
2143Sensors and Materials, Vol. 31, No. 6 (2019) 2143–2154
MYU Tokyo

S & M 1920

*Corresponding author: e-mail: wytq0628@163.com
https://doi.org/10.18494/SAM.2019.2315

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Analysis and Forecasting for Traffic Flow Data

Yitian Wang1,2* and Joseph Jaja2

1Shenyang University of Chemical Technology,
School of Information Engineering, Shenyang, Liaoning 110142, China

2University of Maryland – College Park,
Department of Electric and Computer Engineering, College Park, MD 20740, USA

(Received January 11, 2019; accepted April 25, 2019)

Keywords:	 pattern discovery, unsupervised machine learning, principal component analysis (PCA),
short-term real-time forecasting, intelligent transportation

	 The urban transportation system involves the challenging task of transferring people and
materials across densely populated areas, and hence its operational efficiency directly affects the
entire city. In this study, we overcome the restriction of both time and space by introducing an
online version of the principal component analysis (PCA), called the projection approximation
subspace tracking with deflation (PASTd) algorithm. The algorithm is implemented to derive
core traffic patterns of traffic flow data of Baltimore, Maryland, US. The k-nearest-neighbor
(KNN) method is applied to predict the values of these core traffic patterns in the near future.
Thus, the traffic information of Baltimore County can be forecasted with linear complexity
and traffic congestion can be traced with little latency. Unlike traditional traffic prediction
methods, our method aims at network-level prediction, regardless of urban or freeway road
segments. The results show that our forecasting method is efficient, flexible, and robust.

1.	 Introduction

	 Traffic data information plays a very important role in our daily life. As a result,
considerable work has been done for generating and analyzing traffic time series.(1–3) In
general, we regard traffic data as the streaming data generated at regular time intervals. At
each time step, we receive traffic information about a large number of road segments, which has
to be analyzed and disseminated in real time. On the other hand, vehicle operators would like
to receive immediate up-to-date traffic summaries and cannot afford any postprocessing.(4)

	 An effective way to handle this problem is to reduce the large volumes of traffic data into a
small number of meaningful trends that can be updated and broadcasted in real time. Traffic
flow data correlate with the information about most road segments. Hence, one possible
research direction is to use clustering algorithms to group together road segments that follow
similar traffic patterns. Instead of analyzing the traffic of n road segments, we can analyze the
patterns of k groups, where k is much smaller than n. Applying self-organizing maps (SOMs) is
a possible approach, which has been used in postprocessing analysis.(5) Mixture models present
good opportunities for streaming data analysis(6,7) as well. Here, we pursue a different approach

mailto:wytq0628@163.com
https://doi.org/10.18494/SAM.2019.2315
https://myukk.org/

2144	 Sensors and Materials, Vol. 31, No. 6 (2019)

based on finding patterns (or hidden variables) such that the time series of average speeds for
each road segment can be generated using a linear combination of these patterns. References
8–10 explicitly focus on discovering hidden variables. In CluStream,(8) patterns are found by
an offline strategy based on stored data. Sakurai et al.(9) determined lag correlations among
multiple streams. StatStream(10) uses discrete Fourier transform (DFT) to summarize streams
within a finite window size. We would like to find a method that can find a relatively few
inherent patterns in an online fashion with linear complexity, with no need for data buffering.
	 Short-term traffic prediction plays a crucial role in an intelligent transportation system (ITS).
With reliable forecasting data, administrators can manage traffic networks effectively and
travelers can decide on departure time or travel routes more easily.(11) Many statistical models
have been proposed for short-term traffic forecasting. For example, time series models,(12,13)
Bayesian models,(14) Kalman filter models,(15) and support vector machine regression models(16)
have been widely applied to predict motorway and freeway traffic conditions. Neural network
models using artificial intelligence algorithms(17–19) and unsupervised machine learning
algorithms(20) have also gained researchers’ attention recently. Until now, most models focus
on motorways and freeways.(21,22) A network-level method is needed for better prediction. We
require that the prediction method is efficient and scalable. Even though the number of road
segments can become very large, the method should be able to make reliable prediction in real
time. In this paper, we propose a method that can meet all the following requirements: online
use, linear complexity, no need for data buffering, scalability, network level, and reliability.

2.	 Pattern Discovery for Traffic Flow Data

	 Problem Formulation Given n time series corresponding to average speeds on n road
segments, updated at each time step t, we aim to determine k hidden variables, where k � n,
such that the linear combinations of these k hidden variables can be used to reconstruct the
time series data. Thus, the dimension of the data set is significantly reduced. As a result, we
can make more effective, low-cost prediction for speeds in the near future. Figure 1 shows
an example of a time series of average speeds for a road segment over a week. The x-axis
represents the minutes in a week ranging from 1 to 10080, while the y-axis represents the
corresponding average speed in mph.

Fig. 1.	 (Color online) Time series for one road segment.

Sensors and Materials, Vol. 31, No. 6 (2019)	 2145

2.1	 Principal component analysis (PCA)

	 PCA is a popular tool for data analysis by which high-dimensional data are projected onto
a low-dimensional subspace while preserving most of the variance in the data. The method
is simple and nonparametric.(4) In essence, PCA can be applied to reduce the dimension of a
complex data set while revealing the hidden, simplified patterns underlying the data. In the
following, xt = [x1,t, x2,t, ..., xn,t]T n∈R is an n-dimensional column vector of average speeds
of different road segments at time step t. Xt = [x1, x2, ..., xt] n t×∈R can be viewed as an n × t
matrix, where a new column is added at each time step t.
	 There are several ways to explain the PCA technique. One way is to model the vector xt as
a linear combination of k hidden variables. That is, we express xt = Wzt, where zt are k hidden
variables whose values depend on the time step t, and k � n. W is an n × k orthonormal matrix
to be determined. Since W is orthonormal, WWT = Ik×k. Hence, we deduce that zt = WTxt.
Using this model, we can reconstruct each xt using tx� = WWTxt. Assume that we want to
focus on a time window of size T, and that we would like to reconstruct all the data within this
window, say, XT = [x1, ..., xT]. Then, our optimization (minimizing reconstruction error) can be
formulated as

	 () 2T
.

1
min

T

wortho τ τ
τ =

−∑ x WW x .	 (1)

	 Using the singular-value decomposition (SVD) technique, the solution can be expressed
as W = [w1, ..., wk], where each column wi is the eigenvector corresponding to the i-th
largest eigenvalue of XT. Then, the hidden variables are given by zt = [z1,t, ..., zk,t]T

TT T
1 , ..., k

t k t = ∈ w x w x R . Thus, for any given k < n, we can find an orthonormal matrix W and

the k hidden variables zt to reconstruct the data.

2.2	 Discovering hidden variables

	 In this section, we show how to use PCA to find the most important patterns underlying our
complex traffic data set. We firstly introduce a conventional PCA method to find the hidden
variables so as to reconstruct the data set as accurately as possible. Then, we describe the
online method that can update hidden variables at every time step with linear complexity.
	 Problem Formulation Given n time series corresponding to average speeds on n road
segments, updated at each time step t, we aim to determine k hidden variables zt, where k � n,
such that linear combinations of these k hidden variables can be used to reconstruct the data
matrix within any time window of size T. Thus, the dimension of the data set is significantly
reduced. As a result, we can make more effective, low-cost prediction of speeds in the near
future.

2146	 Sensors and Materials, Vol. 31, No. 6 (2019)

2.2.1	 Offline PCA pattern discovery

	 As discussed in Sect. 2.1, we can identify the hidden variables by computing the eigenvectors
of the sample covariance matrix of our input data. Then, we can use the first k eigenvectors
to reconstruct the data matrix. More details are described in the following algorithm that
generates the k hidden variables corresponding to the traffic data of n road segments over a time
window of size T.

Algorithm 1. PCA Pattern Discovery
Given: window size T, number of hidden variables k. After receiving every set of T streaming

data vectors, we
1.	 organize the data into an n T× matrix, i.e., XT

n T×∈R ,
2.	 normalize XT,
3.	 calculate the k eigenvectors corresponding to the k largest eigenvalues of XT, i.e., w1, ..., wk,

4.	 compute the k hidden variables zt
TT T

1 , ...,t k t =  w x w x , where xt is the t-th column of XT, and

5.	 reconstruct the data matrix T =X WZ� .

	 W = [w1, ..., wk] is called the weight matrix. For each element wi,j, the magnitude ,i jw

provides some indication on how much the i-th segment depends on the j-th hidden variable.(4)

2.2.2	 Online projection approximation subspace tracking with deflation (PASTd) pattern
discovery

	 The previous PCA algorithm requires the buffering of the data for every time window and a
significant amount of computation, namely, computing the first few eigenvectors of the sample
covariance matrix, which can be fairly large. The PASTd algorithm, which is based on adaptive
filtering techniques and PCA, is an online method that updates the hidden variables and weight
matrix incrementally in linear time. The PASTd algorithm has been shown to perform very
well in various settings and different applications, such as signal tracking for antenna arrays
and image compression.

Algorithm 2. PASTd Pattern Discovery
0.	 Initialize: k orthonormal weight vectors w1(0) = [10, …, 0]T n∈R , w2(0) = [010, …, 0]T n∈R ,

etc. di(0), i = 1, …, k to a small positive value.
1.	 As each point xt arrives, set 1ˆ t=x x .
2.	 For 1 ≤ i ≤ k, we perform the following assignments and updates:

	 () ()T 1 ,ˆi i it t= −z w x

	 () () ()21 z ,i i id t d t tγ= − +

	 () () ()1 ,ˆi i i it z t t= − −e x w

Sensors and Materials, Vol. 31, No. 6 (2019)	 2147

	 () () () () ()11 ,i i i i
i

t t t t
d t

= − +w w z e

	 () ()1 .ˆ ˆi i i it t+ = −x x z w

	 Algorithm 2 enables the explicit computation of eigencomponents. In fact, wi(t) is an
estimate of the i-th eigenvector at time step t, and di(t) is an estimate of the corresponding
eigenvalue of the matrix tS , where T

t t t tγ= +S S x x . These eigenvalues may be used to estimate
the number of hidden variables k, if it is not given. The use of the forgetting factor 0 1γ< ≤ is
intended to ensure that the data matrix tS is more dependent on the most recent data. Since
the traffic data is nonstationary, γ can guarantee the tracking ability and will give more precise
estimates of the eigencomponents. The vector ei(t) is the error between the true data and the
reconstruction, and ei(t) ⊥ wi(t). The step for updating the eigenvector wi(t) can be interpreted
as a gradient descent method with a self-tuning step size di(t).
	 In the next section, instead of predicting average speeds, we predict hidden variables. Thus,
significant amounts of computational time and energy could be saved. The method of using the
PASTd to make travel time prediction is shown as

	 () ()()1ˆ t f t+ =z z ,

	 () () () () ()1 1ˆ ˆ1 1ˆ 1k kt t t t t+ = + +…+ +x z w z w ,	
(2)

where f(t) is the forecasting hidden variables () ̂ tz and ()ˆ 1t +x is the forecasted speed at time t.

3.	 Short-term Forecasting for Traffic Flow Data

	 In this section, we start by giving a brief introduction about the k-nearest-neighbor (KNN)
method. Then, we show how to apply the KNN method to forecasting the hidden variables
over the next brief time horizon. In our work, we found that, for each day of a week, the hidden
variables follow similar patterns. Thus, we can forecast the hidden variables for the (l + 1)-th
Wednesday by using the hidden variables in the past l Wednesdays.

3.1	 KNN method

	 The KNN method collects historical data as the sample database. In our case, a
k-dimensional vector zt = [z1,t, …, zk,t] is stored, where zi,t is the i-th hidden variable for time step t.
Then, the Euclidean distances between all sample points and current data are calculated to
generate the KNN’s nearest neighbors. Finally, future hidden variables are forecasted by using
a weighted average of these KNN’s nearest neighbors.
	 The KNN method is presented in Algorithm 3. To deal with missing data of vehicle speeds,
we use the values at the previous time step or the average of the two previous time steps. Thus,
we have 1440 time steps for each day. We note that hf is the forecasted horizon, while hp is the
past horizon.

2148	 Sensors and Materials, Vol. 31, No. 6 (2019)

Algorithm 3. KNN Method
0.	 Initialize: w equal to the values from the last sample data.
1.	 At time step t during the (l + 1)-th week, collect the l historical data zt−hf(j), …, zt−1(j), 1 ≤ j ≤ l.
2.	 Compute the Euclidean distances between zi,t−hp(l + 1), …, zi,t−1(l + 1) and the l historical

data.
3.	 Find the KNN nearest neighbors with the first KNN shortest distances d1, …, dknn, and the

corresponding weeks are l1, …, lknn.

4.	 Forecast the hidden variables with the horizon hf using
, ,1

,

1

1

1

f j

f

knn
i t h lj

j
i t h knn

j
j

z
d

z

d

+=

+

=

=
∑

∑
.

5.	 Forecast the vehicle speeds as .
f ft h t h+ +=x Wz�

6.	 Update w, d using the PASTd method and go to the next time step.

3.2	 Forecasting algorithm

	 Combining the KNN method with the PASTd algorithm, our complete forecasting algorithm
is shown in Algorithm 4.

Algorithm 4. Forecasting Algorithm
0.	 Initialize: k, knn, hp, hf, l.
1.	 For each time t, receive the speed tx .
2.	 Compute the corresponding hidden variables z(t) by the PASTd algorithm.
3.	 Collect the hidden variables into a matrix for each day for consecutive l weeks as historical

data.
4.	 Forecast the hidden variable for the (l + 1)-th week using the KNN method.
5.	 Forecast

ft h+x through the hidden variables generated at the last step.
6.	 Compute the error between forecasted and actual speeds.

Updating sample data After the (l + 1)-th week, sample data should be updated to forecast the
speeds during the (l + 2)-th week. In our algorithm, we disregard the sample data in the first
week and add the data corresponding to the (l + 1)-th week. Thus, the space to store historical
data is fixed.

4.	 Results

4.1	 Reconstruction results

	 In this section, we show the reconstruction results obtained by using both the classical PCA
and online PASTd methods. We then compare these two methods in terms of accuracy as well
as time efficiency. The data we used are vehicle probe project (VPP) data granted by the RITIS
system. In our tests, we chose n = 48 road segments over a whole week, which amount to 7 ×

Sensors and Materials, Vol. 31, No. 6 (2019)	 2149

24 × 60 = 10080 vectors each of dimension 48. These 48 segments were randomly chosen from
all the road segments of the State of Maryland. The order of the days are Sunday, Monday, ...,
to Saturday. If any data is missing, we use the data of the previous time step to fill-in the gap.

4.1.1	 PCA performance

	 In our test, the time window size is selected to be T = 30, meaning that we buffer the data
and compute the covariance matrix every 30 min. We use k = 2 hidden variables to reconstruct
the data matrix within each time window.
	 In Fig. 2(a), the blue line shows the original data, while the red line corresponds to the
reconstructed data. As we can see, our reconstruction captures the largest statistical variance
and has a small deviation from the true data. Figure 2(b) shows the first two hidden variables
for one window with size T = 30. Note that these are the hidden variables for the normalized
data. Thus, the y-axis value illustrates the deviation from the mean. Although this figure
represents the patterns for only one time window, we find that the hidden variables for other
windows follow similar patterns. Owing to such characteristics, we are able to make predictions
for hidden variables.
	 Figures 3(a) and 3(b) show how changing the values of the parameters affects the
performance. In our test, we vary the time window size T from 15 to 60 min and the number
of hidden variables from two to five. Here, we use the mean square error (MSE) to value the
accuracy and the CPU runtime to value the runtime. In Fig. 3(a), the smaller the window size
and the larger the number of hidden variables, the better the performance. In Fig. 3(b), the
runtime is in seconds. As we can see, the larger the window size and the smaller the number
of hidden variables, the faster the algorithm, which is to be expected. Thus, there is a trade-off
between the reconstruction error and the runtime. The results show that the PCA is suitable for
traffic flow data reconstruction.

(a) (b)
Fig. 2.	 (Color online) (a) PCA reconstruction using k = 2 patterns for one road segment and (b) hidden variables
for one window.

2150	 Sensors and Materials, Vol. 31, No. 6 (2019)

4.1.2	 PASTd performance

	 For PASTd, we use k = 2 hidden variables to update the two hidden variables and weight
matrix at every time step. In Fig. 4(a), the blue line represents the original data and the red line
shows the reconstructed data. We can barely see blue lines in our figures, meaning that our
reconstruction is basically the same as the original data. Figure 4(b) illustrates the time series
of the two hidden variables determined over a week. As we can see from the time series of
the first hidden variable, the five weekdays show similar patterns, while weekend days show
different patterns. This can be justified by the fact that weekdays have obvious rush hours,
while weekends do not necessarily follow that pattern. Also, the first hidden variable captures
the largest variance and hence there will be significant differences between weekdays and
weekends.
	 In PASTd, we update the weight matrix as well as hidden variables incrementally at each
time step. The only parameter that matters is the number of hidden variables k. As in the
previous subsection, we test the performance of PASTd in terms of reconstruction error and
time efficiency as functions of k.
	 Figures 5(a) and 5(b) show how changing the values of the parameters affects the
performance. As we can see, by using a large number of hidden variables, we can obtain a high
accuracy, while a small number of hidden variables leads to a short runtime. We note that even
for k = 2, the error is less than 0.3 mph, while for k = 5, the runtime is less than 1.5 s over a
week. The results show the high competence and robustness of the PASTd method.
	 We compare the performance between PCA and PASTd in terms of accuracy and time
efficiency. For accuracy, online PASTd outperforms classical PCA probably because PCA
captures only the patterns in a single time window, while PASTd incrementally updates the
patterns taking into consideration the overall past with more weight assigned to the most recent
ones. Another reason might be that PCA is sensitive to the window size T. For time efficiency,
PASTd outperforms PCA again because PASTd has a linear complexity O(n), while PCA has at
least O(n3). When n increases, the difference will be substantially larger. Thus, we choose the
PASTd method for real-time traffic pattern discovery.

(a) (b)

Fig. 3.	 (Color online) PCA performance. (a) Reconstruction error and (b) runtime.

Sensors and Materials, Vol. 31, No. 6 (2019)	 2151

4.2	 Forecasting results

	 In this section, we show the forecasting results of our proposed algorithm. We choose the
MSE and mean absolute proportion error (MAPE) as the performance measurements.
	 The data used to evaluate the performance are the vehicle speeds collected in Baltimore
County, Maryland, which contain 1751 road segments. We set the speeds during the first 40
weeks in 2014 as the sample data and try to forecast the speeds for the 41st week. To obtain the
highest time and space efficiency, we choose k = 1, knn = 1, and hp = 1, and test the performance
by varying the forecasting horizon hf .
	 Figure 6 shows the forecasting results with hf = 60 for the first road segment, where the blue
line represents the actual speeds, while the red line corresponds to the forecasted speeds. As
we can see, our forecasting algorithm captures the largest statistical variance and has a small
deviation from the true data. Table 1 provides more specific performance characteristics at

(a) (b)

Fig. 4.	 (Color online) (a) PASTd reconstruction using k = 2 patterns for one road segment and (b) hidden variables
over a week.

(a) (b)

Fig. 5.	 (Color online) PASTd performance. (a) Reconstruction error and (b) runtime.

2152	 Sensors and Materials, Vol. 31, No. 6 (2019)

various forecasting horizons. When hf increases, MSE and MAPE do not increase rapidly,
verifying the effectiveness and robustness of our forecasting method.
	 To further show the advantage of our forecasting algorithm, we compare our method with
the historical mean method, which also reduces the data dimension to 1. Figure 7(a) shows the
forecasting results of our method, while Fig. 7(b) shows those of the historical mean method. As

Table 1
MSE and MAPE with k = 1, knn = 1, and hp = 1.
hf 1 5 10 30 60
MSE 5.06 6.01 6.30 7.26 8.74
MAPE (%) 3.75 4.41 4.54 4.83 5.20

(a)

(b)

Fig. 7.	 (Color online) Forecasting results for the first 9 road segments using (a) our method and (b) historical mean.

Fig. 6.	 (Color online) Forecasting results with hf =
60 for the first road segment.

Sensors and Materials, Vol. 31, No. 6 (2019)	 2153

(a) (b)

Fig. 8.	 (Color online) Forecasting results with k = 1, hp = 1, and hf = 60, correspond to the worst and best
performance characteristics in terms of (a) MSE and (b) MAPE.

we can see, the historical mean method can barely capture the statistical variance. Moreover, its
MSE = 45.60, which is much larger than ours.

4.3	 Robustness test and outliner detection

	 The top figure in Fig. 8(a) corresponds to the road segment with the largest MSE, while
the bottom figure with the smallest MSE. The road segment whose speed changes frequently
may lead to a larger MSE. Note that, even in the worst case, our method can still capture the
speed changes and make accurate predictions very quickly. Similarly, the top figure in Fig.
8(b) corresponds to the road segment with the largest MAPE, while the bottom figure with the
smallest MAPE. The results are consistent with MSE.
	 We note that, in both worst cases of MSE and MAPE, the vehicle speeds change too
frequently to be realistic. It is reasonable to doubt that the sensors for detecting these two road
segments are nonfunctional. As a result, our forecasting algorithm helps detect outliners as
well.

5.	 Conclusions

	 In this study, we managed to make short-term real-time prediction of traffic flow data of
Baltimore, Maryland, US. We applied VPP data from the RITIS system, which are the true
world data. PCA is used to derive core traffic patterns from streams of traffic data on a large
number of road segments. Furthermore, a more efficient online method, called the PASTd
algorithm, is implemented to reduce the data dimension. We use the KNN method to predict
the hidden variables. As a result, we are able to forecast the speeds for all the road segments in
linear complexity. Our method aims at network-level prediction, regardless of freeway or urban
road segments. As far as we know, our method is the first traffic flow data prediction scheme
that meets the following requirements: scalability, linear complexity, and no need for data
buffering. It also overcomes the restriction of both time and space.

2154	 Sensors and Materials, Vol. 31, No. 6 (2019)

Acknowledgments

	 This work was supported by the Key Research and Development Program from the Ministry
of Science and Technology of China (Grant No. 2018YFB1700200).

References

	 1	 M. S. Ahmed and A. R. Cook: Transp. Res. Rec. 722 (1979) 1. http://onlinepubs.trb.org/Onlinepubs/
trr/1979/722/722-001.pdf

	 2	 M. Van Der Voort, M. Dougherty, and S. Watson: Transp. Res. Part C: Emerging Tech. 4 (1996) 307. https://
doi.org/10.1016/S0968-090X(97)82903-8

	 3	 I. Okutani and Y. J. Stephanedes: Transp. Res. Part B: Methodol. 18 (1984) 1. https://doi.org/10.1016/0191-
2615(84)90002-X

	 4	 S. Papadimitriou, J. Sun, and C. Faloutsos: Proc. 31st Int. Conf. VLDB (2005) 697–708. https://dl.acm.org/
citation.cfm?id=1083674

	 5	 Y. Chen, Y. Zhang, and J. Hu: Tsinghua Sci. Technol. 13 (2008) 220. https://doi.org/10.1016/S1007-
0214(08)70036-1

	 6	 D. M. Blei, A. Y. Ng, and M. I. Jordan: J. Mach. Learn. Res. 3 (2003) 993. http://www.jmlr.org/papers/
volume3/blei03a/blei03a.pdf

	 7	 X. Wei, J. Sun, and X. Wang: IJCAI 7 (2007) 2909. http://www.aaai.org/Papers/IJCAI/2007/IJCAI07-468.pdf
	 8	 C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu: Proc. 29th Int. Conf. VLDB 29 (2003) 81. https://pdfs.

semanticscholar.org/a4bb/55eeefbf8f50d932adeb10699fd0bef92cc5.pdf
	 9	 Y. Sakurai, S. Papadimitriou, and C. Faloutsos: Proc. 2005 ACM SIGMOD Int. Conf. Management of Data (2005)

599–610. https://dl.acm.org/citation.cfm?id=1066226
	10	 Y. Zhu and D. Shasha: Proc. 28th Int. Conf. VLDB (2002) 358–369. https://doi.org/10.1016/B978-155860869-

6/50039-1
	11	 P. Cai, Y. Wang, G. Lu, P. Chen, C. Ding, and J. Sun: Transp. Res. Part C: Emerging Technol. 62 (2016) 21.

https://doi.org/10.1016/j.trc.2015.11.002
	12	 B. M. Williams and L. A. Hoel: J. Transp. Eng. 129 (2003) 664. https://doi.org/10.1061/(ASCE)0733-

947X(2003)129:6(664)
	13	 S. Lee and D. Fambro: Transp. Res. Rec. (1999) 179–188. https://doi.org/10.3141/1678-22
	14	 J. Wang, W. Deng, and Y. Guo: Transp. Res. Part C: Emerging Technol. 43 (2014) 79. https://doi.org/10.1016/

j.trc.2014.02.005
	15	 J. Guo, W. Huang, and B. M. Williams: Transp. Res. Part C: Emerging Technol. 43 (2014) 50. https://doi.

org/10.1016/j.trc.2014.02.006
	16	 Y. Hu, C. Wu, and H. Liu: Transport 26 (2011) 197. https://doi.org/10.3846/16484142.2011.593121
	17	 X. Jiang and H. Adel i: J. Transp. Eng. 131 (2005) 771. ht t ps: //doi .org /10.1061/(ASCE)0733-

947X(2005)131:10(771)
	18	 B. L. Smith and M. J. Demetsky: Transp. Res. Rec. (1994) 1453. https://doi.org/10.1109/ICSMC.1994.400094
	19	 S. Sun, R. Huang, and Y. Gao: J. Transp. Eng. 138 (2012) 1358. https://doi.org/10.1061/(ASCE)TE.1943-

5436.0000435
	20	 A. Stathopoulos, L. Dimitriou, and T. Tsekeris: Comput.-Aided Civ. Infrastruct. Eng. 23 (2008) 521. https://

doi.org/10.1111/j.1467-8667.2008.00558.x
	21	 J. Van Lint and C. Van Hinsbergen: Artif. Intell. Appl. Crit. Transp. Issues 22 (2012) 22. http://onlinepubs.trb.

org/onlinepubs/circulars/ec168.pdf
	22	 E. I. Vlahogianni, M. G. Karlaftis, and J. C. Golias: Transp. Res. Part C: Emerging Technol. 43 (2014) 3.

https://doi.org/10.1016/j.trc.2014.01.005

http://onlinepubs.trb.org/Onlinepubs/trr/1979/722/722-001.pdf
http://onlinepubs.trb.org/Onlinepubs/trr/1979/722/722-001.pdf
https://doi.org/10.1016/S0968-090X(97)82903-8
https://doi.org/10.1016/S0968-090X(97)82903-8
https://doi.org/10.1016/0191-2615(84)90002-X
https://doi.org/10.1016/0191-2615(84)90002-X
https://dl.acm.org/citation.cfm?id=1083674
https://dl.acm.org/citation.cfm?id=1083674
https://doi.org/10.1016/S1007-0214(08)70036-1
https://doi.org/10.1016/S1007-0214(08)70036-1
http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
http://www.aaai.org/Papers/IJCAI/2007/IJCAI07-468.pdf
https://pdfs.semanticscholar.org/a4bb/55eeefbf8f50d932adeb10699fd0bef92cc5.pdf
https://pdfs.semanticscholar.org/a4bb/55eeefbf8f50d932adeb10699fd0bef92cc5.pdf
https://dl.acm.org/citation.cfm?id=1066226
https://doi.org/10.1016/B978-155860869-6/50039-1
https://doi.org/10.1016/B978-155860869-6/50039-1
https://doi.org/10.1016/j.trc.2015.11.002
https://doi.org/10.1061/(ASCE)0733-947X(2003)129
https://doi.org/10.1061/(ASCE)0733-947X(2003)129
https://doi.org/10.3141/1678-22
https://doi.org/10.1016/j.trc.2014.02.005
https://doi.org/10.1016/j.trc.2014.02.005
https://doi.org/10.1016/j.trc.2014.02.006
https://doi.org/10.1016/j.trc.2014.02.006
https://doi.org/10.3846/16484142.2011.593121
https://doi.org/10.1061/(ASCE)0733-947X(2005)131
https://doi.org/10.1061/(ASCE)0733-947X(2005)131
https://doi.org/10.1109/ICSMC.1994.400094
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000435
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000435
https://doi.org/10.1111/j.1467-8667.2008.00558.x
https://doi.org/10.1111/j.1467-8667.2008.00558.x
http://onlinepubs.trb.org/onlinepubs/circulars/ec168.pdf
http://onlinepubs.trb.org/onlinepubs/circulars/ec168.pdf
https://doi.org/10.1016/j.trc.2014.01.005

