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 Surface water change is a very important indicator for environmental, climatic, and 
anthropogenic activities.  Remotes sensors, such as Landsat, have been providing data since 
the last four decades, which are useful for extracting land cover types such as forest and water.  
Researchers have proposed many surface water extraction techniques, among which index-based 
methods are popular owing to their simplicity and cost effectiveness.  By using the standard 
and Otsu threshold methods, water features can be mapped, thus changes can be detected.  On 
the basis of the results of this study, the following water indices were applied, i.e., normalized 
difference vegetation index (NDVI), normalized difference water index (NDWI), modified 
normalized difference water index (MNDWI), water ratio index (WRI), and simple water index 
(SWI) for surface water extraction, and their changes using Landsat images.  Three unique test 
sites from Nepal, which represent overall types of water features found in the country, were 
selected for this study.  A model was developed in ArcGIS to differentiate the water features 
based on index methods and changes were calculated in terms of positive and negative.  The 
results show that most of the case water index methods based on standard and Otsu thresholds 
cannot accurately separate water from its nearby backgrounds, such as melting ice, shadows 
of hills with or without vegetation, grasslands, and wet barren sand.  From the current cases, it 
is not recommended to use the water indices in Nepal without any appropriate expert opinion 
or sitewise calibrated thresholding for automated water detection.  However, they can be used 
for the overall change detection.  Most of the change maps of the selected lakes showed good 
accuracies in some unique cases, such as the dark shadow and forest near a water body.  SWI is 
good for stagnant lakes but not for water bodies with shifting features, such as the Koshi River.  
The model can be very useful in quickly understanding the changes in water bodies and taking 
the necessary measures to planners, but not much in accurate mapping.  Furthermore, studies 
of different seasons, sensor data, and sites are necessary in the use of standard water indices for 
accurate change detection.
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1. Introduction

 In recent years, Earth’s surface has undergone various land cover/land use changes.  
Detecting these changes or specific classes such as farmland, forest, urban, and water has been 
proven to be important in various studies.  However, these changes are slow and take a long 
time and thus, they are unnoticed unless they occur at large extents.  To detect, understand, 
and prevent these changes, long historic data provides concrete evidence to the scientific 
community.
 Surface water is a very vital resource in everyday life.  Some of its uses are for drinking, 
irrigation, aquaculture, and thermoelectric cooling.  Surface water is also a very good indicator 
of land cover changes in environments affected by environmental, climatic, and anthropogenic 
activities.  Remote sensing combined with a geographic information system (GIS) can prove 
useful in monitoring current conditions and spatial and temporal changes of rivers, lakes, 
water reservoirs, and other surface waters.  Remote sensing has not only become a backbone of 
hydrogeological reconnaissance in areas with insufficient field data and detailed map coverage, 
but also has become a relatively low cost alternative for feature detection and understanding 
hydrogeological systems in well-mapped regions.(1)

 Nepal is a geographically diverse country with flats in the south and increasing hills towards 
the north to the mighty Himalayas.  In Nepal, around 70–90% of the total annual rainfall 
occurs during the monsoon period, resulting in high runoff and sediment discharge and causing 
surface water area changes.(2)  Thus, it is rich in water resources with about 600 rivers(3) and 
5358 lakes.(4)  About 225 billion cubic meters (bmc) per annum or equivalent to an average flow 
of 7125 m3/s is estimated to be surface water in Nepal, out of which only 15 bmc per annum 
is used.  Around 95.9% of the 15 bmc is used for agriculture, 3.8% for domestic purposes, and 
only about 0.3% for industry.  On the basis of the Water and Energy Commission Secretariat 
(WECS) report, 78% of the average flow of the country is available in the first category river 
basins, 9% in the second category river basins, and 13% in the numerous small southern rivers 
of the Terai.  Out of which, the first category rivers have surplus flow, but the second category 
rivers have deficit flow in the dry season.(3)  On the basis of the  altitude, 2712 lakes (51.0%) 
were found to be distributed below 500 m, 2227 (42%) above 3000 m and only 419 (<8%) were 
in the mid hills of the altitudinal range between 500 and 2999 m.(4)  These rivers and lakes 
have global significance as well as potential for trans-Himalayan conservation.  Besides being 
rich in biodiversity, they support many ethnic groups and livelihoods, and are the foundation 
of religious and cultural developments.  However, they are under threat by anthropogenic and 
natural processes.(5)  Few previous studies of mapping surface waters have been conducted;(6–9) 
however, regular mapping, monitoring, and change detection from field works and even regular 
validation to high Himalayas are lacking in Nepal.
 A series of optical remote sensors such as Kompsat, Landsat, Spot, and Worldview have 
been used to continuously observe and capture images of the Earth’s surface over the last four 
decades.  They provide low-cost and reliable information on environmental changes at local, 
regional, and global scales, with their long collected repeatable and even real-time data.(10,11)  
Owing to the availability of free continuous optical remote-sensing images of high temporal 
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resolution to the scientific community, Landsat series are the most common optical remote 
sensors for mapping water features.(10,12–20)  Landsats 5, 7, and 8 have always been used to 
enhance the acquisition of data from a predecessor yet maintain the legacy of continuous 
data application.(21)  Over the past years, numerous water extraction algorithms have been 
developed and applied to optical remote-sensing images.(10,12–14,17,22–26)  Broadly classified 
into four categories are (a) digitizing through visual interpretation, which is highly accurate 
but labor-intensive, (b) density slicing of a single band,(20,27,28) which applies a fixed threshold 
in a given spectral band, (c) calculating spectral indices,(24,29–33) which combines two or more 
bands by mathematic ratios, and (d) classifying multispectral data using unsupervised(34) and 
supervised techniques.(35–38)

 Owing to their simplicity, low computational cost, and superior performance based on 
specific noises, water index methods are widely used for the identification of water features.(11,39)  
These methods have achieved extremely good results with Landsat images.(13,37,40)  Some of the 
most well-known multiband water index methods include the normalized difference water index 
(NDWI),(33) modified NDWI (MNDWI),(31) and automated water extraction index (AWEI)(24) 
methods.  The NDWI method was developed to identify water surfaces from Landsat images 
using green and near-infrared (NIR) bands to maximize water feature identification.  McFeeters 
proposed the use of zero threshold to separate water with background,(33) but Xu(31) noted that 
the use of zero threshold  was not appropriate and has errors over built-up lands.  Using the mid-
infrared (MIR), MNDWI from Landsat Enhanced Thematic Mapper Plus (ETM+), the MNDWI 
method overcomes NDWI problems by removing built-up lands and soil noises.  Similarly, 
the AWEI method was proposed by Feyisa et al.(24) to identify water features in two different 
conditions: AWEIsh, which is primarily designed to remove shadow pixels, and AWEInsh, for 
areas with an urban background.  Owing to the dominating spectral characteristics of the green 
and red bands compared with the NIR and MIR bands, the water ratio index (WRI) shows 
values greater than 1 for water.(41)  To obtain a higher accuracy from these indexes, a threshold 
appropriate for separating water and background classes should be identified.  As the threshold 
varies with the location and time of image acquisition, it is a challenging and time-consuming 
task.  Most works have focused on the Otsu threshold,(42) which is designed to distinguish 
between background and foreground in imagery by creating two classes with minimal intraclass 
variance.  Malahlela(29) formulated the simple water index (SWI) method, in which vegetation 
pixels with negative values are suppressed automatically (nullified), whereas water pixels are 
enhanced, and differentiation requires no threshold determination or input.  A pixel value 
below 5 represents the actual water pixels, whereas any pixel values greater than or equal to 
5 represent waterlike pixels such as built-up areas and shadows.  Beside water indices, some 
other indices can also be used for water feature extraction; an example of such indices is the 
normalized difference vegetation index (NDVI),(43) which shows a unique negative value.(10)

 Surface water change detection mapping is usually performed in the following  two steps: 
extracting water features from each multidate satellite image and then comparing individual 
date water features to detect  changes.(10,12,16,44)  Hence, the proposed concept is that using the 
same threshold in the same month, i.e., similar season images, could minimize the threshold 
problem, and that differencing while performing change detection could lead to accurate change 
mapping without extra effort on computing and field works.
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 The change detection of automated surface water features using water indices can be 
beneficial to countries like Nepal with insufficient historical data and difficult accessibility.  
Hence, in this study, we use water indices to delineate water features using the standard and 
Otsu thresholds in three test sites using Landsat data of significant year gaps.  A model is 
developed in ArcGIS by differencing the water features derived using index methods and the 
difference is calculated for positive and negative changes.  The water indexes used are NDVI, 
NDWI, MNDWI, WRI, and SWI for surface water extraction and its corresponding changes.  
The method can be useful for understanding the efficiency of water indices for mapping water 
features and their changes.

2. Materials and Methods

 To attain the objectives of the study, the following tasks were performed: selection of test 
sites, data collection, image preprocessing, surface water extraction using a water index method 
in each image, and change detection in each test site.  All the processes were carried out in ENVI 5.1 
and ArcGIS 10.3 and R 3.3.1 software packages.  Figure 1 shows the overall method adopted for 
mapping surface water changes in different test sites of Nepal.

2.1 Test site

 Nepal is a geographically diverse country with varying physiology.  Hence, to represent its 
water systems and varying physiology, one test site from each of the three physiological regions, i.e., 
Terai, Hilly, and Himalayan, was selected.  Then, three test sites with two lakes and a river were 
selected for the study in different regions of Nepal.  Figure 2 shows the location map of the test 
sites for this study.

Fig. 1. Overall flowchart adopted in this study.
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 The first test site is Sheyphoksundo Lake, located at an altitude of 3611.5 m in Dolpa 
District.  It is an alpine fresh water oligotrophic lake that covers an area of 4.94 km2 with a 
length of 5.15 km and a width of 800 m.  With a maximum depth of 145 m, it is one of the 
deepest lakes and represents the water features observed in high Himalayas, which are difficult 
to use in measuring the surface area for a regular update.  Only remote sensors can provide 
better areal monitoring in this area.  The area also has religious importance as it has more than 
20 stupas in the southern belt and one gumba on the eastern side, which attracts many Buddhist 
and Tibetan culture worshipers.
 The second test site is Phewa Lake, located at an altitude of 742 m in the famous tourist city 
Pokhara.  It is the most popular and second largest lake among the seven lakes in Pokhara as 
a tourist spot and many commercial activities happen around the lakes.  It covers an area of 
approximately 4.43 km2 and has an average depth of 8.6 m and a maximum depth of 24 m.  The 
source of water in these lakes is mostly monsoon rain and the seepage from the surrounding 
mountains.  The lake gradually fills up and the surface area and volume decrease with urban 
activities around it.  One side of the lake is a steep sloped dense forest and the other side is a 
dense urban area.
 The third test site is Koshi River, which has a flood control sluice across Koshi River (largest 
in Nepal in terms of discharge) near the border of Nepal and India in Sunsari District and 
Saptari District.  It is a large river that changes its course with each monsoon rain.  In 2008, the 
eastern embankment of the river collapsed and resulted in flood that displaced more than fifty 
thousand people in Nepal and three million people in Bihar, India.  The northwestern part of 
the study area in Koshi consists of rural villages with many ponds for commercial fishery.  The 
area of these ponds varies according to water storage recharged by rainfall or artificial pumping 
of underground water.

Fig. 2. (Color online) Location map of the test sites in Nepal. False-color composite images (NIR-blue-green) of 
Landsat 8 taken in different years are shown.  Each red box represents the area of the test site.
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2.2 Data

 For this study, Landsat 7 ETM+ and Landsat 8 OLI images were used.  Each test site has one 
ETM+ image and one OLI image, which are taken in a span of more than a decade.  The Level 
1 Terrain-Corrected (L1T) data pre-georeferenced using the WGS84 datum were collected from 
the United States Geological Survey (USGS) Global Visualization Viewer (GLOVIS) portal (http://
glovis.usgs.gov/).  The selection of the images was carried out in the same season and dates to 
remove sun illumination differences and differences in soil and vegetation conditions.  Table 1 
shows the specifications of the selected Landsat images for the test sites.

2.3 Image preprocessing

 Each image obtained was preprocessed before deriving the water index.  In this process, 
the image was subjected to radiometric calibration, subsetting, and atmospheric correction.  In 
Environment for Visualizing Images (ENVI) version 5.1, using a radiometric calibration tool, 
the image was converted from a digital number (DN) to a top-of-atmosphere (TOA) reflectance.  
The tool uses all the required information of the conversion for the Landsat header MTL 
metadata file.  During the radiometric calibration, both the multispectral and panchromatic 
images of all test sites were subsetted and extracted for convenient and focused processing 
as shown in Fig 1.  The dark object subtraction (DOS) method was applied to each subsetted 
multispectral image for any atmospheric corrections.

2.4 Index-based surface water extraction

 Surface water extraction from each image for two different times is the primary task for 
change detection.  For this purpose, surface water was extracted using various index methods, 
namely, NDVI,(43) NDWI,(33) MNDWI,(31) WRI, and SWI.(29)  The water index and threshold 

Table 1
Specifications of the selected Landsat images for test sites.

Satellite sensor Wavelength
(µm) Test site Path/Row Acquisition

date
Resolution

(m)

Landsat 7 ETM+

Band 1: 0.45–0.515 Sheyphoksundo Lake 115/34 29-Nov-99

30

Band 2: 0.525–0.605
Band 3: 0.63–0.69

Phewa Lake 115/34 3-Nov-02Band 4: 0.75–0.90
Band 5: 1.55–1.75
Band 7: 2.09–2.35 Koshi River 140/42 20-Nov-00

Landsat 8 OLI

Band 1: 0.435–0.451

Sheyphoksundo Lake 15/34 27-Nov-13Band 2: 0.452–0.512
Band 3: 0.533–0.590
Band 4: 0.636–0.673
Band 5: 0.851–0.879 Phewa Lake 115/34 1-Nov-16
Band 6: 1.566–1.651

Koshi River 140/42 19-Nov-14Band 7: 2.107–2.294
Band 9: 1.363–1.384

http://glovis.usgs.gov/
http://glovis.usgs.gov/
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for the binary classification of water and nonwater backgrounds were derived according to the 
remarks shown in Table 2 and the Otsu method.

2.5 Surface water change detection

 For each test site, the surface water map derived from the ETM+ image was given a negative (−1) 
value, whereas that from the OLI image was given a positive (+1) value.  An additive operation 
on these two water features will result in unchanged (0), decreased (−1) and increased (+1) class 
as in a raster layer.  The proposed surface water change detection approach shown in Fig. 3 will 
be applied to each site to produce a change map.

2.6 Accuracy assessment

 Even though the purpose of the easy application of water index methods here is to produce 
accurate change maps over time without extra evaluation cost and time, the proposed method 
should be verified for accuracy.  As the images are historic and the water surface changes often, 
there is no database of water features at that exact point of time.  However, in Landsat ETM+ 
and OLI, there is a 15 m high-resolution-panchromatic band, which itself acts as the validation 
data for the exact point of time.  Thus, by using a panchromatic image and its derivative, i.e., the 
true-color pan-sharpened image, reference surface water features were generated very carefully 

Table 2
Multiband indexes used for water feature extraction.
Multiband index Equation Remarks Reference
NDVI NDVI = (NIR − Red) / (NIR + Red) Water with negative value (43)
NDWI NDWI = (Green − NIR) / (Green + NIR) Water with positive value (33)

MNDWI MNDWI = (Green – SWIR1) / 
(Green + SWIR1) Water with positive value (31)

WRI WRI = (Green + Red) / (NIR + SWIR1) Water feature value 
is greater than 1 (41)

SWI SWI = 1 / (Blue  SWIR1)− Water feature value 
is less than 5 (29)

Fig. 3. (Color online) Change detection process from Landsat 7 ETM+ and Landsat 8 OLI in ArcGIS.
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by the on-screen digitization of both Landsat ETM+ and OLI images by the visual interpretation 
of an expert’s knowledge.  As per the change detection process, three change classes were 
derived for each site as reference.
 The performance characteristics were compared using the overall accuracy (OA) and kappa 
coefficient calculated from the confusion matrix developed on the basis of the reference and 
derived index-based change maps.  Table 3 shows the principle of a typical confusion matrix, 
where a is the number of correct predictions that an instance is negative, b is the number of 
incorrect predictions that an instance is positive, c is the number of incorrect  predictions that 
an instance is negative, and d is the number of corrections that an instance is positive.(45)  The 
calculations of the OA and kappa coefficient are shown as

      
  

Number of correct predictionsOverall accuracy
Total predictions

= , (1)

 
    

1    
Observed accuracy ChanceaccuracyKappa coefficient

Chanceaccuracy
−

=
−

. (2)

 The OA represents the current predictions and ranges from 0 to 1, where a value near 1 is 
perfect.  However, it does not consider the agreements between datasets that are due to chance 
alone.  Hence, the kappa coefficient, a tool to control that random agreement factor, is often 
used together.  Usually, the kappa coefficient can range from −1 to +1, where 0 represents the 
amount of agreement that can be expected from random chance and 1 represents a perfect 
agreement between the raters.  In very rare cases, the kappa coefficient can be negative, 
indicating that there is no effective agreement between the two raters.(46)

3. Results and Discussion

 After the radiometric calibration, subsetting, and DOS correction, all the test site images 
were processed for the derivation of water indices.  The water indices were then converted into 
water and nonwater features using two binary thresholding techniques.  The first thresholding 
was carried out according to the previously used threshold as in the literature (Table 2), whereas 
the second thresholding was carried out using the Otsu-method-based binary thresholding 
function of ArcGIS software for the automatic separation of water and nonwater rasters.  After 
separation, each raster was reclassified such that the background was assigned “0”, whereas 
water of Landsat ETM+ (older) was assigned “−1” and that of Landsat OLI (new) was assigned “+1”.  
Each test site and each index method derived a raster that underwent an additional operation so 

Table 3
Principle of the confusion matrix.

Predicted
Negative Positive

Truth Negative a b
Positive c d
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that unchanged regions become “0”.  The addition results in “−1” for older pixels but not for new 
ones, i.e., a decrease in area.  Similarly, pixels that are in new images but not in old ones become “+1”, 
i.e., an increase in area.  Thus, the changes in two different dates based on an index method 
without any intervention were derived.
 A tool was developed in ArcGIS using ModelBuilder for the automated output.  Figure 3 
shows one of the tools developed for the process using NDVI in this study.  Blue ovals are input 
bands, yellow rectangles are tools, and green ovals are outputs.  The water index calculator uses 
a map algebra according to the equation available in Table 2.  A reclassify tool labels the pixels.  
In the reclassification of each Landsat image, each method is repeated for the threshold in 
Table 2 and the Otsu method.  The binary thresholding function in ArcGIS does not provide the 
threshold value; hence, only the output was applied without them.  By using the model, water (blue) 
and nonwater (grey) maps were prepared, then change maps with decrease (red), unchanged 
(grey), and increase (green) in water features in the area were derived.  The results of the tool 
are shown in Fig. 4, A1, A2, A3, and 5.
 NDVI is an index of plant greenness that is due to red light absorption and NIR reflection by 
plants.  Its value ranges from −1 to +1.  However, water does quite the opposite, which absorbs 
most of the NIR light; hence, NDVI could be used as the tool to delineate surface water features, i.e., 
negative value range.  Figure 5 shows the result of surface water feature extraction and its 
application in change detection.  Except Phewa Lake, the other two have very little vegetative 
features around them, which has led to very poor segregation based on the threshold of less than 0.  
In the case of Sheyphoksundo Lake, the shadow due to high Himalayas on the southeast corner 
has been a large issue, which has also not been resolved by the Otsu method thresholding.  In 
the case of Phewa Lake that is being surrounded by a forest farm land and a city area, NDVI 
did well in segregating water and nonwater features.  However, owing to the limitation of the 
Landsat ETM+ radiometric resolution, the slight greenness from the algae of the lake led to few 
nonwater pixels inside the lake.  The problem was solved well by the Otsu method, but it led 
to the misclassification of the wider black topped road as a water feature within the processed 
scene.  The change map shows few pixels encroached in the southwest city area owing to hotel 
and leisure businesses.  Moreover, the growth in the northwestern side is probably due mostly 
to the recent rainfall that increased the flow of water to the lake.  In fact, the gradual growth of 
the lake area is also negative on that side.  The study area around Koshi River is mostly barren 
sand, grass, and shrub with few cultivable and forest lands.  Hence, NDVI did very well in 
delineating the water features of the study area and in clarifying the changes.  It identified the 
water stored around the barrage as unchanged but failed to identify the water-filled canal in the 
recent Landsat 8 image.  The issue has been resolved by the Otsu method.  However, due to less 
variance in the area, the method misclassified wet/dry sand in the floodplain as a water feature.
 NDWI is an analogy of NDVI but for water.  A higher NDWI denotes water and lower 
nonwater features.  MNDWI was developed to overcome the limitations of NDWI.  Including 
WRI, these indices utilize the unique spectral properties of green, red, NIR, and MIR bands.  
The results of the methods based on these indices are shown in Appendix A.  In most cases, 
the results resemble each other, where WRI seems to be much superior with standard and Otsu 
thresholds compared with NDWI and MNDWI.  Both NDWI and MNDWI were less effective 
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Threshold Landsat 7 ETM+ Landsat 8 OLI Surface water change

Sheyphoksundo
Lake

NDVI < 0

Otsu method

Phewa Lake

NDVI < 0

Otsu method

Koshi River

NDVI < 0

Otsu method

Fig. 4. (Color online) Results of surface water identification and change detection using NDVI at three test sites.
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in the shadow region of the Himalayas in Sheyphoksundo and Phewa Lakes.  WRI was less 
effective in Phewa Lake forest shadows than in Himalayan shadows in Sheyphoksundo Lake.  
The Otsu method almost removed the shadows in the WRI case for Landsat 8 scenes in both 
cases but was unable in the Landsat 7 scene of Sheyphoksundo Lake.  However, in the case of 
the shadow-free but barren floodplain of Koshi River, the results were good for the large water 
channel in the river, but many cases failed to determine the canal line and some could do it 
partially.  The limitation in the partial pixel identification of a canal is logical as the width of 
the canal is smaller than the spatial resolution of imagery and is affected by the deposited silts, 
grown vegetation, and outgoing water from the channel through spill or seepage.  The fishery 
ponds in the northwestern regions were also well identified in most of the cases.  The change 
in the flow path of the river can be distinctly visible in all the cases of NDWI, MNDWI, and 
WRI.  Visually, most of the cases have noise based on the standard threshold; only the Otsu 
thresholding was able to provide clear water bodies in a few cases.
 SWI is a recently developed water index for Landsat OLI to solve the thresholding problem 
for water and backgrounds resembling water.  Hence, the Otsu threshold was not used in this 
case.  The uniqueness of this index is that it nullifies vegetative features so that only water and 
waterlike features are assigned pixel values whereas others are marked “No data”.  The standard 
that SWI < 5 representing water also fails mostly in dark Himalayan and forest shadows.  

Threshold Landsat 7 ETM+ Landsat 8 OLI Surface Water change

Sheyphoksundo 
Lake SWI < 5

Phewa Lake SWI < 5

Koshi River SWI < 5

Fig. 5. (Color online) Results of surface water identification and change detection using SWI at three test sites.
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However, in the case of Koshi River, it identified water as well as a few wetlands near the river 
channel, which are not detected in another case.
 For the accuracy assessment of each method, a reference map for each Landsat in each site 
was prepared and the change was detected using the developed tool.  Figure 6 shows the water 
features and changes identified for the validation.  In the case of Sheyphoksundo Lake, the 
decrease in water level resulted in a decrease in area on all sides whereas the southwest part 
showed a small increase due to erosion and an increase in area.  Phewa Lake water during 
Landsat 7 had a continuous water flow in the upper input of the lake, while it was not observed 
in the case of Landsat 8, which could be the result of recent rainfall.  Koshi River showed a 
marked change in its course, which shifted from west to east.  Similarly, the canals in eastern 
parts were broken owing to the deposited silt, narrow deep channels, which are not detectable 
with the resolution of the Landsat.  On the basis of the reference map, the OA and kappa 
coefficient were calculated and are tabulated in Tables 4 and 5, respectively.
 On average, the OAs of the case studies for water detection, as well as the kappa coefficient, 
are high.  In contrast, the OAs of the changes are high, but the kappa coefficients are low 
except in a few cases.  The OA of Sheyphoksundo Lake is lower than 0.90, compared with 
those of other sites, especially in water feature mapping.  However, the average accuracy in 
the change detection of water features in the site is 0.981, which is good statistically, but the 

        Landsat 7 ETM+             Landsat 8 OLI           Surface water change

Sheyphoksundo
Lake

Phewa Lake

Koshi River

Fig. 6. (Color online) Results of surface water identification and change detection for validation at three test sites.
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kappa coefficient tells otherwise.  The negative value clarifies that it does not agree with the 
higher accuracy.  This is due to less changes in the two dates and clustered water and nonwater 
features, i.e., the lake surrounded by mountains.  The Otsu method in a Koshi River site has 
the lowest OA in water feature extraction and thus affects the accuracy of change detection.  
As the Otsu method attempts to minimize the intraclass variance, the number of pixels and the 
index play very important roles.  The wet sandy area of the floodplain has no vegetation, which 
is assigned a null NDVI value, thus making it much closer to the river than to the remaining 
farmland and forests.  Similarly, in the same Koshi River site, SWI showed the lowest accuracy 
owing to the “No data” assignment to nonwater features.  In many cases, the Otsu method 
improves the segregation of water features compared with the standard thresholding based on 
water indices.  The dependence of the atmospheric and environmental conditions in the study 
alters the threshold in each case.
 In the literature, most of the studies conducted are ideal and real difficult regions are 
avoided.  In previous studies conducted by many researchers, the water bodies considered 
are natural large lakes and reservoirs such as dams and have a surrounding distinguishing 
but homogenous background.(10,13,23)  Thus, this results in a very high accuracy statistically 

Table 4
OAs of all water and change maps in all three sites.

Test site Water index Threshold Landsat 7
ETM+

Landsat 8
OLI

Surface water
change

Sheyphoksundo Lake

NDVI NDVI < 0 0.881 0.868 0.983
Otsu method 0.882 0.887 0.987

NDWI NDWI > 0 0.869 0.843 0.987
Otsu method 0.845 0.875 0.988

MNDWI MNDWI > 0 0.840 0.840 0.981
Otsu method 0.867 0.872 0.982

WRI WRI > 1 0.858 0.853 0.983
Otsu method 0.968 0.982 0.986

SWI SWI < 5 0.930 0.881 0.955

Phewa Lake

NDVI NDVI < 0 0.952 0.967 0.961
Otsu method 0.984 0.973 0.978

NDWI NDWI > 0 0.982 0.976 0.980
Otsu method 0.988 0.976 0.980

MNDWI MNDWI > 0 0.946 0.973 0.969
Otsu method 0.967 0.967 0.968

WRI WRI > 1 0.987 0.980 0.982
Otsu method 0.981 0.958 0.972

SWI SWI < 5 0.966 0.978 0.967

Koshi River

NDVI NDVI < 0 0.962 0.953 0.933
Otsu method 0.747 0.892 0.741

NDWI NDWI > 0 0.955 0.957 0.927
Otsu method 0.964 0.957 0.937

MNDWI MNDWI > 0 0.967 0.960 0.940
Otsu method 0.957 0.952 0.927

WRI WRI > 1 0.968 0.957 0.940
Otsu method 0.940 0.940 0.904

SWI SWI < 5 0.971 0.962 0.796
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as well as aesthetically.  However, it is usually not the case as the condition varies.  Hence, 
semi-automated methodologies can be used for faster outputs in change detection, but human 
intervention during and after processing can never be avoided.

4. Conclusions

 In this study, we applied and explored the effectiveness of five well-known water indices to 
extract surface water features and detect changes in using two Landsat 7 and 8 images taken in 
a decade for three different test sites.  Each site represented unique but common water bodes 
in Nepal.  On the basis of visual interpretation and statistics, most index methods identified 
water features as well as shadow features.  Compared with the standard threshold, the Otsu 
method provided better segregation of water depending on the water and surrounding features.  
However, it is not recommended to use standard water indices for mapping purposes in Nepal.  
Except for Sheyphoksundo Lake where the change was not significant, surface water changes 
in most cases were well identified with higher accuracy.  SWI is good for nonshifting water 
features, such as in lakes and reservoirs, but not for shifting features, such as in Koshi River.

Table 5
Kappa coefficients for all water and change maps in all three sites.

Test site Water index Threshold Landsat 7
ETM+

Landsat 8
OLI

Surface water
change

Sheyphoksundo 
Lake

NDVI NDVI < 0 0.679 0.657  −0.005
Otsu method 0.681 0.694  −0.003

NDWI NDWI > 0 0.614 0.610  −0.001
Otsu method 0.659 0.672  −0.003

MNDWI MNDWI > 0 0.605 0.603  −0.007
Otsu method 0.654 0.664  −0.002

WRI WRI > 1 0.638 0.628  −0.005
Otsu method 0.897 0.942  −0.006

SWI SWI < 5 0.799 0.685  −0.010

Phewa Lake

NDVI NDVI < 0 0.791 0.874  0.257
Otsu method 0.936 0.900  0.489

NDWI NDWI > 0 0.928 0.914  0.506
Otsu method 0.952 0.912  0.506

MNDWI MNDWI > 0 0.816 0.910  0.450
Otsu method 0.875 0.882  0.290

WRI WRI > 1 0.948 0.929  0.572
Otsu method 0.923 0.836  0.219

SWI SWI < 5 0.877 0.922  0.272

Koshi River

NDVI NDVI < 0 0.837 0.737  0.791
Otsu method 0.372 0.594  0.368

NDWI NDWI > 0 0.820 0.765  0.782
Otsu method 0.847 0.767  0.808

MNDWI MNDWI > 0 0.864 0.791  0.818
Otsu method 0.803 0.732  0.765

WRI WRI > 1 0.864 0.765  0.815
Otsu method 0.706 0.646  0.674

SWI SWI < 5 0.874 0.801  0.042



Sensors and Materials, Vol. 31, No. 5 (2019) 1443

 The method can also be used in change detection of any feature in features if indexes and 
threshold are chosen carefully to separate the object of interest from its background.  Future 
works require the appropriate calibration of the threshold for the identification of water bodies 
for different seasons, sensor data, and sites using standard water indices for accurate change 
detection.
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Appendix

Threshold      Landsat 7 ETM+               Landsat 8 OLI             Surface water change

Sheyphoksundo 
Lake

NDWI > 0

Otsu method

Phewa Lake

NDWI > 0

Otsu method

Koshi River

NDWI > 0

Otsu method

Fig. A1. (Color online) Results of surface water identification and change detection using NDWI at three test sites.



1446 Sensors and Materials, Vol. 31, No. 5 (2019)

Threshold      Landsat 7 ETM+ Landsat 8 OLI        Surface water change

Sheyphoksundo
Lake

MNDWI > 0

Otsu method

Phewa Lake

MNDWI > 0

Otsu method

Koshi River

MNDWI > 0

Otsu method

Fig. A2. (Color online) Results of surface water identification and change detection using MNDWI at three test 
sites.
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Threshold      Landsat 7 ETM+ Landsat 8 OLI      Surface water change

Sheyphoksundo 
Lake

WRI > 1

Otsu method

Phewa Lake

WRI > 1

Otsu method

Koshi River

WRI > 1

Otsu method

Fig. A3. (Color online) Results of surface water identification and change detection using WRI at three test sites.


