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 With advances in technology, motion sensing has been  applied in a wide range of devices.  
The system used for motion sensing captures images via a camera and analyzes the acquired 
images, also known as human–computer interaction, wherein gesture-controlled machines are 
considered as the most convenient kind and are most commonly used.  However, the existing 
gesture recognition algorithm often has a long computation time and uses a huge amount of 
memory, preventing the algorithm from being implemented in embedded systems.  To alleviate 
these problems, in this paper, we propose to reduce the computation time of the system by 
employing the lifting-based discrete wavelet transform (DWT).  The different frequency bands 
featured in a lifting-based discrete wavelet can swiftly distinguish the face region from the hand 
region, reduce the image resolution, and thus reduce memory usage.  In addition to recognizing 
gestures in a swift and accurate manner, the gesture recognition approach proposed in this study 
is also compatible with embedded systems.  Our experimental results suggest that the proposed 
approach can reduce the execution time by up to 66% while achieving a high identification rate.

1. Introduction

 In the rapid development of science and technology, human–computer interaction is playing 
an essential role.  Game consoles such as PS3 and Wii can all be directly operated via faces 
and gesture recognition, thus enhancing the enjoyment of games.  Skin color detection is often 
applied in gesture recognition systems to roughly determine the position of humans, because 
skin color is regarded as one of the most distinguishing features of humans.  Although the skin 
color of different races varies considerably, the difference mainly lies in the brightness rather 
than in the hue,(1) and skin color is still a unique feature that can best distinguish humans from 
other objects.  For skin color detection, many approaches are available; for example, the RGB 
color space can be converted into the YCbCr color space to take advantage of the clustering 
effect of skin color particles in the YCbCr space, thereby capturing objects that fall under the 
category of skin color for further analysis.  Alternatively, the skin color can be filtered out 
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by converting the RGB color space to the hue, saturation, value (HSV) color space and using 
the features of this space.(2)  Inevitably, in a real-life environment, there are many skin-color-
like objects, which impose certain difficulties in detecting skin color accurately.  To this end, 
background subtraction is often utilized to detect foreground patches or depth images, so as 
to distinguish the foreground from the background,(3) which can lead to the accurate detection 
of skin color blocks.  Other relatively viable and mature gesture recognition methods include 
extracting gestures by particle diffusion grouping,(4) the use of a hidden Markov model, hand 
shape description using high-dimensional feature vectors,(5) as well as hand recognition using 
a Haar feature coupled with a HOG feature.(6)  To distinguish the two regions and analyze hand 
blocks in particular, it is necessary to find the differences between hands and faces.  Haar-
like features are widely used to filter out facial features.(7)  By cutting images into rectangular 
blocks of various sizes and directions, Haar-like features can be used to calculate the sum of 
block brightnesses by applying image integration while carrying out a comparison between 
interblock brightnesses difference and the precalculated threshold value.  However, the above-
mentioned Haar feature detection is a weak classifier, making it necessary to establish a feature 
database of the target of interest in advance.  With due practice, we can capture a good number 
of stronger features, which can be applied to form a cascaded classifier, which will significantly 
increase the detection accuracy.  However, it may not be able to provide real-time operation 
owing to the large number of features that must be compared.  
 Owing to the advances in technology, the pixels of images have been increasingly refined.  
For skin color detection, CodeBook background modeling, Haar feature detection, and so forth, 
the computation time increases geometrically with the image size.  To overcome this problem, 
in this paper, we propose the use of the discrete wavelet transform (DWT), a method capable 
of retaining a large amount of energy, to reduce the image resolution.  Also, the characteristic 
features obtained from the DWT can be used to quickly distinguish hand blocks from face 
blocks in an image.  That is, we can reduce the amount of follow-up system operation by 
separating hand and face blocks.  In addition, we propose a recognition method based on 
gesture appearance, which has a high calculation speed and a high recognition rate of over 90%.  
In this paper, we expound on the proposed method of using the DWT to rapidly distinguish 
hand and face regions.  We also describe the process of hand identification and the system flow 
in detail.  

2. DWT for Gesture Recognition

 The approach used for extracting gestures is of essential importance in gesture recognition.  
However, in addition to gestures, the system must also deal with the user’s face.  In this regard, 
the characteristics of the DWT are applied to distinguish the face from the hands to reduce the 
follow-up processing time while analyzing the hand regions and extracting gestures.  Figure 
1 shows the flow chart of our system.  First, DWT encoding is carried out on the input image, 
thereby reducing the resolution; the subsequent processing involving skin color detection and 
background modeling is conducted with the reduced image, decreasing the operation time 
of the system.  Then, the face and hand textures are analyzed using the high-low frequency 
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information produced from the DWT, thereby distinguishing hand and face regions by the 
difference between their textures.

2.1 DWT encoding

 To speed up image processing, image reduction is commonly used to reduce the follow-up 
processing time.  Three methods are commonly used for this purpose, i.e., the down sampling 
method, the 22 average filter method, and the DWT.  All of them can be used to reduce the 
resolution and computational burden, where the DWT is most widely chosen for its excellent 
energy concentration ability and multiresolution, which can separately process different 
elements and largely retain original images upon reducing the resolution.  However, the 
conversion process can be time-consuming.  
 In this study, we applied an upgraded version of the DWT, i.e., the lifting-based two-
dimensional DWT,(8) also known as the symmetric DWT (SMDWT), which can produce 
the same image quality and values as the 5/3 lifting-based distortion-free discrete wavelet 
converter.  In the case of two-dimensional multi order operation, SMDWT appears to be 
convenient.  In addition, this new method features a short critical path, fast calculation, regular 
signal processing, independent sub-band image processing, and so forth.  Figure 2(a) shows the 
coefficients of a symmetric low-frequency shielding matrix, Fig. 2(b) shows the coefficients of a 
symmetric low-high-frequency mask matrix, and Fig. 2(c) shows the coefficients of a symmetric 
high-low-frequency shielding matrix used in SMDWT.  Degraded images obtained after 
processing by SMDWT are shown in Fig. 3, where Fig. 3(a) shows low-frequency information, 
Fig. 3(b) shows low-high-frequency information, i.e., the vertical texture, and Fig. 3(c) shows 
high-low-frequency information, i.e., the horizontal texture.  
 Skin color is a very distinct feature for humans and is useful for distinguishing between 
human bodies and other objects.  Many methods can be used to detect skin color.  According to 
the literature,(1) the essential difference between the skin colors of oriental and Caucasian people 
lies in the brightness.  On this basis, when brightness is removed from an image, particle swarm 
optimization (PSO) for the skin color of various humans has a high clustering tendency, which 

Fig. 1. Flow chart of system.
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can achieve a rather high recognition rate.  Thus, in the proposed method, the HVS color space 
is utilized to detect skin color blocks.(2)  The HSV color space divides the original RGB color 
space into three dimensions: hue (H), saturation (S), and value (V).  By converting the original 
RGB color space to the HSV color space, the element with the greatest effect, brightness (V), 
will be filtered out, and the skin color is identified from the corresponding values of H and S 
given as

 
1, if 0 80

( , )
0, if 0.1 0.75

H
Skin x y

S
 ≤ ≤= ≤ ≤

. (1)

 Figure 4(b) shows the skin color blocks of the image in Fig. 4(a) detected via Eq. (1), from 
which it can be perceived that, although the representative feature of the human body is the 
skin color, there are many skin-color-like objects in a real-life environment; such noise may 
undermine our experimental results.  Therefore, the detected skin color blocks are fine-tuned as 
described in the following sections.

2.2	 Morphology	filtering	processing—erosion	and	dilation

 A morphological operation refers to the integration of an image and structural elements 
in a set operation to produce a new filtered image.  With the dilation and contraction in the 

(a) (b) (c)

(a) (b) (c)

Fig.	2.	 (a)	 Coefficients	 of	 symmetric	 low-frequency	 shielding	 matrix,	 (b)	 coefficients	 of	 symmetric	 low-high-
frequency	mask	matrix,	and	(c)	coefficients	of	symmetric	high-low-frequency	shielding	matrix.

Fig. 3. (a) Low-frequency image, (b) low-high-frequency image, and (c) high-low-frequency image.
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morphology method, noise can be filtered out and unmatched objects can be connected.  The 
basic structural elements used in the morphological operation are shown in Figs. 5(a) and 5(b).  
The noise is filtered out by using the eight neighbors of a pixel in this method.

2.3	 Codebook	background

 To capture the foreground, a background model is needed for reference.  Codebook 
background modeling is adopted to set up the background model in the proposed method.  In 
contrast to the previous background construction methods, the Codebook algorithm handles the 
background models in complex scenes by quantization clustering, and every pixel is quantized 
and represented by Codebook on the basis of the independent pixels in an image sequence.  In 
this algorithm, the color and brightness of each pixel are sampled and then compared with 
the color distance and brightness in the color model, thereby determining whether the pixel 
is part of the background.  If the answer is positive, the pixel is quantized into groups of 
Codeword.  The background features are stored in the units of pixels; the Codebook of all pixels 
pieces together a complete background.  Unlike the Gaussian mixture model, which requires 
the probability distribution to be calculated, Codebook only requires the color distance and 
brightness range of a pixel.  Therefore, Codebook has low complexity and low memory usage.  
Also, in the initialization process, Codebook can swiftly extract the background of an image 
with moving foreground objects.  As an adaptive background update and compression method, 
it is capable of handling local or global illumination changes, which is essential for real-time 
image processing.

2.4 Foreground

 In this step, to filter out a background block with a color similar to human skin, after the 
foreground part is separated by the Codebook algorithm (see Sect. 2.4 of the 2.4 measure), the 
AND operation is performed on the foreground color and the skin color block is extracted by the 2.3 
measure.  The foreground skin color block is obtained, and the result is connected to the domain 
to reduce noise interference (as shown in Fig. 6).

Fig. 4. (Color online) (a) Input image and (b) skin color block detected using Eq. (1).

(a) (b)
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2.5	 Features	of	DWT

 The experimental results suggest that, when the edge texture is not taken into account, the 
texture features of a human face and palm are considerably different.  Since the horizontal 
texture of a human face contains rich information, we calculate the horizontal texture strength 
of connected blocks as described in this section.  The low- and high-low-frequency information 
can be obtained via the masking process of Figs. 2(b) and 2(c) in Sect. 2.1.  From past 
experience, we found that the low- and high-low-frequency information represent the vertical 
and horizontal textures, respectively.  In the case of facial textures, the horizontal texture 
contains a large amount of information, while the vertical texture contains a small amount 
of information.  In this regard, the following processing focuses on analyzing the horizontal 
texture.  To remove  the interference caused by weak texture information, we first apply Eq. (3) 
to check the high-and-low-frequency information transformed by the wavelet transform.  If the 

(a) (b) (c)

(d) (e) (f)

Fig. 5. (a) Eight neighbors of a pixel, (b) four neighbors of a pixel, (c) binarized image, (d) image eroded by eight 
neighbors, (e) image delayed by eight neighbors, and (f) dilated and contracted image.

Fig. 6. (a) HSV skin color detection, (b) Codebook foreground, and (c) result of combining (a) and (b).

(a) (b) (c)
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value of HL(x, y) is less than the threshold Th0, then the horizontal energy intensity is relatively 
low and can be ignored; if not, HL(x, y) is expressed by HL(x, y) = 255.  On a grayscale image, 
we further confirm the approach where a horizontal Sobel filter is used to mask G [Eq. (2)] by 
HL(x, y) = 255, as shown in Eq. (4).  If the value convolved via the masked G is greater than the 
set threshold Th1, then S(x, y) = 1 is considered to be a texture point.  Because the horizontal 
texture is in a continuous form rather than individual points, if any point satisfying S(x, y) = 1 
meets the above conditions, then Label(x, y) = 1 is marked as a point with a strong horizontal 
texture, as shown in Eq. (5).  This approach can phase-remove many independent points, 
resulting in more accurate horizontal texture information.
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g(x, y) is a grayscale image, HL(x, y) is the pixel value of the original image processed by the 
symmetric high-low-frequency mask matrix, S(x, y) is the marker of a texture point, and Label(x, y) 
is the marker of a strong texture point.

2.6	 Segmentation	of	face	and	hands

 The previous section suggested that a palm, which is rather smooth, contains less texture 
information than a human face.  According to experimental results, it can be perceived that 
the texture characteristics of a human face and hand vary considerably.  On this basis, we have 
been able to distinguish human hands and faces by building up statistics regarding the number 
of strong texture points in each connected block and examining the difference in the number 
of texture points, thus increasing the recognition rate.  On the basis of the sizes of various 
blocks of facial skin color and their corresponding strengths for the consistency of texture 
points, we established a look-up table as a threshold reference.  Note that light will alter the 
texture information to a certain extent.  Therefore, our discussion only applies to experimental 
settings with a stable light source.  When the number of texture points exceeds a set threshold, 
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the texture is regarded as a facial texture, as shown in the green frame in Fig. 7(b); if not, it is 
regarded as a hand texture, as shown in the red frame in Fig. 7(b).  
 The threshold table set up in this experiment is shown in Fig. 7(a).  It can be perceived that 
the shorter the distance to the camera, the larger the number of strong texture points in the 
face.  In addition, the high- and low-frequency information produced by the DWT may be lost 
owing to the movement of the object.  Therefore, it is challenging to recognize face blocks in 
the case of fast movement.  To overcome this problem, given that the movement of an object 
is continuous and uninterrupted, when a block has been determined to be in a facial region, 
the system carries out coordinate positioning and tracking, in which the block is given a fixed 
coordinate.  Subsequently, any block within a certain range of the set coordinate is automatically 
regarded as a face block.

2.7	 Gesture	extraction

 In Sect. 2.6, the face and hand were distinguished by the difference in the number of strong 
texture points.  Therefore, instead of processing the entire image, only the blocks determined 
as hand blocks will be read as the region of interest and then processed, to remove a number of 
system operations in Fig. 8.

(a) (b)

Fig. 7. (a) Graph of number of strong texture points and their distance to camera and (b) segmentation result of 
hand and face.

Fig. 8. (Color online) Region of interest.
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3. Gesture Recognition

 In terms of gesture recognition, the input image may be skewed, which is not conducive to 
the system’s recognition process.  Therefore, we first rotate the gestures, so as to closely analyze 
their features.  We identify the wrist and the joints of the fingers and palm, removing the parts 
other than the palm.  The feature data obtained by this analysis is utilized to distinguish the 
fingers and identify the gesture.  The gesture recognition flow is shown in Fig. 9, where the four 
processes are described in the following subsections.

3.1	 Rotate

 Under normal circumstances, users’ gestures are very likely to be skewed.  It is necessary to 
rotate the gestures in this step to facilitate the subsequent processing.  Prior to rotating the arm, 
we need to find out the skew angle of the arm.  For this purpose, least-squares estimation(9) is 
adopted here, in which a regression line is obtained by minimizing the sum of the squares of all 
the distances of the discrete points from the regression line.  The rotation angle and slope can be 
obtained from the regression line.  Next, the rotated image can be produced by introducing the 
rotation angle into Eq. (6), as shown in Fig. 10.

 
cos sin
sin cos

X x
Y y

θ θ
θ θ

     
     =     −     

 (6)

Fig.	9	 Gesture	recognition	flowchart.

Fig. 10 (Color online) Rotated Image.
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3.2	 Hand	feature	analysis

 Gestures are mostly made by placing the palm and fingers together, so the skin color blocks 
below the wrist are disposable.  To scale down the complexity of the operation, we removed 
the part below the wrist, while the palm remained unchanged.(10)  Figures 11(a) and 11(b) show 
schematic diagrams of a human palm.  It can be seen from Fig. 11(a) that the palm region is 
almost square, making it easier for us to distinguish the palm from the hand.  We next consider 
the fingers.  It can be seen from Fig. 11(a) that the lengths of the fingers and that of the palm 
are similar, with the ratio approximately ranging between 1 and 1.4.  Therefore, to remove the 
part below the palm, we must first figure out the finger length in Fig. 11(b).  For this purpose, 
we carry out a scan down from a finger as shown in Fig. 11(c).  Since the width in the lateral 
direction increases markedly upon reaching the palm, we apply this feature to determine the 
position of the base of the fingers and the finger length.  The base of the fingers is shown by the 
second horizontal line in Fig. 11(d).  We observed that the ratio of the finger length to the wrist 
length is about 1–1.4.  Therefore, with the base of the fingers as a reference, we determined the 
start of the wrist as a distance of 1.2 times the finger length below the base of the fingers, as 
shown by the third line in Fig. 11(d).  
 
3.3	 Draw	circle

 We improved the method in Ref. 10 as reposted in this section.  Considering that the method 
proposed in this paper is affected by changes in radius, we derived a method of stabilizing 

Fig.	11	 (Color	online)	(a)	Hand	features,	 (b)	hand	features,	 (c)	diagram	for	finding	ends	of	fingers,	and	(d)	hand	
segmentation diagram.

(a) (b)

(c) (d)
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the radius.  As reported in the previous section, we have already obtained the hand blocks to 
be removed, the width of the wrist, the center wrist, and so forth.  As shown in the schematic 
diagram in Fig. 12(b), we found that we can distinguish the palm by drawing a circle with the 
middle point of the wrist as the center and the palm length as the radius.  Next, by increasing 
the radius to 1.35 times the palm length, the fingers can be separated as shown by the blue line 
in Fig. 12(c); however, there may be certain errors when it comes to the thumb.  To reduce the 
error, we draw semicircles with the points “1/4 wrist width” from the right and left of the palm 
center as an attempt to more accurately identify the thumb, as shown by the red line in Fig. 
12(c).

3.4 Gesture

 We first use the number of fingers to distinguish the gestures.  A gesture with one finger is 
certainly gesture 1; a gesture with two fingers may be gesture 2, 6, or 7; a gesture with three 
fingers may indicate gesture 3 or 8; a gesture with four fingers may be gesture 4 or 9; and 
a gesture with five fingers must be gesture 5.  Thus, only gestures with two, three, and four 
fingers require further identification.  In Fig. 12(b), the orange blocks represent the extracted 
fingers.  The coordinates of the highest point of each orange block are recorded; then the highest 
and lowest points among these coordinates are found.  In each diagram in Fig. 13, the yellow 
line is no higher than the apex of the semicircle, and the blue line passing through the center 
point of the wrist divides the diagram into left and right sides.  Figure 13(a) shows a schematic 
diagram of gesture 2.  It can be seen that the highest and lowest points are both above the yellow 
line.  Figure 13(b) is gesture 6, whose lowest point is below the yellow line, and its highest and 
lowest points are to the left and right of the center of the palm, respectively, that is, they lie on 
opposite sides of the blue line [Fig. 13(c)], i.e., gesture 7, has its lowest point below the yellow 
line, and the highest and lowest points are on the same side of the blue line.  A gesture with 
three fingers may be gesture 3 or 8.  The highest and lowest points of gesture 3 are above the 
yellow line, as shown in Fig. 13(d), whereas for gesture 8, as shown in Fig. 13(e), the highest and 
lowest points are on opposite sides of the yellow line.  Finally, a gesture with four fingers may 
be gesture 4 or 9.  As shown in Fig. 13(f), the highest and lowest points of gesture 4 are above 
the yellow line, whereas the highest and lowest points of gesture 9 are on opposite sides of the 

Fig. 12. (Color online) Schematic diagrams of (a) the center of the wrist, (b) the palm with a circle, and (c) the palm 
with semicircles.

(a) (b) (c)
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yellow line [Fig. 13(g)].  By connecting the various domain markers, the coordinates of the 
top ends of the fingers can be obtained; such coordinates which are used to compare between 
the highest and lowest points and the information acquired from the previous step, including 
the wrist center and radii.  Taking into account the relative positions and relevant information, 
we can recognize gestures, regardless of the distance, so as to avoid possible errors caused by 
different distances to the lens.

4.	 Experimental	Results

 In this work, the computer used for the simulation had an Intel Core i5-2410 CPU with 2.3 
GHz working frequency and 4 Gb RAM.  We implemented our method using Microsoft Visual 
Studio 2008 on a Windows platform.
 A Logitech web camera with an image resolution of 640 × 480 was used to input the test 
images.  The face and hand recognition rates were obtained after testing 500 images; we 
employed 9000 test images to find the accuracy rate for gestures 1–9, which are shown in 
Fig. 14, and the experimental results can be found in Tables 1 and 2.  Table 1 shows that face 
detection has a relatively high accuracy rate, where the identification failures that occasionally 
occurred were mostly caused by the sides of faces with a very large turning angle, while faces 
within a certain range of angles can be easily detected.  From Tables 2 and 3, it can be perceived 
that the gesture recognition system has a high speed and a high recognition rate of over 90% for 
gestures 1–9.  Examples of unsuccessful samples are shown in Figs. 15–17, where several factors 
are considered to have caused identification failures, such as the nonpositive gesture shown in 
Fig. 15, the fingers too widely apart or too close, leading to errors when detecting finger tips, as 
shown in Fig. 16, and a disfigured hand shape due to skin color detection, as shown in Fig. 17.  
Table 3 gives the execution speeds of the various sections of the system; the average speed of 
the overall system is roughly 30 fps, which can satisfy real-time requirements.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 13. (Color online) Diagrams of the relative positions of gestures.
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Fig. 14. (Color online) Examples of successful samples.

Table 1 
Hand recognition results.
Gesture Total no. of samples Successful samples Unsuccessful samples Success rate (%)
1 1000 983 17 98.3
2 1000 991   9 99.1
3 1000 992   8 99.2
4 1000 971 29 97.1
5 1000 973 27 97.3
6 1000 961 39 96.1
7 1000 947 53 94.7
8 1000 980 20 98.0
9 1000 981 19 98.1

Table 2 
Face recognition results.
Total no. of samples Successful samples Unsuccessful samples Success rate (%)

500 481 19 96.2

Table 3 
System execution times.

WT for face recognition
Execution time (ms) fps

DWT transform  14.11209  70.86
Skin detect and morphology  3.51457  284.53
Foreground  3.72797  268.24
Texture and face detect  2.44290  409.35
Total  23.79753  42.02

Gesture recognition system execution times
Execution time (ms) fps

Rotate  1.60219  624.15
Hand feature analysis  0.38615  2589.67
Draw circle  0.92350  1082.84
Gesture  0.48920  2044.15
Total  3.40104  294.03

Total system
Execution time (ms) fps

 29.61921  33.76
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5. Conclusion

 We proposed the use of the symmetric DWT for gesture recognition to distinguish hand 
blocks from face blocks in an efficient and stable manner.  The experimental results verified 
that the proposed method can significantly reduce the amount of computation involved in the 
system.  In addition, by taking advantage of the features of the DWT, the hands and face can 
be distinguished much faster than by Haar feature detection, where the latter requires feature 
matching.  Also, the face and hand blocks can be identified rather accurately with the DWT.  For 
hand recognition, we proposed a simple and stable method to divide the palm from the fingers, 
whose recognition rate was over 90% in experiments.  Because no complex sensing components 
are used in our method and the symmetric DWT used in our system is notably simpler than 
the original DWT, hardware-based development is promising, following further research and 
development.

Fig.	15.	 (Color	online)	(a)	Tested	gesture	5,	(b)	finger	segmentation	diagram,	and	(c)	result	diagram.

(a) (b) (c)

Fig.	16.	 (Color	online)	(a)	Tested	gesture	3,	(b)	finger	segmentation	diagram,	and	(c)	result	diagram.

(a) (b) (c)

Fig.	17.	 (Color	online)	(a)	Tested	gesture	9,	(b)	finger	segmentation	diagram,	and	(c)	result	diagram.

(a) (b) (c)
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