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	 In neural prosthetics, stimulation electrodes are one of the most important components for 
stimulating neural tissue.  It is known that the surface roughening of stimulation electrodes 
can improve their performance.  In this study, we describe a method of producing platinum 
electrodes with a porous surface by anisotropic etching.  Anisotropic etching was achieved by 
applying a DC voltage to a platinum electrode in physiological saline.  The charge injection 
capacity Qinj almost doubled after etching, compared with that before etching.  Furthermore, 
continuous current pulsing to the porous electrode in phosphate-buffered physiological saline for 
four months did not show any apparent deterioration in surface morphology or electrochemical 
properties, suggesting that the proposed porosification method improves the performance of 
stimulation electrodes.

1.	 Introduction

	 In neural prosthetics, electrical stimulation is widely used and contributes to improving 
the quality of life for many patients.  There are many commercial neural stimulators, which 
include the following: cardiac pacemakers that electrically stimulate the cardiac muscle to treat 
arrhythmias and heart failure; deep brain stimulator to improve Parkinson’s disease or essential 
tremor; functional electrical stimulator to stimulate peripheral nerve and  move a paralyzed 
muscle; and cochlear implants that transmit auditory information to the hearing impaired.(1)  In 
recent years, visual prostheses have also been put into practical use(2,3) and have been reported 
to partially restore vision in blind patients.
	 The electrodes used for electrical stimulation are required to deliver safe levels of therapeutic 
stimulation resulting in the excitation of the target nerve.  The maximum injectable charge per 
unit area that can be delivered without an accompanying irreversible electrochemical reaction, 
such as the electrolysis of water, is known as the charge injection capacity (Qinj).(4,5)  A large 
Qinj is an indicator of the performance of a stimulation electrode; hence, a large Qinj is a 
desirable characteristic.  Additionally, in some applications of neural prostheses, it is essential 
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that the impedance of the stimulation electrode is sufficiently small.  If the impedance is large, 
necessary charge injection cannot be performed owing to the driving capability limitation of the 
driving circuit.  Furthermore, high impedance leads to heat generation, which could damage the 
neural tissue.
	 One solution to reduce impedance would be to increase the geometrical dimensions of 
the stimulation electrode such as diameter and height.  However, as the size of the electrode 
increases, the localized delivery of electrical stimulation becomes more difficult, resulting in the 
diffusion of the charge delivered to biological tissues.  Such precise localization is particularly 
important in artificial sensory organs such as cochlear implants and visual prostheses because 
they need a relatively large number of electrodes to send acoustic or visual information to 
patients.  For this reason, depending on their applications, stimulation electrodes are required to 
exhibit high Qinj and low impedance, while satisfying the constraints of shape and size for their 
specific applications.
	 For electrodes to exhibit high Qinj, electrodes have conventionally been coated with high-
performance materials such as titanium nitride with a large effective surface area(6) and iridium 
oxide(7,8) formed by sputtering or electrochemical activation.  Recently, a conductive polymer, 
poly-(3,4-ethylenedioxythiophene) (PEDOT),(9,10) and low-impedance platinum iridium(11) 
have also been proposed.  Surface coatings such as these are useful in improving the electrode 
performance, but problems, such as the delamination of the coating film, have been reported 
and are dependent on the parameters of the applied current.(12)  Another solution to increase Qinj 
would be to modify the shape of the electrode surface.  The introduction of dips, kinks, holes, 
and gorges on the surface results in an electrode with a much greater real surface area than its 
geometric surface area (GSA).  Increasing the real surface area would decrease the impedance 
of the electrode and the charge per unit area that can be safely delivered would increase.  
Surface roughening processes, such as laser irradiation,(13) electrochemical etching,(14) and 
electrochemical platinum deposition,(15) are well known for increasing the real surface area.  
Here, we report a novel technique involving the anisotropic etching of the surface of a bulk 
platinum electrode to increase its real surface area.  Since this method employs a dissolution 
phenomenon, problems observed with thin-film charge injection coating techniques, such as 
the delamination of the film and the mechanical damage of the deposited film, are not likely 
to occur; therefore, highly reliable electrodes can be obtained.  Here, the anisotropic etching 
method is described, the resulting surface morphology and internal structure of the etched 
electrode are shown, and both short-term and long-term electrochemical characteristics are 
evaluated.  Part of this research was presented at an international meeting.(16)

2.	 Materials and Methods

2.1	 Fabrication

2.1.1	 Electrodes

	 Methods for making electrodes and electrode substrates have been described.(17)  The 
electrode used here was developed for a suprachoroidal retinal prosthesis.(18)  Briefly, a bullet-
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shaped stimulation electrode was produced by mechanically machining a 1-mm-diameter 
platinum rod.  The diameter and height of the resulting electrode were both 0.5 mm.  The tip 
had a hemispherical shape (Fig. 1) and the geometric surface area of the exposed part was 0.007854 
cm2.  The bottom of the bullet-shaped electrode was embedded in a parylene substrate for 
insulation.

2.1.2	 Anisotropic etching

	 The bullet-shaped electrode and a large platinum plate (>1 cm2), which was used 
as a counter electrode, were immersed in 0.01 mol/L phosphate-buffered saline (PBS) 
(P4417, Sigma-Aldrich, St. Louis, USA) at room temperature.  Both the bullet-shaped 
electrode and the counter electrode were connected to a function generator (WF 1943, NF 
Corp., Yokohama, Japan).  A DC voltage of +5 V was applied between the bullet-shaped 
electrode and the counter electrode for 10 s, and then the polarity was reversed, i.e., a DC 
voltage of +5 V was applied between the electrodes for 10 s.  This process was repeated 
for 15 h.  During this process, the PBS was stirred with a magnetic stirrer to remove 
bubbles that had developed on the electrode surface caused by the electrolysis of water. 

2.1.3	 Surface and cross-sectional observation

	 The surface of the electrode after etching was observed using a scanning electron 
microscope (S-2600N, Hitachi High-Technologies, Tokyo, Japan).  To observe the cross section 
of the stimulation electrode, the electrode was first embedded in epoxy resin (G-2, JEOL Ltd., 
Tokyo, Japan) and the side of the sample was roughly polished with sandpaper.  The exposed 
face was polished with a cross-sectional polisher (SM-09010, JEOL Ltd., Tokyo, Japan) and the 
cross section of the prepared sample was observed using a scanning electron microscope (JSM-
5600LV, JEOL Ltd., Tokyo, Japan).

Fig. 1.	 Bullet-shaped electrode. This image was taken at an oblique angle of 30° with respect to the vertical axis 
of the electrode. The backscattered electron mode of SEM was employed for imaging.
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2.2	 Long-term testing

2.2.1	 Experimental procedure

	 Three of the abovementioned bullet-shaped electrodes were used in this long-term study.  
Figure 2 shows the experimental procedure.  First, measurements of the three bullet-shaped 
electrodes were performed as described in Sect. 2.2.2.  Then, the electrodes were anisotropically 
etched as described in Sect. 2.1.2.  Thereafter, the same measurements were performed and 
pulsating current was applied.  A custom-made stimulator was used for the application of 
symmetric cathodic-first biphasic current pulses.  The pulse width and repetition frequency 
were 0.5 ms and 50 Hz, respectively.  A pulse of 1.0 mA amplitude (0.5 μC/phase and 63.7 
μC/cm2) was used for the first week of the stimulation period and a pulse of 1.5 mA amplitude 
was used thereafter (0.75 μC/phase and 95.5 μC/cm2) (Fig. 2).  The change in pulse amplitude 
was due to the estimation of a marginal change in Qinj at the end of the one week stimulation 
period.  Electrical stimulation was carried out in 0.01 mol/L air-equilibrated PBS.  The 
temperature of the PBS was kept at 37 °C, using a water bath (TB-2N, AS ONE, Osaka, Japan), 
during the stimulation period.  Measurements were conducted after 1, 2, 3, 5, and 13 weeks (Fig. 
2).

2.2.2	 Measurements

	 Cyclic voltammetry (CV), impedance spectroscopy, Qinj measurements, and scanning 
electron microscopy (SEM) were performed six times as described in Fig. 2.  The CV was 
performed in 0.01 mol/L air-equilibrated PBS at room temperature using an electrochemical 
instrument (PGSTAT12, Metrohm Autolab, Utrecht, Netherlands) at a scanning rate of 0.05 V/s.  
The cathodal charge storage capacity (CSCc) was calculated by dividing the time integral value 
of the cathodic current of the CV by the GSA of the electrode.
	 An impedance spectrum was obtained using the same electrochemical instrument in the 
range of 10 Hz–100 kHz.
	 To measure Qinj, cathodic-first current pulses of 0.5 ms width were applied to the bullet-
shaped electrodes at room temperature in PBS.  A large counter electrode (a platinum wire of 

Fig. 2.	 (Color online) Experimental procedure. Measurements were performed before and after the anisotropic 
etching of the electrodes. Current pulses were then applied to the electrodes in PBS. Measurements were performed 
after 1, 2, 3, 5, and 13 weeks.
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0.5 mm diameter and 50 mm length) was used.  The electrode potential was measured using 
the electrometer function of the electrochemical instrument PGSTAT12 and recorded using an 
oscilloscope (Wavesurfer 424, Teledyne Lecroy, New York, USA).  As a reference electrode in 
the measurement of the electrode potential, a silver/silver chloride electrode (Ag/AgCl, Metrohm 
Autolab, Utrecht, Netherlands) was used.  Then, Qinj, i.e., the maximum amount of charge per 
unit area that can be injected without deviating the potential window (between −0.6 and +0.8 V 
versus Ag/AgCl(19)), was calculated.
	 For the morphological examination of the electrodes, a backscattered electron image was 
acquired using a scanning electron microscope (S-2600N, Hitachi High-Technologies, Tokyo, 
Japan) in the low vacuum mode.

2.3	 Statistical analysis

	 Statistical analysis was performed using commercially available software (JMP Pro 13, 
SAS, Cary, USA).  Student’s paired t-tests were performed, and where required, Bonferroni’s 
correction was applied.  In all tests, the significance level was set to p < 0.05.

3.	 Results

3.1	 Surface and cross-sectional morphology
 
3.1.1	 Surface morphology

	 Figure 3 shows the images of the electrodes obtained before and after anisotropic etching.  
The surfaces of these two electrodes [Figs. 3(A) and 3(B)] became porous after anisotropic 

Fig. 3.	 (Color online) Surface morphology of two electrodes before and after anisotropic etching. Both electrodes 
were shown to have similar surface morphologies before etching (A1, B1), but after etching, one obtained circular 
pores on its surface (A2, A3) and the other had quadrangular pores (B2, B3). The backscatterd mode of SEM was 
employed for A1, A2, B1, and B2. The secondary electrode mode was employed for A3 and B3.
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etching, compared with those before etching.  In addition, there were cases where circular 
holes were formed in some electrodes [Fig. 3(A3)], and rectangular holes were formed in other 
electrodes [Fig. 3(B3)].  The diameter of the holes was typically in the order of 10 μm.  

3.1.2	 Cross-sectional morphology

	 The cross section of an electrode after anisotropic etching is shown in Fig. 4.  The crystal 
grains of the platinum electrode can be distinguished by electron channeling contrast 
imaging.  Discontinuous changes in surface morphology occasionally corresponded to grain 
boundaries [yellow arrows in Fig. 4(B)].  The typical width and height of the crystal grain were 
approximately 0.5 and 5 μm, respectively.

3.2	 Long-term stability

3.2.1	 Surface morphology

	 No obvious deterioration in surface morphology was observed during the 13-week 
stimulation period in both the macroscopic images [Figs. 5(A)–5(C)] and the magnified views [Figs. 
5(D)–5(F)].  Note that the electrode in Fig. 5 is the same as that in Figs. 3(B1)–3(B3).

3.2.2	 Cyclic voltammogram and impedance spectrum

	 Figures 6(A) and 6(C) show cyclic voltammograms and impedance spectra, respectively, 
measured before anisotropic etching, after etching, and during the stimulation period.  Figure 
6(B) shows the calculated CSCc values before anisotropic etching, after etching, and at the 
end of the 5th and 13th weeks of the stimulation period.  Comparison before etching and after 

Fig. 4.	 (Color online) Cross section of an electrode after anisotropic etching. (A) Apex portion of the electrode. 
(B) Magnified view of the cross section. Discontinuous changes in surface structure occasionally corresponded to 
boundaries of crystal grains (yellow arrows). The backscattered mode of SEM was employed in (A) and (B).
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Fig. 5.	 (Color online) Longitudinal observation of the electrode surface over 13 weeks of electrical stimulation. 
Note that the observed location of the electrode surface in (D) is slightly different from that in (E) owing to 
unintentional shift during electron microscopy. The backscattered mode of SEM was employed for all images.

Fig. 6.	 (Color online) Electrochemical measurements before and after anisotropic etching, and after 5 and 13 
weeks of stimulation. The graphs and histograms show (A) a cyclic voltammogram, (B) CSCc calculated from the 
cyclic voltammogram, (C) impedance spectra, and (D) impedance values measured at 1 kHz. In (B) and (D), the bar 
length and error bars represent mean and ±S. D., respectively. The N. S. in (B) represents the lack of significance, 
and the asterisk * in (D) represents statistical significance (p < 0.05). Note that in (A) and (C), only representative 
data (corresponding to electrode no. 3) were plotted.
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etching showed that CSCc increased 2.4 times [Fig. 6(B)]; however, this increase was not 
statistically significant (t = 2.77, p = 0.0547, one-sided paired t-test).  The average impedance 
measured at 1 kHz significantly decreased by 50% after anisotropic etching (t = −16.7, p = 0.0018, 
one-sided paired t-test, Fig. 6(D).  The impedance after the stimulation period at the lower 
frequencies was slightly smaller than that measured immediately after etching.

3.2.3	 Qinj

	 Qinj almost doubled immediately following anisotropic etching (Fig. 7).  This increase was 
statistically significant (t = 3.26, p = 0.0412, one-sided paired t-test).  About 30% lower Qinj was 
observed after the 1st and 13th weeks compared with that observed immediately after etching.

4.	 Discussion

	 We proposed a porosification method with anisotropic etching for platinum electrodes.  The 
properties of the etched electrode were evaluated.  The morphology of the porous surface varied 
depending on the electrode (Fig. 3).  Since the etching conditions, such as applied voltage and 
solution, were the same, this difference was considered to be due to the internal structure of the 
stimulation electrode.  Indeed, the cross-sectional observation showed a correlation between 
the grain boundary and the discontinuous change in surface structure (Fig. 4).  However, as all 
the electrodes were fabricated by the same machining method, the cause of the difference in the 
internal structure of the electrode is unclear.  In addition, the crystal grain was about 0.5 μm 
in width and about 5 μm in height (Fig. 4), whereas most of the holes formed on the electrode 
surface were about 10 μm in diameter (Fig. 3).  Furthermore, in one electrode, many rectangular 

Fig. 7.	 (Color online) Qinj. The bar length and error bars represent mean and ±S. D., respectively. The asterisk (*) 
represents statistical significance (p < 0.05). The number of samples was three.
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holes were formed on the surface, and they were arranged in the same direction over a wide area 
of greater than 60 μm [Fig. 3(B3)].  The cause of this long-range order is unknown, and further 
research is needed.  Most of the crystal grains had an elongated shape (Fig. 4) presumably due 
to the use of a platinum wire that was stretched during processing.  Regardless of the internal 
crystal structure, it is possible that the precipitation of salt caused the cube-like surface shown 
in Fig. 5.  Further research on the mechanism of etching is necessary.
	 In the measurement of the cyclic voltammogram in Fig. 6(A), to confirm whether the 
potential window observed with the electrode used in this study does not differ greatly from 
the commonly used potential window (−0.6 to 0.8 vs Ag/AgCl), a potential sweep over a wider 
range was performed.  The current onset for oxygen generation was not significant even at a 
potential higher than 1 V, but the increase in oxidation current could be observed from around 
0.8 V by magnifying the graph [see Fig. 8(A)].  A similar less-significant current onset has also 
been reported in previous studies that reported a cyclic voltammogram with a wide sweep range.(20)  
On the other hand, the current onset for hydrogen generation in the negative sweep was not 
significant even when it exceeded −0.6 V [Fig. 8(B)], suggesting that the reduction current of 
dissolved oxygen was superimposed because nitrogen gas purge was not performed this time, 
making it difficult to see the current for hydrogen generation.
	 Two peaks were observed at 0.1 and −0.2 V on the negative sweep of the voltammogram 
[Fig. 6(A)].  These seem to be peaks corresponding to the reduction reaction of platinum oxide, 
but the reason why they were observed separately was not clear.  Two similar peaks were also 
reported in voltammetric studies, which measured platinum electrodes in PBS (e.g., Fig. 5 in 
Ref. 21 and Fig. 6 in Ref. 22, p. 198).  
	 The CSCc of the electrode increased 2.4 times on average after etching, compared with 
before etching, but this was not statistically significant.  This lack of statistical significance 
is considered to be due to a relatively large variation in the data (standard deviation) recorded 
after etching, compared with before etching, possibly due to individual differences in surface 
morphology after etching (Fig. 3).  In this study, three bullet-shaped electrodes were used in the 

Fig. 8.	 (Color online) Magnification views of the cyclic voltammogram in Fig. 6(A). (A) Magnification of the 
positive end of the sweep range. (B) Magnification of the negative end of the sweep range.
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long-term stimulation study.  This was due to the limitation of fabrication and experimentation; 
however, increasing the number of electrodes would help to detect statistical differences.  
Although this study was conducted using electrodes with a height of 0.5 mm as shown in Fig. 
1, we have recently developed electrodes with a height of 0.3 mm.(23)  Since the porosification 
of the electrode surface mainly occurred on the hemispherical portion of the bullet-shaped 
electrode and not so much on the sidewall of the electrode, a shorter electrode may result in a 
more significant increase in CSCc after anisotropic etching.  Note that the increase in CSCc 
is not equivalent to the increase in Qinj.  The inside of the pore of the porous electrode can be 
approximated by a distributed constant circuit composed of double-layer capacity and solution 
resistance,(19) and the time constant becomes larger toward the bottom of the pore.  Accordingly, 
the deeper part of the pore is less utilized for charge transfer during electrical stimulation 
especially when the pulse width is small.
	 Pulses of current were continuously applied to the anisotropically etched electrodes for 13 
weeks, but no significant change in surface morphology was observed.  The amplitude of the 
pulse employed was 1.5 mA, which is sufficiently greater than the maximum threshold of 1.0 
mA reported in a clinical study describing a suprachoroidal retinal prosthesis.(18)  Therefore, 
the fact that no degradation was observed with the current intensity of 1.5 mA indicates that 
the anisotropically etched electrode has sufficient durability.  In this study, the duration of 
continuous stimulation was limited to 13 weeks, and further research is required to investigate 
additional long-term durability.  In the impedance spectrum, the value within the low-frequency 
region became slightly smaller at the 5th and 13th weeks, compared with that after etching 
[Fig. 6(C)].  A similar phenomenon has been reported in a previous study using different 
electrodes,(24) suggesting that the cause of the impedance decrease in the low-frequency region 
was not the deterioration of the electrode but the deterioration of the insulation coating and the 
penetration of moisture into the metal insulation interface.
	 Qinj was relatively low when tested after the 1st and 13th weeks of electrical stimulation (Fig. 
7).  This was suggested to be a measurement error because the variation of Qinj was inconsistent 
with the results of CSCc, impedance, and surface morphology [Figs. 5, 6(B), and 6(D)].  In this 
study, the porous electrode was taken out from PBS used for continuous stimulation and was 
placed in air prior to electrochemical measurements; thus, the surface of the electrode may 
have dried.  A possible explanation for the inconsistency of Qinj and CSCc could be that, when 
the porous electrode with a dried surface was put in PBS, the air inside the small pores on the 
electrode surface remained adsorbed inside the pores, whereby the effective surface area of the 
electrode varied.  This adsorption of the air may lower the electrode performance.  This should 
be avoided by keeping the porous electrode always in wet state in a practical use.
	 In some cases, the entire electrode surface did not become uniformly porous after etching, 
but only a specific part of the surface became rougnened (Fig. 9).  Even when the whole of 
the surface became porous, the surface morphology varied depending on the electrode (Fig. 
3).  The reason why the surface morphology differed between electrodes following etching is 
unclear.  Further research such as the detailed morphological analysis of the electrode surface, 
the detailed analysis of the inner structure and crystal orientation of the electrode using cross-
sectional samples, and the identification of the bubble generation site during etching using a 
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high-speed camera at the electrode surface would help elucidate the cause of such differences 
revealed following anisotropic etching.
	 Table 1 shows a comparison of platinum surface treatment and charge injection coatings 
with respect to Qinj.  Qinj of 0.27 realized by anisotropic etching is not large compared with 
those of other methods.  However, the advantage of the anisotropic etching is that the etching 
can be performed by a simple method that only periodically changes the polarity of the DC 
power supply in PBS.  No special instruments or chemicals are required.  Porosification by 
femtosecond laser irradiation recently reported by our group(23) results in superior Qinj and 
controllable hole size and density, but it takes long time to this laser processing because about 
1000 holes are made in sequence for just one 500-μm-diameter electrode.  On the other hand, 
although this method requires 15 h for the etching process, multiple electrodes can be processed 
at the same time, so that it is advantageous when the number of electrodes to be processed is 
large.  Although titanium nitride and iridium oxide are superior to anisotropic etching in Qinj, 
problems such as film delamination are unlikely to occur for an anisotropically etched electrode 
because it has no thin film.  For porosification by other etching methods, Weremfo reported that 
the maximum Qinj was 1 mC/cm2.(25) Qinj was greatly dependent on the surface roughness and 
pulse width (Fig. 3.13 in Ref. 25).  Although the Qinj of the anisotropic etching proposed in this 

Fig. 9.	 (Color online) Two examples of etched electrodes that did not exhibit a uniform porous surface. Images in (B) 
are magnified views of (A).

(A) (B)
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study is not relatively large, a higher Qinj could be obtained by optimizing processing conditions 
and surface morphology.  Note that all measurements including CV, impedance, and Qinj were 
performed in air-equilibrated PBS in this study.  The composition of dissolved gas in PBS could 
affect results of electrochemical measurements; thereby, care should be taken when comparing 
values such as Qinj measured in air-equilibrated PBS with Qinj measured in PBS equilibrated 
with other gases such as nitrogen.

5.	 Conclusions

	 In this paper, we have proposed a porosification method with anisotropic etching for 
platinum electrodes and evaluated the durability of the etched electrodes.  The electrochemical 
properties of the electrodes were improved by anisotropic etching, and electrode durability 
was confirmed through a long-term stimulation study.  In the future, we aim to elucidate the 
mechanism of the anisotropic etching phenomenon and perform further long-term durability 
studies.
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