Tezduyar.(1)  

𝜁𝜁 = 𝐻𝐻 + 𝑧𝑧

𝐻𝐻 𝑧𝑧
𝑢𝑢'

𝑖𝑖 = 1, 2

𝑥𝑥'

𝑥𝑥-

reference height

Fig. 1.	 (Color online) Basic configuration and each notation of the SWEs.
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In that paper, the quasi-linear advective form of the compressible equations is adopted.  
Therefore, we rewrite Eqs. (1) and (2) to the quasi-linear advective form given by

	 0i ij
i i jt x x x

 ∂ ∂ ∂ ∂
+ − − =  ∂ ∂ ∂ ∂ 

U U UA K R  in Ω,	 (7)

where Ω is the domain, U is the vector of conservation variables, which is given by
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and Ai, Kij, and R are respectively the advection matrix, the viscous matrix, and the vector of 
other terms, which are given by
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	 The definitions of the domain and boundaries used in this study are shown in Fig. 2.  
The entire boundary is divided into three parts, which are the Dirichlet, Neumann, and slip 
boundaries.  In Fig. 2, n = (n1,n2)T is the outward unit normal vector to the boundary and 
t = (n2,−n1)T is the unit tangent vector.  
	 The boundary conditions can be written as
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In Eq. (14), we define n+ and t+ as n+ = (0,n1,n2)T and t+ = (0,n2,−n1)T.  Specifically, we use the 
free slip boundary condition where we set GS = 0 and TS = 0.

2.2	 Numerical methods

	 Let U h and W h be approximate trial and weighting functions based on the linear triangular 
element.  The semidiscrete stabilized finite element formulation of Eq. (7) with the Nitsche-type 
weak imposition of the slip boundary condition can be written as
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Fig. 2.	 (Color online) Definitions of domain and boundaries.
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where the superscript h indicates the discrete approximation, τSUPG is the stabilization 
parameter proposed by Tezduyar,(3) Cpen is the constant penalty parameter, ne1 is the number 
of elements, nsb is the number of slip boundary segments, and b

Sh  is the length of slip boundary 
segments.  The last four terms of the equation are derived by Nitsche-type weak imposition, 
which was proposed by Urquiza et al.(4) for Stokes flows.  We note that Takase et al.(2) proposed 
the stabilized space-time finite element formulation of the SWEs including the shock capturing 
term.  In this study, the space-time formulation and shock capturing term are not adopted 
because target flows can be assumed not to be so extreme.
	 Equation (15) is discretized through integration with time by the generalized-α method, 
for which the Navier–Stokes equations of incompressible f lows was first proposed by 
Jansen et al.(7)  The method is formulated to obtain the second-order accurate approximation 
in time, and it permits the use of a relatively large time increment without the constraint of the 
Courant–Friedrichs–Lewy (CFL) condition in the explicit scheme.

2.3	 Coordinate system

	 When a target domain is small, the 2D Cartesian coordinate system (CCS) may be useful, 
but when a target domain is a large ocean, the direct use of the geographic coordinate system (GCS) 
employing latitude and longitude as coordinate components is more effective.  In this study, 
the shape of Earth is assumed to be a sphere with Earth’s mean radius R (= 6.371 × 106 m).  We 
adopt a local tangential plane approximation on each element as shown in Fig. 3, where ϕ is the 
latitude, λ is the longitude, and the position (ϕ0, λ0) is the center of each local element.
	 This local transformation of each coordinate component and its gradient from the GCS to 
the CCS can be expressed as

	 ( ) ( )1 0 0 2 cos ,  ,ox R x Rφ λ λ φ φ= − = − 	 (16)

𝜆𝜆

𝜙𝜙

𝜙𝜙# , 𝜆𝜆#

Fig. 3.	 (Color online) Geographic coordinate system and a local plane approximation on each element.
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Although the origin of the CCS changes locally, it is inconsequential because direct coordinate 
components of Eq. (16) never appear in the SWEs.

2.4	 Preprocessing methods

 	 The bathymetries used in this study have been obtained from the General Bathymetric Chart 
of the Oceans (GEBCO), whose resolution is 30 arc-seconds (about 1 km).  The latest version 
of GEBCO is called the GEBCO_2014 grid.(8)  For coastlines, we use the full-resolution Global 
Self-consistent Hierarchical High-resolution Geography (GSHHG) data.(9)  Both GEBCO and 
GSHHG data on Earth are freely available.
	 To generate a triangular finite element mesh, we use Triangle,(10,11) which is also freely 
available on the web (http://www.cs.cmu.edu/~quake/triangle.html).  Triangle has an option for 
refining preexisting meshes with an area constraint imposing each maximum triangle area.  In 
this study, the maximum triangle area e maxA  at element e of a previous mesh is given by 
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where H0 is the still water level at the element center, CFL is the target CFL number (CFL = 1), 
and Δt is the target time increment.  The mesh refinement is repeated several times.  
	 To obtain the bottom height, we need to interpolate from the given bathymetric data onto 
the simulation mesh.  The given bathymetric data is GEBCO’s 30 arc-seconds grid, which 
we call the background mesh.  When the background mesh is equivalent to or coarser than 
the simulation mesh, the bilinear interpolation is effective.  On the other hand, when the 
background mesh is finer than the simulation mesh, a more global interpolation technique that 
would take the whole available information into account to avoid the local effects of bilinear 
interpolation should be considered.  In this study, we adopt the cubic spline kernel function 
used for the particle method.(12)  Figure 4 shows the relationship between the simulation and 
background meshes.
	 The bilinear interpolation of the bottom height zA on node A [see Fig. 4(a)] can be written as 
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where ( )T1 2,ξ ξ ξ=  is the local position from xA to xi,j and ( )T1 2 ,x x∆ = ∆ ∆x  is the grid length.  

The interpolation using the kernel function w(r,h) [see Fig. 4(b)] can be written as
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where h is the parameter of kernel scale (we chose h = 0.5rmax, where rmax is the length from 
node A to the closest node), k is the index of the background grid, and nkr is the total number 
of background grids inside the circle with radius rmax.  In this study, if nkr ≤ 4, the bilinear 
interpolation is used; otherwise, the interpolation using the kernel function is used.

2.5	 Open boundary condition

	 To obtain the open boundary condition, the NAO.99b global ocean tide model representing 
16 major constituents with a spatial resolution of 0.5° is used.(5)  In this study, we only use eight 
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𝛏𝛏

𝐱𝐱"
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Fig. 4. (Color online) Relationship between simulation and background meshes. (a) Coarse background mesh and (b) 
fine background mesh.

(a) (b)
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major constituents, namely, M2, D2, N2, and K2 for semidiurnal tides, which are about two cycles 
per day, and K1, O1, P1, and Q1 for diurnal tides, which are about one cycle per day.  NAO.99b 
can provide the tidal height that corresponds to the water elevation from the mean water level in 
this study.  Conversely, the tidal current velocity is not provided.  Therefore, we have attempted 
to predict the tidal current velocity on open boundaries using the available NAO.99b data.
	 The tidal height at the given time t and location x can be calculated as

	 ( ) ( ) ( )( )
1

, cos sin  ,
tiden

h
k k k k

k
t a t b tζ ζζ ω ω
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= +∑ �� �x x x 	 (23)

where ntide = 8, ωk is the angular velocity of the major tide k, and the coefficients ( )kaζ x�ζk(x) and 
b�ζk(x) can be obtained from the bilinear interpolation of the gridded data of NAO.99b.  The 
gradient of the tidal height can be calculated as
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where the coefficients c�ik(x) and d�ik(x) can be obtained from the first-order difference.
	 The momentum equation of the linearized SWEs can be written as
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In addition, the tidal current velocity can be written as
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where the coefficients e�ik(x) and f� ik(x) are unknown in this stage.  The substitution of Eqs. (24) 
and (26) in Eq. (25) leads to the following simultaneous linear equations:
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Finally, we can obtain the following solutions for the coefficients of the tidal current velocity:

	

1 2 1 2
1 12 2 2 2

2 1 2 1
2 22 2 2 2

,  ,

,  .

k k c k k k c k
k k

k c k c

k k c k k k c k
k k

k c k c

d f c c f de g f g
f f

d f c c f de g f g
f f

ω ω
ω ω

ω ω
ω ω

+ +
= = −

− −

− +
= = −

− −

� �� ���

� �� ���
	 (28)

2.6	 Harmonic analysis

	 As the variables of fluids depend on time and location, a substantial number of computational 
results are obtained.  We should consider an extraction technique for the necessary data.  In this 
study, we apply harmonic analysis to compact all computational results.
	 Let the function fh(x,t) indicate a computational result at the given time t and location x 
such as tidal height and tidal current velocity.  The function fh(x,t) can be decomposed into the 
harmonic function f�h(x,t) and its residual vh(x,t) denoted by

	 ( ) ( ) ( ), , , .h h hf t f t v t= +x x x� 	 (29)

The harmonic function f�h(x,t) can be written as
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where A�0(x), ( )kaζ x�k(x), and b�k(x) are the harmonic coefficients.  These coefficients can be calculated 
by minimizing the time-integrated squared residual, which is called the least-squares method.

2.7	 Nesting procedure

	 A suitably fine mesh is required in the target coastal area to obtain accurate results.  
However, the applicability of the present specification techniques to open boundaries is not 
suitable to such a fine mesh because the grid size of NAO.99b is large.  In this study, we apply 
a one-way nesting procedure in which there are a large-scale domain and also small-scale 
domains, usually with finer resolution, embedded in the first.  The large-scale model runs 
independently of the small-scale model.  The small-scale model, however, extracts information 
from the large-scale model to provide the open boundary and initial conditions.  As all solutions 
of the large-scale model can be expressed in the harmonic functions as discussed in Sect. 2.5, 
the necessary data can be derived by interpolating the harmonic coefficients from the large-
scale mesh to the small-scale mesh.
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3.	 Tidal Flow Simulation

3.1	 Conditions

	 A tidal flow in the coastal area around the northern coast of Bali, Indonesia, was simulated.  
A nested configuration with four levels of nested domains shown in Fig. 5 was implemented.  
The target domains are the S1 and S2 domains shown in Fig. 5(c).  The open boundary condition 
discussed in Sect. 2.5 was only applied to the LL domain.  We have two observation stations, 
namely, ST1 in the S1 domain, located at 8.12805°S, 114.60278°E, and a depth of about 12 m 
shown in Fig. 5(d), and ST2 in the S2 domain, located at 8.18645°S, 114.82292°E, and a depth of 
about 20 m.  Each current meter was installed at half height of the depth, whereas depths at ST1 

Fig. 5.	 (Color online) Nested configuration from LL domain to S1 and S2 domains. (a) LL domain, (b) L domain, (c) 
M domain, and (d) S1 domain.

(a) (b)

(c) (d)



796	 Sensors and Materials, Vol. 31, No. 3 (2019)

Table 1
Computational parameters depending on each domain.

LL Domain L Domain M Domain S1 Domain S2 Domain
Minimum latitude
Maximum latitude

20.000°S
20.000°N

11.500°S
5.500°S

8.250°S
7.250°S

8.140°S
8.091°S

8.195°S
8.150°S

Minimum longitude
Maximum longitude 

94.000°E
134.000°E

112.500°E
118.500°E

114.250°E
115.250°E

114.575°E
114.625°E

114.800°E
114.860°E

Total number of nodes 1289591 175245 113642 23151 19446
Total number of elements 2489465 324158 223194 45365 38351
Time increment 120 s 60 s 12 s 3 s 3 s
Minimum water depth 20 m 10 m 2 m 2 m 2 m
Minimum element length 1.7 km 0.6 km 50 m 13 m 13 m

and ST2 obtained from GEBCO’s bathymetric data were 12.377 and 9.519 m, respectively.  The 
location 7.75°S, 114.75°E shown in Fig. 5(c) is one of the grid points defined at the tidal height of 
NAO.99b.
	 Table 1 shows computational parameters depending on each domain.  Small islands that 
cannot be resolved were omitted when the finite element mesh was generated.  Therefore, the 
still water depth should be minimally limited to stabilize the solution.  To accomplish this, we 
set the minimum water depth.   The minimum element length in Table 1 is the approximate 
value obtained using the equation 0gH t∆ /CFL.

	 The other parameters we set were Smagorinsky constant Cs = 0.3, grid length 2g eA∆ = , 
where Ae is the area of the element, bottom friction coefficient Cb = 0.0026, and Manning’s 
roughness coefficient n = 0.025 m1/3s.  We used the free slip boundary condition on curved 
coastlines and set the constant penalty parameter Cpen = 10000, which was already examined 
using a simple verification problem.  The simulation period was 150 d, and the integration 
period to obtain the harmonic coefficients was 120 d.

3.2	 Results

	 We compared the present harmonic analyzed results on the M domain to the results obtained 
by NAO.99b of eight major constituents with respect to the tidal height at the location 7.75°S, 
114.75°E from October 1 to 31, 2018.  Figure 6 shows the time history of composed results, and 
Fig. 7 shows decomposed amplitudes and phases.
	 The tidal wave tendency of the present result is similar to that obtained by NAO.99b.  The 
amplitudes of diurnal tides such as K1 and O1 in the present result are greater than those of 
NAO.99b.
 	 We compared the present simulation results on the S1 and S2 domains to the observation 
results with respect to the tidal current velocity at the locations ST1 and ST2 from October 1 to 
31, 2018.  Figures 8–10 show the time history of current velocity components, the histogram of 
current velocity magnitude, and a current rose diagram, respectively.
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Fig. 6.	 (Color online) Time history of tidal height at the location 7.75°S, 114.75°E.  (above: present result on the 
M domain; below: result of NAO.99b).

 0

 10

 20

 30

 40

 50

 60

M2 S2 K1 O1 N2 K2 P1 Q1

Am
pl

it
ud

e 
(c

m
)

Present simulation on M domain
NAO.99b

 0

 60

 120

 180

 240

 300

 360

M2 S2 K1 O1 N2 K2 P1 Q1

Ph
as

e 
(d

eg
)

Present simulation on M domain
NAO.99b

Fig. 7.	 (Color online) Amplitudes and phases of eight major constituents at the location 7.75°S, 114.75°E.  (a)  
Amplitude and (b) phase.

(a) (b)

	 The present simulation results only include the tidal current component and its nonlinear 
dispersion component.  On the other hand, the observation results include other components 
such as wind-driven waves and 3D flows.  For this reason, the observation results strongly 
fluctuate compared with the simulation results.
	 In Fig. 9, a small current velocity below 1.0 cm/s dominates the present simulation at both 
ST1 and ST2, and the observation at ST1.  For the observation at ST2, the most dominant 
current velocity ranges from 0.5 to 1.0 cm/s and a high current velocity of more than 6 cm/s is 
shown, even though it is rare (1.4%).
	 In Fig. 10, at ST1, the prevailing current direction for the present simulation is SE and 
that for the observation is WSW or SW, and at ST2, the prevailing current direction for the 
present simulation is ESE and that for the observation is ENE.  This result shows a slight 
offset between the present simulation and the observation.  As mentioned in Sect. 3.1, such 
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a slight offset is related to the simulation depth at ST2 being different from the actual water 
depth.  It is considered that the flow in the area very close to the coastline strongly depends on 
the bathymetric data.   If more accurate results are required in the simulation, more accurate 
bathymetric data should be used.  In this study, we used GEBCO’s bathymetric data, which only 
has a spatial resolution of about 1 km.
	 Figure 11 shows the harmonic analyzed current velocity vector with a background of the 
bathymetric contour, where Fig. 11(a) is in the S1 domain at the time when the South-North 
velocity component at ST1 is minimum and the tide is flood, and Fig. 11(b) is in the S2 domain 

Fig. 9.	 (Color online) Histogram of current velocity magnitude throughout October 2018, where bin width is 0.5 cm/s. 
(a) ST1 and (b) ST2.
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Fig. 8.	 (Color online) Time history of current velocity components. (above: present simulation; below: 
observation). (a) West-East velocity component at ST1, (b) West-East velocity component at ST2, (c) 
South-North velocity component at ST1, and (d) South-North velocity component at ST2.
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Fig. 10.	 (Color online) Current rose diagram throughout October 2018, which represents the time-integrated 
current velocity for each direction, where unit is m. (a) ST1 and (b) ST2.
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at the time when the West-East velocity component at ST2 is maximum and the tide is ebb.  
From Fig. 11(a), it is confirmed that the tendency of the current direction near the coastline is 
opposite to that of the offshore.  It can be found that the tidal current from the offshore may 
not directly enter the bay.  On the other hand, from Fig. 11(b), the current direction is almost 
eastward, and the bathymetric contour shows that the gradient of the depth around ST2 is 
very steep.  In this area around ST2, coral reefs are the main bottom material; thus, the seabed 
topography is very complex.  Unfortunately, GEBCO’s bathymetric data cannot represent it.

Fig. 11.	 (Color online) Harmonic analyzed current velocity vector with background of the bathymetric contour. (a) 
S1 domain and (b) S2 domain.

(a) (b)
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4.	 Conclusions

	 In the first half of this paper, we have addressed the methodologies used to simulate 2D 
depth-averaged tidal flows by a stabilized finite element formulation.  Most importantly, 
we have proposed new techniques to specify appropriate boundary conditions on curved 
coastlines and open boundaries.  By applying harmonic analysis to all computational results, 
we have reduced the number of computational results that can be expressed using the harmonic 
coefficients.  This technique is also effective for one-way nesting, because the open boundary 
and initial conditions for the nested mesh can be derived by interpolating the harmonic 
coefficients from a covered course mesh.  Moreover, the harmonic analyzed data can be utilized 
for an unsteady advection diffusion model, which is the mathematical model of transport and 
dispersion for environmental factors such as pollutants, nutrients, and tracers.  This would lead 
to the next expansion predicting marine environments.
	 In the second half of this paper, we have applied the present methodologies to a tidal flow 
simulation in the coastal area around the northern coast of Bali, Indonesia.  For the tidal height, 
the present simulation results are in rough agreement with the results obtained by NAO.99b; 
however, diurnal tides are greater than those obtained by NAO.99b.  For the tidal current 
velocity, both simulation and observation results at the observation points are very small.  The 
present simulation results only include the tidal current component and its nonlinear dispersion 
component.  On the other hand, the observation results include other components such as wind-
driven waves and 3D flows.  Particularly, the result of the prevailing current direction shows a 
slight offset between the present simulation and the observation.  Such a slight offset is related 
to the simulation depth being different from the actual water depth.  It is considered that the 
resolution is insufficient for the bathymetric data used in this paper because of the scale of the 
target area.  Thus, bathymetric surveys are needed in the target area to obtain more accurate 
results.  The future challenge for the field observation is to introduce weather stations to observe 
wind flows and to examine its influence on wind-driven waves.   In addition, the bathymetric 
survey of the target area should be carried out.  Moreover, for the present simulation, the surface 
shear stress term caused by wind flows should be incorporated into the present method, and the 
simulation should be carried out considering wind flows and using detailed bathymetric data.  
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