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 A type of Galfenol-piezoelectric composite film sensor is proposed in this paper, and 
its nonlinear magnetoelectric coupling dynamic characteristics are discussed.  Nonlinear 
differential terms are introduced to explain the hysteresis of Galfenol’s strain–magnetic-field- 
intensity (MFI) curves, and a new Galfenol’s model is established.  The fitting effect of the 
Galfenol’s model on the experimental data is proved by the partial least-squares regression 
method.  A nonlinear dynamic model for such a sensor subjected to a harmonic magnetic field 
and a stochastic electromagnetic interference has been developed, and its strongly nonlinear 
dynamic response is obtained by the developed Lindstedt–Poincare (L–P) method.  The results 
of numerical simulation show that the Galfenol-piezoelectric composite film sensor has complex 
dynamic characteristics; the stochastic electromagnetic interference plays an important role in 
the system’s dynamic response.  The results of this study are helpful for the optimal design and 
improvement of Galfenol-piezoelectric composite film sensors.

1. Introduction

 A magnetic sensor is the key component of many electronic devices.  The common magnetic 
sensors are the Hall component and giant magnetostrictive-piezoelectric composite sensor.  In 
some cases, the measured magnetic field is usually submerged in electromagnetic interference 
(EMI), which leads to the requirements for high-sensitivity sensors.  To detect a magnetic field 
with low intensity, a composite film sensor was proposed.  A composite film sensor is made up 
of two types of films: magnetostrictive and piezoelectric films.  The magnetostrictive film has 
a large surface area to produce a large deformation even in a magnetic field with low intensity, 
and the piezoelectric film can generate sufficient current based on the deformation induced 
by the piezoelectric effect.  Terfenol-D film, which is a conventional magnetostrictive film, 
has a high magnetostriction rate.  However, Terfenol-D is very brittle and cannot withstand 
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large load and deformation.  Galfenol is a novel giant magnetostrictive material.  It has a high 
magnetostriction rate and good elasticity, making it a promising material for magnetic sensors.
 Many researchers have studied magnetostrictive film sensors.  Torii et al. proposed a type 
of Tb-Fe-Co giant magnetostrictive thin film and studied its application to force sensors.(1)  
Zhou et al. analyzed the transverse, longitudinal, and perpendicular giant magnetoimpedance 
effects in a compact multiturn meander NiFe/Cu/NiFe trilayer film sensor.(2)  NazariNejad et al. 
designed a giant magnetoimpedance thin film magnetic sensor based on combinations of 
magnetostrictive and electroactive materials.(3)  Zhang and Wang tested a magnetic field sensor 
using an electrodeposited thin film of giant magnetoresistive (Cu/Co) multilayers.(4)  Luong et al. 
designed a 3D magnetic field sensor with a single bridge of spin-valve giant magnetoresistance 
films.(5)  Li et al. discussed the integration of a thin film giant magnetoimpedance sensor and 
a surface acoustic wave transponder.(6)  Although many achievements in magnetostrictive 
film sensors have been reported in previous years,(7–15) theoretical results on the dynamic 
characteristics of the magnetostrictive film sensors subjected to EMI are few.
 In a film sensor, deformation is very large, which causes the strong nonlinear characteristics 
of the magnetostrictive film.  Common analysis methods, such as averaging and multiscale 
methods, are only adopted for weak nonlinear systems.  In this paper, a new Galfenol-
piezoelectric composite film sensor is proposed, and its strong dynamic characteristics 
subjected to harmonic magnetic field and stochastic EMI signals are analyzed by the developed 
Lindstedt–Poincare (L–P) method.  Finally, the effects of the EMI intensity on the system’s 
response are discussed.

2. Nonlinear Dynamic Model of Galfenol-PVDF Composite Film Sensor

 The structure of a Galfenol-piezoelectric composite film sensor is shown in Fig. 1.  The 
composite film sensor is made up of two types of films: Galfenol and PVDF piezoelectric films.  
When the sensor is placed in a varying magnetic field, the Galfenol film vibrates, and then the 
PVDF piezoelectric film is subjected to a varying pressure and generates varying currents.  The 
strain–magnetic-field-intensity (MFI) curves of Galfenol materials are shown in Fig. 2.  The 
curves evidently show hysteretic characteristics.  In this study, a Van der Pol hysteretic model 
was introduced to describe the hysteretic nonlinear characteristics of Galfenol alloy based on 
the magnetostrictive effect as 

Fig. 1. Structure of Galfenol–PVDF film sensor.
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 2 3 2 3 4
1 2 1 2 3 4 5 6 7( ) ( ) ( )f H f H k H k H k H k H k H k H k H Hε = + = + + + + + + � ,  (1) 

where ε is the strain, H is the MFI, ki (i = 1–7) are the coefficients, 2 3
1 1 2 3( )f H k H k H k H= + +  

is the skeleton curve of the hysteretic loop, and 2 3 4
2 4 5 6 7( ) ( )f H k H k H k H k H H= + + + �  is the 

improved Van der Pol term, which describes the difference between the skeleton curve and the 
hysteretic loop.  
 The partial least-squares regression method has been used to test the fitting effect of Eq. 
(1).  The results of the principal component analysis based on the experimental data are shown 
in Fig. 3, and the coefficients are shown in Fig. 4.  All the valuable importance (VIP) terms are 
sufficiently large, indicating that these terms are the principal components of the model.
 Now, we can establish the sensor’s dynamic model.  In this study, the Hamilton variation 
principle is applied in system modeling as

 1 2 1 2( ) 0K P
d OES T T M U U M W W dtδ δ= + + − − − − + =∫ ,  (2) 

where Ti is the kinetic energy of the two materials, 2
0

1 ( )2
iS i

i i i i
dqT A dsdtρ= ∫ , (i = 1, 2), 

with 1: Galfenol film and 2: PVDF film.  Si is the area of the two films, ρi is the density, 
Ai is the thickness, and qi is the displacement; MK is the magnetic field energy of 

the Galfenol f ilm, 1
2

KM B KdV= ⋅∫∫∫ , with 0 sinK K t= Ω  being the intensity of the 

magnetic field; Ui is the potential energy of the two materials, 2
0

1
2

iS i i
i i i

i

E AU q dss= ∫ , (i = 

1, 2), with Ei being the elastic modulus; MP is the electric field energy of the PVDF film, 

Fig. 2. (Color online) Strain–MFI curves of Galfenol alloy.
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SP AM E DdV E D ds= ⋅ =∫∫∫ ∫ , with 33
1

UE L=  being the electric field intensity, U the 

output voltage of the PVDF film, and D33 the electric displacement.  Wd is the work performed 

by the system’s damp force, 
0

S
d

qW cq dst
∂=
∂∫ , with c being the damping coefficient of the 

structures.  WOE is the work performed by in-plane excitation, 
0

L
OEW Fdx= ∫ .  Here, F is the 

stochastic perturbation caused by EMI, ( )F F tς= , where ζ(t) is the normal Gauss white noise.
 When the displacement of the middle point of the film is the system’s response q, we can 
obtain the dynamic equation of the system’s response as

 2 4 2 3
4 5 1 2 3(2 ) sin ( )q c q c q q c q c q c q K t e tη ς+ + + + + + = Ω +�� � . (3) 

Fig. 3. (Color online) Results of principal component analysis.

Fig. 4. (Color online) Coefficients.
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3. Strong Dynamic Characteristics of the System

 A large deformation of a film sensor will cause the strong nonlinear characteristics of the 
film, indicating that Eq. (3) is a strong nonlinear system.  Assuming that the coefficient c3 of 
the term q3 is the largest among those of all the nonlinear terms and the damping coefficient η 
is small, we let 2

1 0c ω=  and ε1 = c3.  Thus, we can obtain

 2 2 4 2 3
0 1 6 4 5 1 2[( ) ] sin ( )q q e e q e q q e q e q q K t e tω ε ς+ + + + + + + = Ω +�� � , (4) 

where 
1

i
i

ce
ε

= , (i = 1, 2, 4, 5) and 6
1

2e η
ε

= .  Obviously, ei < 1 since ε1 = c3 and c3 is the largest 

among those of all the nonlinear terms.  However, ε1 = c3 may still be large, and we cannot use a 
nonlinear method directly.  This means that we must make ε1 small.  In this paper, the developed 
L–P method is applied to solve the strong nonlinear equation to obtain the natural frequency of 
the strong nonlinear system.
 Let

 0tτ ω= ,  (5) 

 2 2 2
0 1 1 2 1 ...ω ω ω ε ω ε= + + + ,  (6) 

 
2
1 1

2 2
0 1 1

ω εα
ω ω ε

=
+

,  (7) 

 2
0 1 2q q q qα α= + + . (8) 

 Thus,

 
2

2 2 0
0

1

ω
ω ω α

ω
= + ,  (9) 

 
2

20
1 2

1
( )oω

ε α α
ω

= + .   (10) 

 Using the above transformation, we change ε1 to a small number α, and obtain the following 
equations in accordance with the coefficients of α0 and α1: 
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Equation (11) is a weak nonlinear system, and we can obtain the natural frequency of the system 
as

 2 2
0 3

31 4 c aω ω= + ,  (12) 

where a is determined by the equation

 2 4
6 4 5 0e e a e a+ + = .   (13) 

From the above natural frequency ω, we obtain the drift coefficient m(H) and diffusion 
coefficient ( )Hσ  of Eq. (4) as

 
2

2 454
2 2 2( ) ( 2 )

2 4
ccDem H H H Hη

ω ω ω
= − − − ,  (14) 

 
2

2 2
2( ) DeH Hσ

ω
= .   (15) 

 The averaged Fokker–Planck–Kolmogorov (FPK) equation of Eq. (4) is

 
2 2

2
[ ( ) ]1[ ( ) ] 2

f H fm H ft H H
σ∂ ∂∂= − +
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,  (16) 

where f is the stationary probability density (SPD) of the system’s response.  Thus,

 
2

2
4

254
2 2 2( ) exp[ ]

2
De ccf H AH H H

De De

ηω

ω

−
= − − .   (17) 

 The numerical results of the system response are presented in Fig. 5, where c1 = 800, c2 = 
0.2, c3 = 1, c4 = −0.3, c5 = 0.4, D = 0.5, and η = 0.015.  From Eq. (17) and Fig. 5, we obtain the 
following results:
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 A loop is formed in the SPD map when K = 0.5 and e = 0, as shown in Fig. 5(a).  This means 
that the system’s motion and the output voltage are both periodic when the film sensor is only in 
a harmonic magnetic field.
 A peak and a loop are formed in the SPD map when K = 0.5 and e = 0.2, as shown in Fig. 
5(b).  This means that the system’s motion can be of two types: a periodic motion with large 
amplitude and a vibration near the balance point (0,0).  The type of motion the system should 
have is determined by the initial conditions.  
 In the variation process of the system’s parameters, the system’s response can jump from 
the balance point to periodic orbits under external excitation, inducing the stochastic Hopf 
bifurcation of the system.  
 Two loops are formed in the SPD map when K = 0.5 and e = 0.5, as shown in Fig. 5(c).  This 
means that the system’s motion can be of two types: a periodic motion with large amplitude 
and a periodic motion with small amplitude.  The type of motion the system should have is 
determined by the initial conditions.  The system’s response can jump from one periodic orbit to 

Fig. 5. (Color online) Probability density of the system’s response when K = 0.5 and (a) e = 0, (b) e = 0.2, (c) e = 0.5, 
and (d) e = 1.

(a) (b)

(c) (d)
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the other under external excitation when the system’s parameters change, inducing the periodic 
orbit bifurcation of the system.
 Two loops and a peak are formed in the SPD map when K = 0.5 and e = 1, as shown in Fig. 
5(d).  This means that the system’s motion can be of three types: a periodic motion with large 
amplitude, a periodic motion with small amplitude, and a vibration near the balance point (0,0).  
The type of motion the system should have is determined by the initial conditions.  The system’s 
response can jump from one periodic orbit to the other or from the balance point to periodic 
orbits when the system’s parameters change, and the periodic orbit or Hopf bifurcation of the 
system occurs accordingly.

4. Conclusions

 A type of Galfenol-piezoelectric composite film sensor is proposed in this paper, and 
its nonlinear magnetoelectric coupling dynamic characteristics are discussed.  Nonlinear 
differential terms are introduced to explain the hysteresis of the Galfenol’s strain–MFI curves, 
and a new Galfenol’s model is established.  The fitting effect of the Galfenol’s model on the 
experimental data is proved by the partial least-squares regression method.  A nonlinear 
dynamic model for such a sensor subjected to a harmonic magnetic field and a stochastic EMI 
has been developed, and its strongly nonlinear dynamic response is obtained by the developed 
L–P method.  The results of numerical simulation show that the Galfenol-piezoelectric 
composite film sensor has complex dynamic characteristics; the stochastic EMI plays an 
important role in the system’s dynamic response; when the EMI intensity is sufficiently low, 
the system’s motion is periodic, and the sensor can work efficiently; when the EMI intensity 
is sufficiently high, the system has complex dynamic characteristics, and the periodic orbit or 
Hopf bifurcation occurs accordingly.  The results of this study are helpful for the optimal design 
and improvement of Galfenol–piezoelectric composite film sensors.
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