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	 Faced with the advent of the era of smart Internet of Things (IoT), a large amount of 
sensor data and a large number of intelligent applications have been introduced into our lives.  
However, the dynamic and multimodal nature of data makes it challenging to transform them 
into machine-readable and machine-interpretable forms.  In this study, a semantic annotation 
method is proposed to annotate sensor data through semantics.  First, the method constructs an 
initial ontology based on the semantic sensor network (SSN) ontology for dynamic IoT sensor 
data.  Second, through K-means clustering, new knowledge is extracted from input data, and 
the semantic information is used for updating the initial ontology.  The updated ontology then 
forms the basis of semantic annotation.  In this study, an experiment is performed to analyze the 
data collected from sensors every 10 s for a period of one month.  From the results of simulation 
experiments, we found useful knowledge from new data.  With more available knowledge, 
sensor data can be annotated with higher adequacy.

1.	 Introduction

	 The academic community and industry have become increasingly concerned about the 
Internet of Things (IoT) lately.  IoT, which originated from the Electronic Product Code system 
proposed by MIT, is a global Internet infrastructure that connects physical and virtual objects 
through information extraction and communication capabilities.  It symbolizes a technological 
revolution that enables the existing Internet to be interconnected with physical objects and 
devices (i.e., “things”), and virtual representations owing to technological advancements, 
including identification and contactless data exchange, distributed sensor networks, short-range 
wireless communications, and universal mobile accessibility.  The current initiative on building 
IoT demands application and service platforms that can capture, communicate, store, access, 
and share data from the physical world.  This will create new opportunities in a long list of 
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domains such as e-health, retail, green energy, manufacturing, smart cities, smart home, and 
also personalized end-user applications.(1)  IoT also allows “people and things to be connected 
anytime, anyplace with anything and anyone ideally using any path, any network, and any 
service”(2) in a 6A connectivity paradigm.
	 Combining the context of IoT with semantic technologies, we can build integrated semantic 
systems to support semantic interoperability.  The semantic technologies have been used in 
recent years as key solutions to provide formalized representations of real-world data.(3–6)  
It has also been widely applied to service-oriented technologies to provide interoperable 
interfaces, processes, and service descriptions.  Reference 7 provides an overview of the recent 
deployments of applications of semantic technologies in various aspects of IoT.  It emphasizes 
that the use of semantic technologies should take the dynamicity and constraints of the IoT 
domain into consideration.  The semantic Web technologies include well-defined standard 
and description frameworks (e.g., RDF, OWL, and SPARQL) and a variety of open-source and 
commercial tools for creating, managing, querying, and accessing semantic data.  However, 
these still do not eliminate the key roles of information analytics and intelligent methods, which 
can process and interpret the data and create meaningful abstractions.  Semantic annotation 
is a process of attaching additional information to various concepts in a given text or any 
other content.  Compared with traditional text annotations, semantic annotations are used 
by machines.  There are many tools available.(8)  It has been proven to be a useful method to 
describe related sources of information in order to improve data aggregation and data filtering.(2)  
Semantic annotation can support more effective mechanisms to be designed to create context-
aware applications and to integrate IoT data.  Through this technology, real world resources and 
sensor data can be connected to the existing semantic Web.(9)

	 Semantic technologies facilitate data conceptualization and abstract representation.  The 
conceptualized data can be more easily interpreted by machines and thus can be interlinked 
with necessary resources on the Web.  However, IoT sensing data are not the same as traditional 
general data.  The main difference between IoT sensing data and general data is the way they 
are generated.  IoT sensing data are a collection of outputs of physical devices that perceive 
and detect some type of input from the physical environment.  It could be a collection of large 
amounts of real-time, continuous, and distributed data.  The sensor data related to different 
events and occurrences can be analyzed and summarized into knowledge, which helps in 
decision or action making.  If device interconnection and data integration/processing can be 
achieved, the idea of context awareness enables applications, machines, and human users to 
better understand their surroundings.  Moreover, the data collected by different sensors and 
devices are usually multimodal and diverse in nature.  Owing to the huge amount of sensor 
data, it is difficult to determine their relationships.  For the reasons mentioned above, we will 
discuss how to structure, annotate, and share sensor data, and how to make sense and transform 
them into actionable knowledge and intelligence, so that machines can determine their class and 
property much more easily, which is the goal pursued in this study.
	 The semantic sensor network (SSN) ontology is built by the W3C Semantic Sensor Network 
Incubator group.  This group shows one of the most significant efforts in the development of an 
information model for sensory data and provides a high-level schema to describe sensor devices, 
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their operation and management, observation and measurement data, and process-related 
attributes of sensors.  The SSN ontology is a domain-independent ontology that describes 
sensors and observations for use in a sensor network and sensor web applications, by merging 
sensor-, observation-, and system-focused views.(10)  Previous studies mainly use combinations 
of the SSN ontology with other domain ontologies to explore the relationships among sensor 
data, and such a method is used to drive semantic annotation.(11–14)  We think that the method 
can be improved.  The method in related research usually builds an ontology and uses the 
ontology to classify sensor data.  Once the collected sensor data do not belong to any attribute 
of the ontology, classification will become difficult.  In this study, we will introduce a bottom-
up method to build the ontology and revise the top-down structure related to the research 
studies mentioned.  In our proposed study, a data mining method is employed to analyze all 
sensor data to determine their relationships, and the retrieved relationships are used to update 
the attribute and field of the ontology mentioned in related research.  The relationships among 
data are used to drive the data ontology and considered the foundation of semantic annotation.

2.	 Semantic Annotation Method for Dynamic IoT Sensor Data

	 In this study, we present a data-driven semantic annotation method for IoT sensor data.  The 
main concept of this method is to construct an ontology based on the given sensor data.  In 
the literature, most methods construct the ontology directly, and then semantic annotation is 
performed on the basis of the ontology.  However, if the ontology is not well defined beforehand, 
difficulties may arise in semantic annotation.  Therefore, if the ontology can be built with 
the data collected by the sensor itself, we can improve the precision of semantic annotation.  
According to the reason mentioned above, we propose a bottom-up method to build an ontology 
in this study and use this ontology for semantic annotation.  In this section, we introduce the 
flow of the proposed method (see Fig. 1).

•	 Data Preprocessing: In the preliminary step, an ontology is built on the basis of the SSN 
ontology.

Fig. 1.	 Flowchart of the proposed method.
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•	 Knowledge Extraction: In this step, a data mining method is adopted to cluster historical and 
real-time sensor data in order to extract knowledge.

•	 Ontology Update: According to the knowledge extracted from the last step, the original 
ontology is modified to a new ontology.

•	 Semantic Annotation: After the previous steps are completed, semantic annotation of the 
sensor data is performed.

	 The phases of the proposed method are described in detail below (see Fig. 2).

2.1	 Phase 1

	 At this phase, an initial ontology is firstly built as the basis for the following steps.  In 
this study, we extend the model in Ref. 15 and use the SSN and DUL ontologies as our basic 
ontologies.  The SSN ontology has been used with some domain ontologies to develop various 
smart thing ontologies, such as the smart product ontology.(7)  The SSN can also be used along 
with other ontologies, such as SWEET Ontology, Quantity Kinds, and Units Ontology.

•	 The DUL (DOLCE-UltraLite) ontology provides a set of upper-level concepts that can be the 
basis for easier interoperability among many middle- and low-level ontologies.  It was chosen 

Fig. 2.	 Two-phase automatic clustering and semantic annotation method.
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as the upper ontology because it is more lightweight and has an ontological framework and 
basis, for example, with qualities, regions, and object categories that are consistent with the 
modeling.  Table 1 shows the contents of DUL ontology.

•	 The full SSN ontology consists of 41 concepts and 39 object properties, and directly inherits 
from 11 DUL concepts and 14 DUL object properties.  In this research, we choose part of the 
SSN ontology instead of the full SSN ontology for a higher efficiency.  We also choose the 
parts related to the sensor data we collected (see Table 2).

2.2	 Phase 2

	 In this phase, a data mining method is employed to extract knowledge from historical and 
real-time sensor data.  There are many alternative data mining techniques in the literature, and 
some of them are used within the same architecture.(16)  In this section, K-means clustering is 
chosen as the method for knowledge discovery.  The following paragraph describes the flow of 
this step and introduces the chosen clustering method (see Fig. 3).

•	 Knowledge Discovery: In this phase, knowledge discovery describes the process of 
automatically searching large volumes of data for patterns.  It can be considered as the 
extraction of knowledge from the data.  This discovery process is developed out of the data 
mining domain and is very closely related to terms in both methodology and terminology.  
The challenge in extracting knowledge from the data draws upon research in statistics, 
databases, pattern recognition, machine learning, data visualization, and optimization to 

Table 1 
Contents of DUL ontology.
Section Module Classes Properties

DUL DUL

DesignedArtifact, Event, 
InformationObject, Method, Object, 
PhysicalObject, Processes, Quality, 

Region, Situation

describes, hasLocation, hasPart, 
hasParticipant, hasQuality, hasRegion, 

includesEvent, includesObject, 
isDescribedBy, isLocationOf, 

isObjectIncludedIn, isParticipantIn, 
isQualityOf, isRegionFor, isSettingFor, 

satisfies

Table 2
Contents of SSN ontology used in the research.
Section Module Classes Properties

Skeleton Skeleton

FeatureOfInterest, 
Observation, Property, 

Sensing, Sensor, SensorInput, 
SensorOutput, Stimulus

detects, featureOfInterest, forProperty, 
hasProperty, implementedBy, implements, 

isPropertyOf, isProxyFor, observationResult, 
observedBy, observedProperty, ofFeature, 

sensingMethodUsed
Model Process Input, Output, Process hasInput, hasOutput, isProducedBy

Sensor Measuring SensingDevice, 
SensorDataSheet observes

Observation Observation madeObservation, observationResultTime, 
observationSamplingTime, qualityOfObservation

Base Data ObservationValue hasValue



1794	 Sensors and Materials, Vol. 31, No. 6 (2019)

deliver advanced business intelligence and web discovery solutions.(17)  In our proposed 
method, clustering analysis has been applied to the process of knowledge discovery.

•	 Data Clustering: Clustering analysis is the task of grouping a set of objects in the same 
cluster that are more similar to each other than to those in other clusters.  Cluster analysis 
is not an automatic task, but an iterative process of knowledge discovery.  In this research, 
we take K-means as the clustering methodology.  K-means clustering aims to partition n 
observations into k clusters, in which each observation belongs to the cluster with the nearest 
mean, serving as a prototype of the cluster.  Figure 4 shows the flow of K-means clustering.

	 The K-means clustering method has the following steps:(18)

0.	 Given k.
1.	 Partition objects into k nonempty subsets.
2.	 Compute seed points as the centroids of the clusters of the current partitioning (the 

centroid is the center, i.e., mean point, of the cluster).
3.	 Partition a database D of n objects into a set of k clusters, such that the sum of squared 

distances is minimized (where ci is the centroid of cluster Ci).
4.	 Assign each object to the cluster with the nearest seed point.
5.	 Go back to step 2 and stop when the assignment does not change.

•	 Define cluster: After the clustering step, we can recognize that there are several clusters 
without any knowledge.  We have to define the cluster by human activity.  The methodology 
to define knowledge is that by setting thresholds for different attributes for data after 
clustering, we can define the clusters based on the thresholds we defined.  After defining the 
clusters, the clusters become a whole new knowledge.  Owing to the volatile nature of sensor 
data, presently this step can be only performed manually by domain experts.

Fig. 3.	 Knowledge discovery.
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•	 Updating Ontology: After defining the knowledge, we have to build the knowledge back into 
our base ontology.  The knowledge should be defined as the class for the ontology, because it 
is a new concept for the ontology.  For the second time or later, we use the ontology updated 
from the last time as the base ontology and perform the steps above to update the ontology.

•	 Semantic Annotation: In this step, we use the ontology built by the above steps to annotate 
the semantics in the raw data.  There are several tools for semantic annotation.

	 The advantage of the semantic annotation method is that we can define the sensor data 
with more knowledge than by other methods.  In related references, a new ontology is built 
first without modifying the original ontology.  Once the amount of data becomes huge, the 
interpretation of the data will become difficult.  However, in this study, the proposed mechanism 
is semiautomatic, because after clustering the data, there are just clusters without knowledge.  
The knowledge of the clusters is defined by people.  Once there is a knowledge base for the 
data, maybe we can transform the semiautomatic method into an automatic approach.  We think 
that this can be considered in the future.

3.	 Simulation and Results

3.1	 Simulation environment

	 Protégé is an ontology editing and knowledge management system developed by Stanford 
University and is an open source software.  Owing to its excellent design and numerous plug-
ins, Protégé has become one of the most widely used ontology editors.  It supports users in 
building both simple and complex ontology-based applications.  In addition to Protégé, RStudio 

Fig. 4.	 K-means clustering.
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is used in this study to perform the data mining tasks for its powerful and productive user 
interface of RStudio IDE.  Moreover, handy R packages help us to draw diagrams to show the 
results of clustering.  Information Abstraction Toolkit is also used for data preprocessing.

3.2	 Case definition

	 The data set we used was the sensor data obtained from a test bed from the Communication 
Systems Research Centre at the University of Surrey.  This data set was collected from sensor 
nodes employed in an office every 10 s during a one-month period, bringing the total number 
of data entries to 274960.  The data include temperature (see Fig. 5), light level, and noise level.  
We choose 400 samples for each dataset by averaging the original dataset.
	 After the initial base ontology is built, the relationship between classes and properties is 
shown in Fig. 6.  It is generated by the Protégé plug-in named Ontograf.  

Fig. 6.	 (Color online) Base ontology.

Fig. 5.	 (Color online) Temperature case.
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3.3	 Simulation results

	 In this case, we take the temperature sensor as the target.  Our data set is divided into four 
separate weeks to distinguish the variance of the data due to time.  The descriptions below show 
individual clustering results, concepts, and attributes of data for each week.  

•	 Week 1: Figure 7 shows the clustering result for the temperature data of week 1.  We separate 
the data into four clusters, and the four clusters with concepts and attributes are defined in 
Table 3.

•	 Week 2: Figure 8 shows the clustering result for the temperature data of week 2.  We separate 
the data into four clusters, and the four clusters with concepts and attributes are defined in 
Table 4.

•	 Week 3: Figure 9 shows the clustering result for the temperature data of week 3.  We separate 
the data into four clusters, and the four clusters with concepts and attributes are defined in 
Table 5.

Table 3
Concepts and attributes for week 1.
Concepts Attributes
Cold temp < 1170
Cool 1170 ≤ temp < 1207
Warm 1207 ≤ temp < 1231
Hot temp ≥ 1231

Fig. 7.	 (Color online) Clustering result for week 1.

Table 4
Concepts and attributes for week 2.
Concepts Attributes
Cold temp < 1185
Cool 1185 ≤ temp < 1213
Warm 1213 ≤ temp < 1235
Hot temp ≥ 1235

Fig. 8.	 (Color online) Clustering result for week 2.
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Table 6
Concepts and attributes for week 4.
Concepts Attributes
Cold temp < 1181
Cool 1181 ≤ temp < 1213
Warm 1213 ≤ temp < 1245
Hot temp ≥ 1245

Table 5
Concepts and attributes for week 3.
Concepts Attributes
Cold temp < 1173
Cool 1173 ≤ temp < 1190
Warm 1190 ≤ temp < 1210
Hot temp ≥ 1210

Fig. 10.	 (Color online) Clustering result for week 4.

Fig. 9.	 (Color online) Clustering result for week 3.

•	 Week 4: Figure 10 shows the clustering result for the temperature data of week 4.  We 
separate the data into four clusters, and the four clusters with concepts and attributes are 
defined in Table 6.

	 On the basis of the above results, our base ontology can be updated with these four newly 
retrieved concepts, as shown in Fig. 11.  Compared with the initial base ontology in Fig. 6, a 
new branch called ‘Temperature’ is built, and four new nodes ‘Cool’, ‘Cold’, ‘Hot’, and ‘Warm’ 
are generated, by the automatic clustering results in the updated ontology of Fig. 11.
	 The results show that in the cases we implemented, we can cluster the data set in a simple 
manner.  For this reason, we can easily discover knowledge from the data set and update the 
knowledge to our ontology.  This method can be utilized in many application areas, such as 
smart home or smart environment.  On the basis of our results, the quantity of knowledge will 
vary according to the number of clusters partitioned.  Thus, the new ontology is expected to be 
different.
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4.	 Conclusions

	 The amount of sensor data is getting larger these days.  Determining how to annotate the 
data and make them machine-interpretable is an important issue.  Ontology construction and 
semantic annotation are used to resolve this issue.  In our work, an initial ontology based on 
the SSN and DUL ontologies is firstly built.  Then, historical sensor data are used to extract 
knowledge.  We adopt the K-means clustering method to obtain and group the data set.  After 
the data are clustered, we define the groups with new knowledge.  This newly extracted 
knowledge modifies our initial base ontology into an updated new ontology.  Finally, we use the 
latest and most updated ontology to perform semantic annotation.  From the results presented in 
Sect. 3, we can determine whether the result for the data set we collected is distinct.  However, 
once the result of clustering is not obvious, it is difficult to define the knowledge of clusters, 
such that building a new ontology will be difficult.
	 The following are some of the issues worth paying attention to for further discussion: the 
automation of knowledge definition and the ontology generation without an initial ontology.  
The phase of knowledge definition in our proposed method is performed manually.  To make 
the phases automatic, if the relationships among the data have been found first, the rule base 
can be built.  After clustering the data, it may be easier to give the clusters some knowledge.  
The proposed method has built a base ontology first.  However, how to build an ontology from 
the beginning without a base can be discussed in the future.  Building a data ontology from the 
data collected instead of providing an ontology can much better approximate the real situation, 
such that the accuracy of the semantic annotation of concern can be improved.

Fig. 11.	 (Color online) Updated ontology.



1800	 Sensors and Materials, Vol. 31, No. 6 (2019)

Acknowledgments

	 This research work was supported by the Ministry of Science and Technology, Taiwan under 
the grant 107-2410-H-197-004.

References

	 1	 E. Borgia: Comp. Commun. 54 (2014) 1. https://doi.org/10.1016/j.comcom.2014.09.008
	 2	 B. Manate, V. I. Munteanu, and T. F. Fortis: 2014 Eighth Int. Conf. Complex, Intelligent and Software 

Intensive Systems (CISIS, 2014) 582. https://doi.org/10.1109/CISIS.2014.84
	 3	 M. Compton, P. Barnaghi, L. Bermudez, R. García-Castro, O. Corcho, S. Cox, J. Graybeal, M. Hauswirth, C. 

Henson, A. Herzog, V. Huang, K. Janowicz, W. D. Kelsey, D. Le Phuoc, L. Lefort, M. Leggieri, H. Neuhaus, 
A. Nikolov, K. Page, A. Passant, A. Sheth, and K. Taylor: J. Web Semant. 17 (2012) 25. https://doi.org/10.1016/
j.websem.2012.05.003

	 4	 M. Compton, C. A. Henson, L. Lefort, H. Neuhaus, and A. P. Sheth: Proc. 2009 2nd Int. Workshop on   
Semantic Sensor Networks 522 (2009) 17.

	 5	 K. Janowicz and M. Compton: Proc. 2010 3rd Int. Conf. Semantic Sensor Networks 668 (2010) 64.
	 6	 E. Maleki, F. Belkadi, B. J. v. d. Zwaag, and A. Bernard: IFAC-PapersOnLine 50 (2017) 13059. https://doi.

org/10.1016/j.ifacol.2017.08.2005
	 7	 P. Barnaghi, W. Wang, C. Henson, and K. Taylor: Int. J. Semant. Web Inf. Syst. 8 (2012) 1. https://doi.

org/10.4018/jswis.2012010101
	 8	 P. Oliveira and J. Rocha: 2013 IEEE Symp. Computational Intelligence and Data Mining (CIDM, 2013) 301. 

https://doi.org/10.1109/CIDM.2013.6597251
	 9	 W. Wei and P. Barnaghi: Semantic Annotation and Reasoning for Sensor Data: Smart Sensing and Context 

(Springer, Berlin, 2009) p. 66. 
	10	 K. Kotis and A. J. S. W. J. Katasonov: Int. J. Distributed Systems and Technologies 4 (2013) 47. https://doi.

org/10.4018/jdst.2013070104
	11	 J. Jeong, T. S. Yoon, and J. B. Park: Expert Syst. Appl. 105 (2018) 1. https://doi.org/10.1016/j.eswa.2018.03.051
	12	 M. Rida, A. Makhoul, H. Harb, D. Laiymani, and M. Barhamgi: Ad Hoc Networks 84 (2019) 158. https://doi.

org/10.1016/j.adhoc.2018.09.012
	13	 C. Angsuchotmetee, R. Chbeir, and Y. Cardinale: Future Generation Comput. Syst. (2018). https://doi.

org/10.1016/j.future.2018.01.044
	14	 B. Yang and M. Mareboyana: J. Network Comput. Appl. 35 (2012) 577. https://doi.org/10.1016/j.jnca.2011.05.008
	15	 C.-T. Yu, Y.-H. Zou, H.-Y. Li, and S.-Y. Lin: 2018 1st Int. Cognitive Cities Conf. (IC3, 2018) 188. https://doi.

org/10.1109/IC3.2018.00-30
	16	 H. Banaee, M. Ahmed, and A. Loutfi: Sensors 13 (2013) 17472. https://doi.org/10.3390/s131217472
	17	 U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth: AI Mag. 17 (1996) 37. https://doi.org/10.1609/aimag.v17i3.1230
	18	 J. Han, J. Pei, and M. Kamber: Data Mining: Concepts and Techniques (Elsevier, MA, USA, 2011) p. 740.

https://doi.org/10.1016/j.comcom.2014.09.008
https://doi.org/10.1109/CISIS.2014.84
https://doi.org/10.1016/j.websem.2012.05.003
https://doi.org/10.1016/j.websem.2012.05.003
https://doi.org/10.1016/j.ifacol.2017.08.2005
https://doi.org/10.1016/j.ifacol.2017.08.2005
https://doi.org/10.4018/jswis.2012010101
https://doi.org/10.4018/jswis.2012010101
https://doi.org/10.1109/CIDM.2013.6597251
https://doi.org/10.4018/jdst.2013070104
https://doi.org/10.4018/jdst.2013070104
https://doi.org/10.1016/j.eswa.2018.03.051
https://doi.org/10.1016/j.adhoc.2018.09.012
https://doi.org/10.1016/j.adhoc.2018.09.012
https://doi.org/10.1016/j.future.2018.01.044
https://doi.org/10.1016/j.future.2018.01.044
https://doi.org/10.1016/j.jnca.2011.05.008
https://doi.org/10.1109/IC3.2018.00-30
https://doi.org/10.1109/IC3.2018.00-30
https://doi.org/10.3390/s131217472
https://doi.org/10.1609/aimag.v17i3.1230


Sensors and Materials, Vol. 31, No. 6 (2019)	 1801

About the Authors

	 Szu-Yin Lin received his M.S. and Ph.D. degrees in information 
management from National Chiao-Tung University, Taiwan, in 2012. He 
was a visiting scholar at Coventry University, UK, in 2012. He was an 
assistant professor from 2013 to 2017 and an associate professor from 
2017 to 2019 in the Department of Information Management, Chung 
Yuan Christian University, Taiwan. Since 2019, he has been an associate 
professor in the Department of Computer Science and Information 
Engineering, National Ilan University, Taiwan. His research interests 
include the areas of intelligent data analysis, applied artificial intelligence, 
deep learning, management information systems, service-oriented 
computing, and multiagent distributed computing. (szuyin@niu.edu.tw)

	 Jung-Bin Li received his M.Sc. and Ph.D. degrees in information 
management from London School of Economics and Political Science, UK 
in 1996, and National Chiao-Tung University, Taiwan in 2006, respectively. 
He is currently an assistant professor at the Department of Statistics and 
Information Science in Fu Jen Catholic University in Taiwan. His research 
interests include the areas of data classification, big data analytics, and 
artificial intelligence in financial engineering. (071635@mail.fju.edu.tw)

Ching-Tzu Yu received her B.S. and M.S. degrees in computer science and 
information management from National Chiao-Tung University, Taiwan, in 
2013 and 2015, respectively. Since 2015, she has been an engineer at Zyxel 
Communications Corp. (handsomeme0706@gmail.com)

mailto:szuyin@niu.edu.tw
http://M.Sc
mailto:071635@mail.fju.edu.tw
mailto:handsomeme0706@gmail.com

