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	 The Rössler chaotic system was chosen for implementing function cascade synchronization 
using electronic components.  Utilizing the cascade technique with the functional relationship, 
we achieve the synchronization of specific chaotic system signals.  On the basis of the Lyapunov 
stability theory and by designing the appropriate controllers with the estimated parameters, 
we successfully make the driving system synchronize with the final response system.  Finally, 
the circuit implementation of function cascade synchronization is in good agreement with 
numerical and circuit simulations.  The circuits inplemented utilizing the function cascade 
technique could be applied to sensors designed to detect signals of a specific chaotic system.

1.	 Introduction

	 Chaos is a ubiquitous phenomenon in nonlinear dynamical systems.  Its control and 
synchronization are attractive research topics.  There are many powerful methods for controlling 
and synchronizing chaotic systems, such as the Ott, Grebogi, and Yorke (OGY) methods,(1) 
adaptive control,(2–4) generalized projective synchronization,(5–7) linear feedback control,(8–10) 
and active control approach.(11)  Several reseachers proposed a cascade synchronization 
method(12–15) with which the driving system used only one signal to achieve the synchronization 
of the response system.
	 The cascade technique has the advantage of high adaptability even when the parameters 
of the driving system are uncertain for the response system.  Additionally, in accordance with 
the projective synchronization method, the error function with the functional relationship can 
be designed.  Therefore, the cascade synchronization with the functional error function can 
be used to achieve the synchronization of a specific system successfully.  In this study, the 
Rössler chaotic system is used to achieve the function cascade synchronization.  Furthermore, 
the numerical simulation, circuit simulation, and even circuit implementation are successfully 
achieved to verify the feasibility of the function cascade synchronization.
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2.	 Function Cascade Synchronization
	
	 Consider n-dimensional chaotic systems following the form

	 ( ) ( )X = f X + F X Π� , ( ) ( )= + +Y g Y G Y Π ξ� � ,	 (1)

where X and Y are the state vectors of the driving and response systems, respectively. Moreover, 
f and g are continuous vector functions; F and G are state matrix functions; ( ) ( )X = f X + F X Π�  and Π�  are the 
theoretical and estimated parameter vectors, respectively; ξ is the controller vector.
	 The Lyapunov function and its derivative are as follows:

	 T T1 ( )
2

= +V e e Π Π
� �

, T T= +Π ΠV e e�
� ��� ,	 (2)

where Π
�

 = Π�  − Π .  Then, design a suitable error function e = Y − QXT, where Q is the 
vector function, and choose the adaptive controller ξ appropriately, and the function cascade 
synchronization will be achieved if there exists <V� 0 and the form

	 Tlim lim 0
t t→∞ →∞

= − =e Y QX .	 (3)

3.	 Results

3.1	 Numerical simulation

	 The driving system of the Rössler chaotic system is described as
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�
�
�

	 (4)

where a, b, and c are completely unknown parameters.  If (a, b, c) is (0.2, 0.2, 5.77), the driving 
system is chaotic (Fig. 1).
	 The subresponse system is in the form
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and the final response system is in the form
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where α1 and α2 are the estimated values of the parameter a; β and γ are the estimated values of 
the parameters b and c, respectively; ξ1, ξ2, ξ3, and ξ4 are controllers.
	 The Lyapunov function and its derivative are as follows:
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where 2
1 0.05r d de x x x= − + , 2 1r de y y= − , 2

3 0.1r de y y= + , 4 r de z z= − , 1 1 a= −α α� , 2 2 a= −α α� , 
b= −β β

�
, and c= −γ γ�

; the controllers and estimated parameters are presented as

Fig. 1.	 3D plots of Rössler chaotic systems: (a) the driving system with the initial values (1, 1, −1) and parameters 
(a, b, c) = (0.2, 0.2, 5.77) and (b) the final response system with the initial values (0.2, 0.4, −3).

(a) (b)
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	 (8)

	 Substitute Eq. (8) into the der ivative of the Lyapunov function Eq. (7); thus, 
2 2 2 2

1 2 3 4V e e e e=− − − −�  and then

	 lim 0nt
e

→∞
= , (n = 1, 2, 3, 4).	 (9)

	 According to the Lyapunov stability theorem, the method utilizing the function cascade 
indeed can achieve the synchronization of the Rössler chaotic system with uncertainty 
parameters, as shown in Fig. 2.  
	 The special feature of the cascade method is that it must proceed through two steps.  In each 
step, one of the signals of the first system remains the same as that of the second system, the 
error functions are quadratic, and all the parameters are completely unknown, which constitute 
our study method, that is, function cascade synchronization.  Figure 2 shows that the error 
functions tend to be zero when the controller are input to the subresponse and final response 
systems, which means that the function cascade synchronization is achieved.

3.2	 Circuit simulation and circuit implementation

	 The circuit design of the cascade synchronization of the Rössler chaotic system is shown in 
Fig. 3, in which LF353 and AD633 are selected as the amplifiers and multipliers, respectively, 
and the capacitors are all 0.1 μF.

(a) (b)

Fig. 2.	 Numerical simulation plots of error functions: (a) xr − 0.05xd
2 + xd, (b) yr + 0.1yd

2, and (c) zr − zd. The 
arrow indicates the time at which function cascade synchronization starts.

(c)
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Fig. 3.	 Circuit design of the cascade synchronization of the Rössler chaotic system.

	 Considering the operating range of electronic components, the system output voltage is less 
than ±13.5 V, such that the design of the circuit must utilize the scaling factors.  The scaling 
factors of the circuit are xd = 2Xd, yd = 2Yd, zd = 2Zd, xr = 2Xr, yr1 = 2Yr1, zr = 2Zr, α1 = 10A1, α2 
= 10A2, β = 2B, and γ = 2Γ.  The driving system parameters a, b, and c are 0.2, 0.2, and 5.77, 
respectively.
	 Then, transform the time scale τ = 1000t, and the driving system (4) becomes
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the subresponse system (5) becomes
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the final response system (6) becomes
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and the estimated parameters (8) become
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	 To facilitate the circuit design, the driving system (10) is rewritten as
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the subresponse system (11) is rewritten as
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the final response system (12) is rewritten as
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and estimated parameters (13) are rewritten as
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	 The driving system output (xd, yd, zd) is decreased by half and then the resistors Rd = 10 kΩ 
(d = 1–7, 11, 14, and 15), R8 = 49.9 kΩ, R9 = 5 kΩ, R10 = 26 kΩ, R12 = 1.5 MΩ, and R13 = 1 kΩ.  
Then, the subresponse system output (xr, yr1, zd) is decreased by half, in which the zd signal is 
identical to the driving system signal, and the resistors Rr1 = 10 kΩ (r1 = 16–21, 23–25, 27–30, 
32, 33, and 35–37), R22 = R31 = 10 MΩ, R26 = 500 kΩ, and R34 = 25 kΩ.  Additionally, the final 
system output (yr, zr) is decreased by half, in which the xr signal is identical to the subresponse 
system signal, and the resistors Rr = 10 kΩ (r = 38, 41, 42, 44, 47, 49–53, 55–58, 60, and 61), 
R39 = 5 kΩ, R40 = R59 = 10 MΩ, R43 = 625 kΩ, R45 = 250 kΩ, R46 = 2 kΩ, R48 = 499 Ω, and 
R54 = R62 = 50 kΩ.
	 Owing to the characteristic of the Rössler chaotic system, the circuit does not interfere with 
any noise and it is possible to implement the synchronization circuit.  Therefore, the supply 
voltages of all the amplifiers in the circuit design are connected to an additional capacitor of 
0.1 μF and then grounded.  In this way, the signals in the circuit can be pure.
	 Finally, the phase diagram obtained by circuit simulation (Fig. 4) and that obtained by circuit 
implementation (Fig. 5) show diagonal lines, which means that two variables are identical, that 
is, the function of the driving system and the final response system successfully achieve the 
function cascade synchronization.
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4.	 Conclusions

	 Firstly, the result of the numerical simulation shows the feasibility and effectiveness of 
the function cascade method.  Secondly, despite the specific characteristic of the Rössler 
chaotic system, the complexity of the function cascade method, and even the difficulty in real 
circuit implementation, we overcome all the problems encountered and achieve the circuit 
implementation of the function cascade synchronization of the Rössler chaotic system by 
designing the circuit skillfully, that is, connecting capacitors and grounding to avoid any noise 
interference.  Finally, the result of the circuit implementation verifies the success of our scheme 
for implementing the circuit of the function cascade synchronization of the Rössler chaotic 
system with fully unknown parameters.
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