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	 The purpose of this work is to establish a hammering echo inspection technology capable of 
detecting damage accurately irrespective of the skill of the inspector.  To realize this technology, 
we have proposed and developed an “artificial intelligence (AI)-aided hammering test system” 
that automatically identifies the anomalous parts of a structure and the extent of the anomalies 
via the machine learning of the differences in hammering echoes.  A laser range sensor is used 
to easily identify the hitting position of the hammer and integrate this information into the 
hammering echo analysis results to automatically generate an anomaly map.  We performed 
hammering echo collection experiments using the AI-aided hammering test system and 
evaluated its performance.  In the experiments, we inspected seven actual bridges in which 
internal defects (float) were detected by a detailed manual hammering test and compared the 
results with those obtained using our system.  No defects were missed in a coarse block unit, 
and the accuracy for each hammering echo was determined to be 96.3% at maximum and 90.4% 
on average.

1.	 Introduction

	 In recent years, with the aging of social infrastructure, a maintenance management 
method from the viewpoint of preventing third-party damage has become essential.  The 
overall inspection of the bridges and roads in Japan is stipulated by the Ministry of Land, 
Infrastructure, and Transport, and the demand for checking infrastructure is increasing rapidly.  
However, the number of skilled inspectors has tended to decrease as the population ages and the 
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labor force shrinks.  In many cases, it is difficult to hire inspectors.  Therefore, in this research, 
we aim to establish a hammering echo inspection technology that can detect defects accurately 
irrespective of the skill of the inspector.
	 In a general hammering test, an inspector strikes a concrete structure using an inspection 
hammer, listens to the hammering echo carefully, and assesses the state of the structure.  This 
test method depends on the experience, opinions, and skill of the inspector, and the inspector 
may reach incorrect conclusions concerning the inspection results.
	 The impact-echo method, which is a method of objectively analyzing hammering echoes, 
was proposed in the 1980s as a method to eliminate variability among inspection results and 
has been used as a nondestructive inspection method for concrete structures.(1,2)  As a general 
description of the impact-echo method, a hammer or a similar object is used to strike the surface 
of a concrete structure, as shown in Fig. 1.  Shock waves caused by the impact propagate inside 
the structure and are measured by sensors installed near the impact point.  The state of the 
concrete is evaluated on the basis of the measured signal in the frequency domain obtained by 
Fourier transformation.  In this method, the specific frequency (dominant frequency) at which 
the spectral intensity is maximum is commonly used as the index (feature value) of the concrete 
state evaluation.(3)

	 However, the use of a single feature value makes the signal susceptible to noise, and other 
features are discarded.  In this study, we aim for more accurate defect detection in a concrete 
structure by adopting an approach of analyzing hammering echo data acquisition and the 
machine learning technique, which is a key technology of artificial intelligence (AI).  To 
achieve the objective, here, we propose and develop an AI-aided hammering test system that 
automatically detects the anomalous points and the degree of anomaly of a structure using 
the machine learning of the difference in the hammering echoes generated by the inspection 
hammer.  In this system, the hitting position of the hand-held hammer is determined using a 
laser range sensor; by integrating this information with the hammering echo analysis results, 
the system automatically generates an anomaly map.  Consequently, the number of man-
hours associated with the laborious recording of inspection results after the hammering test 
is reduced.  The hammering echo analysis method developed for this system is described in 

Fig. 1.	 (Color online) Mechanism of action of the impact-echo test.
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Sect. 2, where the concept and configuration of the system are explained.  In later sections, we 
compare the hammering echo analysis performance with that of the conventional impact-echo 
method and discuss the results of a performance evaluation test using the hammering echo data 
collected for actual bridges.

2.	 Developed Hammering Echo Analysis Method

	 In this section, we describe the hammering echo analysis method developed for the AI-aided 
hammering test system.
	 As described in Sect. 1, the impact-echo method, which is a method of automatically 
analyzing hammering echoes, has been used as a method for the nondestructive inspection 
of concrete structures to eliminate variability among inspection results obtained by different 
inspectors.  However, because this method uses only a specific frequency (dominant frequency) 
at which the spectral intensity is maximal, it is susceptible to noise and other features are 
discarded.  Therefore, the objective of this work was to achieve more accurate defect detection 
by the hammering analysis method through the application of machine learning technology(4) to 
the collected hammering data of concrete structures.
	 In attempts to distinguish between a normal hammering sound and the sound of a defect on 
the basis of machine learning, supervised learning(4) is commonly used.  Supervised learning is 
a method of gathering numerous hammering echo data for a normal object and an object with 
defects, where the actual state of the object (i.e., normal or defective) is known beforehand; the 
classifier then learns from statistical information embedded in the data.  However, compared 
with data for normal objects, the data for defective objects is more difficult to acquire, which 
introduces a problem regarding the acquisition of sufficient data for defect detection.  Therefore, 
in this method, by assuming most of the acquired hammering echo data to represent a normal 
object, a method of unsupervised learning, which enables the statistical learning of a normal 
pattern for each examined object, is adopted.  Unsupervised learning enables the presence or 
absence of a defect to be judged even if various hammering sound data have not been gathered 
for training.  It is a general-purpose method that is independent of both the object being 
investigated and the inspection apparatus.
	 In this research, anomaly detection based on the subspace method(4) was performed as an 
unsupervised learning method.  In this method, most of the normal patterns are represented by 
a lower dimension in accordance with the subspace, and the distance between the hammering 
echo samples to be determined and the subspace is calculated as the degree of anomaly.  
By expressing the subspace with lower dimensions, the method becomes robust against 
disturbances such as noise and measurement errors.
	 Figure 2 shows the process flow of this system.  After hammering echoes and hitting 
positions are acquired using the sensor unit, the learning phase proceeds.  In this phase, as 
preprocessing for hammering echoes, the hammering echoes are converted into a spectrogram, 
split into each echo, and normalized with respect to the intensity.  Subsequently, unsupervised 
learning via the subspace method is performed, and the subspace of normal hammering 
echoes is generated as a standard for judging hammering echoes.  Next, in the detection phase, 
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the preprocessing and feature extraction of hammering echoes are executed, and the system 
calculates the distance from the subspace of the normal hammering echo, thereby obtaining the 
degree of anomaly of each hammering echo.  Then, the degree of anomaly of each hammering 
echo is combined with the impact position, and an anomaly map is generated.
	 Here, we present the detailed hammering echo analysis procedure using the subspace method.(5) 
Let x = [x1, x2, …, xn], xi (i = 1, …, n) ∈ RM denote (M × n) a set of hammering echo spectra 
acquired by inspection, where n denotes the timeframe index and M is the dimension of the 
spectra.  To extract the echo signal subspace, we calculate eigenvalues Λ = diag(λ1, …, λM) and 
eigenvectors U = [u1, …, uM] as

	 1, { }
x x

N
Cov Cov i i iEΛ = ′=R U U R x x ,	 (1)

where xi′, i ∈ (1, …, N), is the transpose of xi.  We sort eigenvectors by eigenvalues in 
decreasing order.  These eigenvalues denote the significance of the corresponding eigenvectors 
for expressing the spectrogram.  The cumulative contribution ratio is defined as

	 1 1/K M
K i i i iη Σ λ Σ λ= =

.	 (2)

 
	 All eigenvectors of U = [u1, …, uM] (M × M) span the subspace characterizing the 
spatiotemporal distribution of the echo signal.  In particular, UM is ranked by the eigenvalues; 

Fig. 2.	 (Color online) Process flow of the proposed hammering echo analysis system.
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in other words, the importance of expressing the echo spectrograms and dominant features lies 
in the first several basis vectors.  As mentioned previously, there is the assumption that most 
of the acquired hammering echoes are normal; thus, if we collect the eigenvectors of greater 
importance in this method, we can establish the feature of a normal hammering sound.  For 
this reason, we set a constant cumulative contribution ratio ηK (approximately greater than 0.8) 
and select K eigenvectors corresponding to this ratio as UK = [u1, …, uK] (1 < K < M).  By this 
procedure, it is possible to concentrate on predominant patterns in the echo signal and remove 
the noise influence simultaneously.  Also, in this method, we regard the vectors of hammering 
echo spectra projected on the subspace as feature values extracted from hammering echoes.  
In contrast to the feature value of the conventional impact-echo method, which has only one 
dominant frequency, the feature values of our method have an advantage that much information 
is compactly summarized from the frequency components of a hammering echo.
	 The subspace obtained in this manner represents the feature of normal hammering echoes.  
Using the subspace, feature extraction and the calculation of the degree of anomaly are 
performed by the following calculation concerning the hammering echo to be determined.
	 The projector UK for the subspace of the normal hammering echo is represented as 
P = UKUK', and that for the orthogonal complement space is Po = IM − P.  When the spectrum of 
the hammering echo to be determined is x, the feature extraction is performed by the projection 
xP = Px.  The distance of the projection component to the orthogonal complement space do is 
obtained as

	 o od = P x‖ ‖.	 (3)

In this method, we use this do as the degree of anomaly of the hammering echo.
	 An advantage of the subspace method is that it requires less computational complexity 
than other nonlinear methods.  Although we carried out hammering analysis using another 
unsupervised learning method such as spectral clustering,(6) which is a nonlinear clustering 
method, the computational complexity increased.  For this reason, in the system, we adopt the 
subspace method with a relatively small computational load to lower the throughput requirement 
to the PC that executes the hammering echo analysis process, making the realization of a 
practical system easier.

3.	 Development of AI-aided Hammering Test System

3.1	 System overview

	 We have developed an AI-aided hammering test system to assist hammering tests of 
infrastructure with AI and automatically generate an anomaly map.  Figure 3 shows the outline 
of the system.  This machine learns the difference in hammering echoes generated by the 
inspection hammer and automatically detects the anomalous parts of the structure and the 
degree of anomaly.  Then, it automatically creates an anomaly map by integrating the detection 
results with the hammering position information of the inspection hammer.
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3.2	 System configuration

	 The AI-aided hammering test system developed in this work consists of a sensor unit that 
measures the hammering echo and position, and a tablet PC for the control, recording, and 
analysis of hammering echoes using AI (Fig. 3).  The system is convenient in that it can be used 
with the sensor unit simply leaned against a wall or a similar flat surface of a structure (planar 
structure), whereas the inspector uses a commercially available inspection hammer, as shown in 
Fig. 4.
	 This system automatically generates an anomaly map in response to hammering sound 
inspection using a general inspection hammer and presents the map to the inspector 
immediately upon the completion of the series of hammering echo inspections.  When the 
hammering test is completed, the anomaly map is automatically generated by integrating the 
acquired hammering position and the degree of anomaly of the hammering echoes.

3.3	 Explanation of system components

	 As described in Sect. 3.2, the AI-aided hammering test system consists of a sensor unit and a 
tablet PC.  Each component is described below.
	 A laser range finder (LRF) was integrated into the sensor unit to measure the position of 
the inspection tool, such as a hammer, in contact with the surface under inspection.  In this 
study, an LRF that can acquire distance information on an object intersecting the measurement 
target plane was used.  The plane is fan-shaped centering on the apparatus (Fig. 5).  We 
attempted to acquire the hammering position by setting this measurement plane as parallel as 
possible to the surface to be inspected such that the distance between the wall surface and the 
measurement surface was as short as possible.  From the obtained LRF data, it is necessary to 
recognize the hammer as an object.  For this purpose, the hammer was identified by applying 
the moving-body recognition algorithm reported in Ref. 7 and then the hammering position was 

Fig. 3.	 (Color online) Outline of the AI-aided hammering test system.
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specified.  Additionally, a contact-type acoustic sensor was used to detect the hammering echo 
of infrastructure.  This approach enabled the hammering echo to be detected with low noise 
even in places with high noise, such as road tunnels.  A contact-type acoustic sensor collects 
hammering echoes by detecting vibrations induced at the surface of a structure by hammering 
echoes propagating in the infrastructure.  Additionally, a condenser microphone was mounted 
as an acoustic sensor to assist the contact-type acoustic sensor in detecting the hammering echo 
of air propagation in a supplementary manner.  With this design, the detection of the hammering 
echo of air propagation complements the detection of the hammering echo by the contact-type 
acoustic sensor.  In this work, we concatenated the spectra of the two types of hammering 
echoes and used the result as input for analysis.
	 The tablet PC stores the hitting position acquired by the sensor unit and the hammering 
echo.  While the hitting sound is being acquired, the hitting position is displayed in real time.  
Using these stored data, the anomaly map, determined by the degrees of anomaly calculated 
using Eq. (3), is automatically generated.  The hammering echo analysis was implemented by 
creating a hammering echo analysis program using the subspace method with a programming 
language, MATLAB.
	 Figure 6 shows an example of an anomaly map acquired for an actual structure (the wall 
surface of a tunnel).  In the map, the anomalous part (upper central part) of the wall surface 
is shown and the degree of anomaly is quantitatively shown.  The degree of anomaly, which  
conventionally depends on the skill and experience of the inspector, was quantitatively analyzed 
from the learned normal hammering echo and visualized in color.  Because it is mapped 
immediately after the examination, hitting omission can be confirmed onsite and additional 
tests can be performed.  Furthermore, the repair/reinforcement design of the abnormal part 
previously included a work step of creating a detailed damage diagram; however, with this 
system, the number of steps can be reduced.

Fig. 4.	 (Color online) Developed sensor unit. Fig. 5.	 (Color online) Scan area of the laser range 
sensor.
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4.	 Performance Comparison with Impact-echo Method

	 As a basic study, we compared the results obtained by the impact-echo method,(1) which is 
the conventional method of automated hammering echo analysis, with the hammering echo 
judgment result obtained with the system developed in the present work.
	 In the impact-echo method, because the dominant frequency of the hammering echo is used 
to judge whether the hammering echo is normal or abnormal, it is susceptible to the influence 
of differences in sound owing to the hammering angle of the hammer, the influence of the 
unevenness on the hammering face, and noise, among other factors.  However, because the 
subspace method used in this system is less susceptible to these effects, better hitting analysis 
results are expected to be obtained.
	 To confirm the improvement in the hitting analysis results, we recorded hammering echoes 
in an actual tunnel with automobile driving sounds and compared the hammering echo analysis 
results obtained by the impact-echo method with those obtained using the method proposed 
in this work.  The hammering echo was recorded at a sampling frequency of 44.1 kHz.  In the 
impact-echo method, as shown in Fig. 7, excitation was cut out in units of one hammering echo 
and spectra were obtained by Fourier transformation to determine the dominant frequency.  
Figure 8 shows a graph of the dominant frequency in the impact-echo method and the anomaly 
graph resulting from the method developed in this work.  The horizontal axis of this graph 
shows the hammering echo index.  Comparing these graphs, we cannot distinguish the anomaly 
points from the dominant frequency.  In contrast, with our method, we find that the degree of 
anomaly is high at the anomaly points and that the anomaly points can be correctly detected by 
setting an appropriate threshold value.  In the impact-echo method, we used only the hammering 
echo recorded with a contact-type microphone, which tends to reject noise.  However, we 

Fig. 6.	 (Color online) Photographs of the (a) examination scene and (b) obtained anomaly map.

(a)

(b)
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speculate that vibrations created by moving vehicles generated noise in the hammering echo.  
As described previously, numerous sources of noise were present where the actual hammering 
echo tests were performed; thus, we deduced that the method proposed in this work, which is 
not susceptible to noise, is more effective when used for practical tests in the field.
	 Next, we investigate the subspace obtained in this analysis.  Table 1 shows the relationship 
between the cumulative contribution ratio [Eq. (2)] of the analysis result shown in Fig. 8(b) and 
the corresponding number of eigenvectors.  From this table, we observe that the cumulative 
contribution ratio exceeds 0.95 at the top 5 of M = 105 eigenvector numbers in this experiment.  
Because the threshold value of the cumulative contribution ratio in this experiment was 0.85, 
a subspace was composed of the first two eigenvectors.  Because high cumulative contribution 
ratios are obtained with a few eigenvectors, we find that most features of the hammering echoes 
(features of normal hammering echoes in this analysis) were successfully extracted by the 
subspace method.

Fig. 7.	 (Color online) Dominant frequency in the impact-echo method. (a) Example of the waveform of a one-shot 
tone cut out.  (b) Spectrum of the waveform (a) and the dominant frequency.

Fig. 8.	 (Color online) Graphs of the hammering echo analysis results: (a) dominant frequency graph obtained by 
the impact-echo method and (b) anomaly graph obtained using the system developed in this work.

(a) (b)

(a) (b)
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5.	 Performance Evaluation on an Actual Structure

	 We conducted evaluation experiments of the AI-aided hammering test system targeting 
real structures (seven bridges).  In the evaluation experiments, we performed manual detailed 
hammering tests, inspected structures with internal defects (floats) using the system, and 
compared the results.  As a method of calculating the accuracy, we first confirmed that there 
was no oversight in rough blocks (a series of hitting points in an anomalous area).  Consequently, 
we confirmed that there was no oversight in any of the results.  We also calculated the accuracy 
as the rate at which parts judged normal by one echo were actually normal and parts judged 
anomalous by one echo were actually anomalous.  An example of an anomaly map obtained 
via analysis using our method is shown on the right side of Fig. 9.  In the anomaly map, yellow 
indicates that a hammering echo has a high degree of anomaly and blue indicates regions where 
the hammering echo is a normal sound.  In the photograph on the left side of Fig. 9, the range 
where the detailed hammering test was conducted by an inspector (in the square frame) and the 
range in which the damage was recognized (in the dotted line frame, 0.6 × 1.2 m2) are shown.  
A comparison of this photograph with the anomaly map reveals that there were no oversights of 
defect blocks.  Moreover, the accuracy was as high as 96.3%.
	 Table 2 shows the accuracy in each evaluated location in unsupervised learning.  Good 
results of 96.3% at maximum and 90.4% on average were obtained.  From this result, it can 
be considered that unsupervised learning makes the hammering echo analysis applicable to 
the hammering test for a real structure.  Evaluation execution site Nos. 3 and 6 are excluded 
from the calculation target of the accuracy for the following reasons.  At site No. 3, since most 
of the examination area was the damaged area, the assumption for the unsupervised learning 
technique was not satisfied, and the defect hammering echo could not be correctly detected.  
Evaluation site No. 6 was a place where no defect area was noted, and although a matching rate 
of 96.3% was obtained, we regarded it as an exceptional measurement target.

6.	 Discussion

	 In this system, by automatically generating an anomaly map, the number of work man-
hours previously spent recording can be reduced, and inspection work can be performed 
without overlooking anomalous regions of a structure, even by unskilled inspectors.  Therefore, 
the AI-aided hammering test system is considered to be useful as a system for infrastructure 
inspection, the need for which is expected to rapidly increase in the future, including in regions 
where skilled inspectors are scarce.

Table 1
Relationship between the number of eigenvectors at the principal contribution ratio and the cumulative contribution 
ratio in the hammering echo analysis result. 
Number of eigenvectors at
   principal contribution ratio 1 2 3 4 5

Cumulative contribution ratio 0.823 0.890 0.926 0.945 0.958
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	 The unsupervised learning used in this analysis has an advantage applicable also in the 
case where it is difficult to collect data for learning in advance, such as defect sounds in the 
hammering echo test, which is the target of the present research.  However, when most of 
the examination area is a defect area or when there is no defect hammering echo, such as in 
evaluation sites Nos. 3 and 6 described in the previous section, judgment by supervised learning 
is needed.  As mentioned in the introduction, however, gathering data related to anomalous 
hammering echoes is difficult.  Therefore, a technique called transfer learning would be a key 
technology for streamlining learning such that anomalous echoes can be recognized with a 
small amount of data diverting the learning results obtained in other environments without 
acquiring a large amount of data in the new environment.  We have already demonstrated the 
effectiveness of transfer learning in defect detection using test concrete blocks,(8) and transfer 
learning could reduce the costs associated with acquiring learning data.
	 Because the machine learning technique is a statistical technique based on data, a certain 
recognition error is unavoidable.  As a countermeasure, AI technology that cooperates with 
people, such as error correction by workers and additional learning that improves instrument 
accuracy in working environments, becomes important.  In this case, an interface/interaction 
technology related to presenting information to the operator and the visualization of the 
machine learning results to convey to the operator the criteria judged by machine learning will 
be necessary.
	 At present, automatic inspection technology for social infrastructures is attracting attention 
in Japan, and various such technologies are being developed for practical use.(9)  However, 
developing only one excellent technology for automatic inspection is not enough.  Excellent 
automatic inspection performance will be possible only when several types of technologies 
complement each other.  As compared with other technologies, a major advantage of practically 

Fig. 9.	 (Color online) Anomaly map obtained at evaluation site No. 4.

Table 2
Accuracy at each evaluated location in unsupervised learning.
Location No. 1 2 4 5 7 8 9
Accuracy 95.7 81.7 96.3 92.0 92.9 82.8 91.2
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implementing our technology is that the inspection hammer used by the inspector can be used 
as it is, indicating that our method can be easily introduced in practice without significantly 
changing the existing work procedures.  Therefore, it is expected that this technology will be 
used in infrastructure inspection work across Japan, which is expected to increase rapidly, 
including work undertaken by local governments, wherein it is difficult to hire skilled 
inspectors.

7.	 Conclusions

	 We proposed and developed an AI-aided hammering test system with the aim of realizing a 
hammering test technology capable of accurately detecting damage irrespective of the skill of 
the inspector.  This system conveniently obtains the hitting position of the hammer by manual 
operation with the laser range sensor and integrates the hitting-position information with the 
hammering echo analysis results to automatically generate an anomaly map on site.  In the 
performance evaluation of this system, no defects were missed at any location in rough block 
units of seven actual bridges.  Additionally, the correct answer rate for each hammering echo 
was determined to be 96.3% at maximum and 90.4% on average.  Future research opportunities 
include introducing a technique that makes hammering echo judgments based on hammering 
data learned beforehand by transfer learning.  Furthermore, our system successfully notified the 
inspector of the analysis results in real time by learning hammering echo data obtained online.(10) 
We expect that this real-time anomaly detection system will be useful in the future.  Moreover, 
the unsupervised learning method used in this paper may be applicable to anomaly detection 
using various other sensor signals.

Acknowledgments

	 This work was supported by the Council for Science, Technology and Innovation, “Cross-
ministerial Strategic Innovation Promotion Program (SIP), Infrastructure Maintenance, 
Renovation, and Management” (funding agency: NEDO).

References

	 1	 M. J. Sansalone: ACI Struct. J. 94 (1997) 777.
	 2	 F. Schubert and B. Kohler: J. Nondestr. Eval. 27 (2008) 5.
	 3	 H. Hassani: J. Data Sci. 5 (2007) 239.
	 4	 C. M. Bishop: Pattern Recognition and Machine Learning (Springer, New York, 2006).
	 5	 F. De La Torre and M. J. Black: Int. J. Comput. Vis. 54 (2003) 117. 
	 6	 A. Y. Ng, M. I. Jordan, and Y. Weiss: Advances in Neural Information Processing Systems (MIT Press, 

Cambridge, 2001) p. 849.
	 7	 C.-T. Chang, R. Ichikari, T. Okuma, and T. Kurata: Proc. 1st Int. Workshop on Mixed and Augmented Reality 

Innovation (IEEE Computer Society Washington, 2016). http://sigmr.vrsj.org/MARI2016/MARI2016_
paper_8.pdf

	 8	 J. Ye, T. Kobayashi, H. Tsuda, and M. Murakawa: Structural Health Monitoring 2017 (DEStech publication, 
Lancaster, 2017). https://doi.org/10.12783/shm2017/13955

	 9	 Infrastructure Maintenance, Renovation and Management: https://www.jst.go.jp/sip/k07_en.html (Accessed 
April 2019).

	10	 J. Ye, T. Kobayashi, M. Murakawa, and T. Higuchi: INTERSPEECH 2013 (ISCA, Baixas, 2013) p. 695. https://
www.isca-speech.org/archive/archive_papers/interspeech_2013/i13_0695.pdf


