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 In recent years, the rise of industrial societies and the Internet of Things (IoT) has 
encouraged the growth of vehicular transportation, which, in turn, has led to intelligent 
transportation systems (ITSs) becoming an important field of research.  In view of this, 
nighttime vehicle detection and the counting technique that will facilitate future research on 
energy saving are presented.  In this work, the Hough transform was first performed to detect 
lane lines in an image, and subsequently, all images underwent feature enhancement processing.  
Next, the light source data from the detected line of each lane was obtained, and at the same 
time, the aspect ratio and spacing of light source pairs were computed in order to determine if 
they matched the set values and to perform vehicle counting.  Furthermore, since driving habits 
differ and some vehicles would straddle the lane line, an approach to recognizing and counting 
lane-straddling vehicles in order to avoid misjudgments is proposed in this study.  Lastly, LED 
lights were used to simulate street lights and controlled on the basis of the traffic volume data 
obtained in the manner described earlier.  The experimental results show that the proposed 
technique could be effectively utilized to perform nighttime vehicle detection and counting 
since it achieved a high average correction rate of 94%, as well as a computing time of 44 
frames per second.
 
1. Introduction

 To allow for the continued expansion of the transportation capacity of an urban transport 
system, it is necessary to integrate sensor technologies into the existing infrastructure in order 
to enhance intelligent detection and monitoring and achieve a higher service efficiency.  The 
resulting system is referred to as an intelligent transportation system (ITS).  In highly automated 
countries, ITSs play a crucial role in the key trends that will guide the long-term development of 
the world’s transportation systems.  An ITS comprises multiple subsystems, including advanced 
traffic management systems (ATMSs), advanced public transportation systems (APTSs), and 
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advanced vehicle control systems (AVCSs).  However, an ATMS primarily collects various types 
of data concerning traffic flow.  In recent years, countries across the world have experienced 
an increase in vehicle usage, which has exacerbated traffic congestion and prompted the 
implementation of manual traffic monitoring systems as a solution to the problem.  The 
advancement of computer vision technology has enabled the widespread application of image-
based sensor detection methods in intelligent traffic monitoring.  In addition, computer vision 
technology outperforms other detection methods in terms of the cost and ease of installation.  
Furthermore, energy conservation has also become an important issue in recent years.  If street 
lights are operated at a higher power level and maintained at a higher brightness level during 
off-peak nighttime periods when the traffic volume is low, excessive power consumption will 
occur and lead to resource wastage during these periods.  Hence, in this work, we aimed to 
enable power control for street lights through traffic volume monitoring, such that an intelligent 
power (brightness) control for street lights can be achieved.
 Yeh classified existing vehicle detection sensors into three categories, namely, active, 
passive, and hybrid sensors.(1)  The detection method proposed in this study utilizes passive 
sensors and is a vision-based vehicle detection system.  Image preprocessing is performed 
using the method proposed in a previous study and the image capture device is positioned at 
the center, as was proposed in other studies.(2,3)  Yuan et al. proposed the combined use of 
Otsu’s method and the top-hat method to obtain the optimal binarized image, as well as the 
optimal data during binarization.(4)  Even though they utilized a divided lane approach that 
enabled detection even with low-intensity light sources, the said approach also led to noise 
data being misjudged as vehicle lights and to excessively long computation times.  Zhang et al. 
proposed an edge detection approach that utilized a Laplace of Gaussian (LoG) filter instead 
of the region-of-interest (ROI) approach.(5)  However, the proposed method led to unnecessary 
computation and longer computation times during the postprocessing for vehicle light detection.  
Robert proposed a vehicle detection method that considered the eigenvalues of windshields.  
Although the detection rate of this method was relatively more stable during the day as the 
daylight environment was sufficiently bright, the lack of ambient light sources at night made it 
difficult to detect vehicle windshields and resulted in misjudgments.(10)  Jurić and Lončarić(11) 
adopted the method proposed in Ref. 12, which did not require manual parameter adjustments 
and boasted simpler processes that reduced the amount of computation needed, but the results 
of that study indicated a low vehicle correction rate.  In Ref. 13, the use of Haar-like features 
was proposed as a method of increasing the computational speed.  However, this approach was 
prone to misjudgments when vehicles are parallel or when image occlusion occurs.  Chen et 
al. proposed the application of the Nakagami distribution to filtering to obtain an appropriate 
ROI and used deformable part models (DPMs) to eliminate unwanted background information 
and detect vehicles.(14)  However, this method also filtered out details of data that were still 
relatively useful.  Park and Song proposed the dark channel prior (DCP) method, which is often 
used to perform image defogging and imposes a relatively heavy computational load.(15)  Chen 
et al. proposed the use of support vector machines (SVMs) to address classification problems, 
and while this method allowed for a higher correction accuracy, it also required a large memory 
space.(16)  Then, various types of vehicle technology based on artificial intelligence have been 
published, such as deep learning and machine learning.(17,18,20)
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 To overcome the classification problem, improving the detection methods that we previously 
published is aimed in this study.(6–9)  The previous techniques that these methods applied 
involved the use of two detection lines, and after deleting duplicate vehicle counts, deletion 
errors would sometimes occur when two vehicles moving in parallel crossed a line at the 
same time.  To address this issue, a separated-lane counting method that addresses the errors 
related to the duplicate counting problem and uses a single detected line to count and delete 
duplicate counts and, thereby, allows for a higher computational speed is proposed in this work.  
The lane separation method is based on the methods used in other studies and modified by 
incorporating Canny edge detection and the Hough line transform to determine lane lines.(8,9)  
Lastly, the system also utilizes real-time vision information technology to detect nighttime 
vehicles and simulates street lights using LED lights to implement power control.  When linked 
to LED street lights, the system will enable sending traffic volume data collected at one road 
intersection to the street lights at the next intersection of LED street lights using the Internet 
of Things (IoT), such that their brightness can be controlled in a simulated manner to enable 
energy conservation.  
 The rest of this paper is organized as follows.  In Sect. 2, research objectives and basic 
principles are brief ly introduced.  The proposed nighttime vehicle detection approach 
and efficient system architecture are presented in Sect. 3.  Section 4 shows performance 
comparisons with other existing nighttime vehicle detection systems.  Conclusions are given in 
Sect.  5.

2. Research Objectives and Preprocessing

 In general, advanced cities will eventually have to confront the problem of traffic congestion, 
which could be alleviated through a system that accurately delivers real-time traffic data.(19,20)  
As vehicle detection technology is approaching maturity, various methods are now available 
and are distinguished primarily by cost.  At present, nighttime vehicle detection technology is 
relatively less mature than its daytime counterpart, since nighttime factors such as the lack of 
light and road reflections on rainy days have created detection issues that increase the difficulty 
of nighttime detection.(6,7)

 During the off-peak nighttime period (i.e., midnight), there are practically no vehicles on the 
road, and operating street lights at an excessively high power level during this time would result 
in energy wastage, as shown in Fig. 1.  In this work, an algorithm for performing the separated-
lane counting of nighttime vehicles is proposed, and LED lights, which will fully replace 
current street lights in the future, are used to simulate street lights (the power and brightness of 
the LED lights are adjustable via an intelligent control system).  The algorithm allows for the 
nighttime traffic volume to be monitored, as well as the use of such data as a basis for adjusting 
the power level of street lights at the next intersection, with the aim of reducing electric energy 
wastage.  Thus, in this study, we explored ways in which images could be stored and returned, 
how computer vision technology could be incorporated to enable real-time nighttime vehicle 
detection, and how the brightness of street lights could be controlled.
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2.1 Image binarization and its denoising

 An image was first read and converted to a grayscale format, and the preprocessed ROI was 
then converted to a binarized image.  A comparison of pixel grayscale values and the preset 
threshold (T) was then performed according to Eq. (1) shown below.
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2.2 Rectangularization of vehicle lights

 Primarily, this method was performed for the connected component detection and labeling 
of binarized images.  Binarized image data were used to label surrounding pixels and determine 

Fig. 1. (Color online) Nighttime traffic during the off-peak period.(7)
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if they were part of the same component.  In the work, we utilized eight connected components, 
with the eight marking points being the top left, top, top right, left, right, bottom left, bottom, 
and bottom right points.  After marking the eight points, they were each given different weights 
that were added together to determine if the middle pixel should be 1 (white point) or 0 (black 
point) and, thus, if it was part of the same component.  Eight connected components were used 
to account for the data neighboring the pixels to be processed, and to convert irregularly shaped 
vehicle lights to a more squarelike shape.(7)  Since the remaining white blocks (vehicle lights) 
were irregularly shaped, and in order to increase the system accuracy and reduce misjudgments, 
each white block was converted to a rectangle shape to facilitate the computation of the width 
and height of each vehicle light, and to subsequently confirm that said light was a vehicle light.
 Dilation is an application of the morphology used in image processing, and its results are 
computed using input structuring element (SE) values.  The dilation of image A by SE B is 
defined by A ⊕ B, and its output results exhibit an outward expansion effect.
 
3. Nighttime Vehicle Detection System

 Figure 2 shows the flowchart proposed in this work, which was primarily divided into 
initialization, preprocessing, vehicle light detection, vehicle recognition, vehicle counting, and 
Arduino platform control phases.

Fig. 2. Proposed flowchart for nighttime vehicle detection.
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3.1	 Identification	of	lane	lines

 The first image to be read was converted to a grayscale image, the average grayscale values 
of the ROI were then determined, and the values between 1.3× and 2.95× were converted to 1 (white 
point), while the rest were converted to 0 (black point).  In fact, we have quantized the range 
between 0 and 1, and tested for all of the possibilities for ROI’s average grayscale values, and 
according to the experimental result, when using 1.3× or 2.95×, the best result can be achieved.  
Thereafter, the Hough transform was performed on the image, so as to execute line detection 
and identify the lane lines (see Fig. 3).  To increase the efficiency of line detection, the detection 
angle range was set to be larger than 130 degrees and smaller than 70 degrees, and thereafter, 
the detected lane line positions were transmitted to the main program.

3.2 Image preprocessing

 After the image was input, the following preprocessing steps were executed:
 Step 1 (Grayscale processing of image): The read image would undergo grayscale processing, 
which converted a color image to a grayscale image to facilitate subsequent steps, as shown in 
Fig. 4(a).

 Gray scale = R × 0.299 + G × 0.587 + B × 0.114  (3)

 Step 2 (Setting of ROI position): The purpose of setting the ROI position is to remove 
redundant data from the system and to increase the system computational speed.  First, 
the initial detected line is set to the position where the vehicle is closer to the camera.  Our 
experiment indicated that a substantial amount of unnecessary computation can be removed 
by setting the ROI position above the detected line (approximately at the bottom quarter of the 

Fig. 3. (Color online) Lane line positions.
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image), as shown in Fig. 4(b).  While obtaining the ROI, an appropriate threshold is used to 
filter out low-energy light sources, so as to highlight the light sources of vehicle headlights.
 Step 3 (Binarization of ROI): Otsu’s dynamic threshold method is used to identify the 
binarization threshold value; this is carried out by performing repeated tests on public images 
and identifying an appropriate threshold that fulfills our requirements.  The application of 
Eq. (1) in our experiments indicated that the use of the appropriate threshold (T = 220) in 
the binarization process allows for low-energy light sources to be filtered out, and that the 
conversion of grayscale images into binarized images helps highlight the light sources that 
originate from vehicle headlights, as shown in Fig. 4(c).
 Step 4 (Rectangularization of vehicle lights and setting of detected line): The binarized 
but irregularly shaped white blocks are rectangularized by identifying their topmost, 
bottommost, leftmost, and rightmost points, and converting all values within this range to 1.  
Rectangularization will make it easier to accurately compute the proportions and spacing of 
vehicle headlights in the future.  The position of the detected line is then set at the upper edge of 
the bottom 1/8 section, and on the basis of the lane line positions determined using a subroutine, 
the detected line is divided into four segments (i.e., Lanes 1, 2, 3, and 4), as shown in Fig. 4(d).

Fig. 4. (Color online) Preprocessing: (a) Grayscale image, (b) ROI, (c) binarization, and (d) vehicle light 
rectangularization (and line detection).

(a) (b)

(c) (d)
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3.3 Detected line scanning and vehicle headlight recognition for lane-straddling vehicles

 Segments 1 to 4 of the detected line, which correspond to lanes 1 to 4, are scanned from left 
to right.  When a light source is detected, the said light source is recognized and its aspect ratio 
is obtained.  If the aspect ratio of the light source meets the preset value range, it is recorded as 
a vehicle light and the scanning process will continue rightward.  When another light source 
is detected and its aspect ratio also meets the preset value range, the spacing between the two 
vehicle lights is then computed.  Should this spacing meet the preset value range, the presence 
of a vehicle is confirmed and the count increases by 1, as shown in Fig. 5.
 Figure 6 shows a separate scan of an entire detected line.  The points that overlap the lane 
line and detected line positions (as identified through a subroutine) are marked, and the detected 
line in question is then scanned and analyzed using the aforementioned method.  When a 
vehicle is identified, it will be scanned from left (left vehicle light) to right (right vehicle light), 
and the count will increase by 1 if a marking point is detected.  To prevent duplicate counts, 
the recorded data for each group are compared with those from the preceding group.  The two 
groups of data will be considered to be from the same vehicle if they meet one of the following 
conditions: (1) the ratios of the left vehicle lights differ by a value of less than 0.5; (2) the ratios 
of the right vehicle lights differ by a value of less than 0.5; and (3) the distances between the 
two vehicle lights differ by less than 10.  The final total number of vehicles is then sent to the 
Arduino platform to facilitate the control of the LED lights.

4. Experimental Results and Comparisons

4.1 Experimental data for vehicle detection

 All gray level frames are used by transferring the RGB image to the YCbCr system.  To 
verify whether the proposed algorithm is effective when applied to actual streets, in this work, 
we utilized nighttime traffic flow data that were captured from actual streets.  The experimental 

Fig. 5. (Color online) Four lanes. Fig. 6. (Color online) Lane-straddling vehicle.



Sensors and Materials, Vol. 31, No. 6 (2019) 1811

environment is established using an Intel Core i5 CPU@3.50 GHz, 16 GB RAM, and Microsoft 
Windows 10, and Matlab 2016a is chosen as the software development platform.
 Figure 7 shows images of actual streets that were captured and measured in this work.  
Tables 1 to 5 contain objective data pertaining to the images, including image length, correction 
accuracy, and the computational time that the work achieved.  These experimental data indicate 
that the use of two detected lines in a previous study to perform vehicle counting and avoid 
duplicate counts reduced the computational speed for that study.(7)  However, owing to its 

Fig. 7. (Color online) Test images captured from actual streets: (a) TestVideo01, (b) TestVideo02, (c) TestVideo03, 
(d) TestVideo04, and (e) TestVideo05.

(a) (b)

(c) (d)

(e)
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Table 1
Experimental data for TestVideo01.
Resolution and time 704 × 528 (5’’00’)
Methods This work Ref. 2 Ref. 7
Number of actual vehicles 43
Number of vehicles detected 42 56 44
Correction rate 97.67% 67.44% 97.67%
Computing time 41.63 fps 23.98 fps 13.59 fps

Table 2 
Experimental data for TestVideo02.
Resolution and time 720 × 480 (3’’00’)
Methods This work Ref. 2 Ref. 7
Number of actual vehicles 58
Number of vehicles detected 53 65 52
Correction rate 91.38% 89.23% 89.67%
Computing time 48.41 fps 20.94 fps 8.03 fps

Table 4 
Experimental data for TestVideo04.
Resolution and time 720 × 480 (3’’05’)
Methods This work Ref. 2 Ref. 7
Number of actual vehicles 44
Number of vehicles detected 42 123 44
Correction rate 95.46% N/A 100%
Computing time 39.23 fps 17.32 fps 7.92 fps

Table 3 
Experimental data for TestVideo03.
Resolution and time 720 × 480 (3’’05’)
Methods This work Ref. 2 Ref. 7
Number of actual vehicles 79
Number of vehicles detected 78 7 77
Correction rate 98.73% 8.86% 97.47%
Computing time 48.05 fps 17.20 fps 6.41 fps

Table 5 
Experimental data for TestVideo05.
Resolution and time 720 × 480 (5’’00’)
Methods This work Ref. 2 Ref. 7
Number of actual vehicles 35
Number of vehicles detected 41 423 20
Correction rate 85.36% N/A 57.14%
Computing time 42.85 fps 18.07 fps 6.81 fps

application of Otsu’s method for binarization, another study encountered issues related to the 
misjudgment of a large volume of noise as vehicle lights, which reduced the accuracy rates 
achieved by that study.  This issue is particularly pronounced in the results in Tables 3 to 5, 
which could be attributed to the fact that the corresponding environments suffered from a 
greater degree of light source interference that substantially reduced the accuracy rate.(2)  In 
Table 2, the drop in detection rate was a result of overly dim vehicle lights.  
 In Table 5, the lower accuracy rate was caused by the vehicle light reflections that occurred 
under wet road conditions.  However, the method proposed in this work achieved a higher 
average nighttime correction rate of 93.63% and higher, as well as an average computing 
time of 44.03 frame per second (fps).  However, note that a drop in correction accuracy 
(i.e., misjudgments) also occurred when vehicle features became less clear owing to various 
circumstances, including two scooters traveling parallel, overly dim vehicle lights, vehicle lights 
that were switched off, and various weather conditions.

4.2 Results related to control of simulated LED street lights

 In this work, we proposed the monitoring of nighttime traffic volume as a means of 
implementing the automated control of simulated LED street lights, as shown in Fig. 8.  It was 
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(a) (b) (c)

Fig. 8. (Color online) Simulated LED street lights: (a) initial state, (b) high LED power (brighter) when the traffic 
volume is high, and (c) low LED power (dimmer) when the traffic volume is low.

assumed that there were no vehicles passing through at the start of the experiment, and that the 
LED lights were adjusted to a preset state.  After some time had passed, the methods proposed 
in this study were used to compute the traffic volume and automatically adjust the LED light 
brightness.  The adjustment is performed as follows: (1) the LED lights are automatically 
dimmed when a low traffic volume is detected; (2) the LED lights are automatically brightened 
when a high traffic volume is detected; and (3) the LED lights are maintained in their preset 
state when no passing vehicles are detected.

5. Conclusions

   In this work, we proposed a multifeatured technique that could be used to perform real-
time vehicle detection at nighttime.  The application of the Hough line transform to detect lane 
lines addressed the problem of two vehicles being misjudged as one when they move in parallel 
and exhibit similar characteristics, and improved the system vehicle detection rates and real 
time processing capabilities.  The experimental results showed that the nighttime correction rate 
and computing time of the technique reached 93.63% and 44.03 fps, respectively.  However, the 
issues that future studies could address include the following: handling of a small number of 
vehicles that do not switch on their headlights at night and vehicle lights with unusual designs.  
These issues might lead to misjudgments that will reduce the system accuracy.  If the method 
proposed in this work is eventually implemented in actual highway environments and integrated 
into the future network of LED street lights, it would enable the control of street lights and 
could potentially reduce electricity consumption by roughly 30% on a daily basis.
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