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	 In this paper, the relationships between wrinkles in sheet press forming and the ultrasonic 
reflection characteristics of an angled beam are shown.  An angled probe was used assuming 
a case in which a vertical probe cannot be placed directly above defects.  The wrinkles were 
evaluated using an apparatus that reproduced the die–workpiece contact situation of press 
forming.  Model specimens used in the experiments had trapezoidal wrinkles similar to the 
wrinkle shape in press forming.  The workpiece was sandwiched by dies in the apparatus.  The 
apparatus was connected to an ultrasonic flaw detector.  The relationship between the wrinkle 
shape and the irradiation position of ultrasonic waves was accurately obtained using the 
apparatus.  Wrinkling was detected from the change in reflection intensity, i.e., the maximum 
amplitude of reflected waves.  The reflection intensity varied with the wrinkle shape for a 
single wrinkle or periodic wrinkle with a wrinkle wavelength of 8 mm or more.  This tendency 
was also observed for a vertical probe.  The wrinkle evaluation using the angled probe was as 
effective as that using a vertical probe.

1.	 Introduction

	 In the field of sheet metal forming, technological developments enabling reduction of 
inspection cost, monitoring of processing conditions, and prediction of defect occurrence have 
been actively pursued utilizing the Internet of Things (IoT).  For example, information obtained 
from sensors attached to a machine tool is analyzed and utilized.
	 A number of acoustic emission (AE) sensors attached to the wall surface of a die can 
identify the contact and friction states of a workpiece and the die by the arrival time of the AE 
signal emitted from the friction source of the die and the workpiece during deep drawing.(1)  In 
ring compression, upset forging, and cross-joint forging processes, the occurrence of cracks 
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can be detected from the change of the AE signal.(2)  In hot forging, electric conductivity was 
used to observe forging processes.  The electric circuit included an injection nozzle and an 
electrode, which was installed in the cooling system, in contact with the injected lubricant.  The 
high quality and process stability of forging was maintained by monitoring the circuit voltage 
fluctuation.(3)  A load sensor and transmission-type fiber-laser sensors detected the scrap-
jumping in pierce processing.(4)  Several methods were also developed for deep drawing.  For 
instance, the amount of retraction of thin sheets was measured using mutual inductance and 
the loads acting on thin sheets were measured using piezo resistance.(5,6)  A closed-loop circuit 
constituted of various sensors attached to the die could reveal the relationships among the 
following quantities: punch load, punch stroke, pressure in the cylinder, the die–blank holder 
distance, and blank holder force.(7)  Using the above information, the blank holder force was 
adjusted(8) and the die was segmented;(9) consequently, the formation of wrinkles was prevented.  
A borescope incorporating a compact CCD camera was installed in the tool cavity and was used 
to measure the deformation behavior of the sheet during press forming and tool deflection.(10)  
Moreover, the methods of detecting defects by bispectral analysis(11) of acceleration signals and 
wavelet transformation(12) of distortion signals, and the method of detecting burrs in punching 
from the change in vibration signals during processing(13) have been reported.
	 The application of ultrasonic measurement to in-process evaluation was also attempted.  
The change in the tool–workpiece contact state during forging was evaluated by continuously 
measuring the ultrasonic reflection intensity on the contact surface.(14)  Furthermore, in the 
ring compression test of aluminum under lubrication conditions, the contact pressure and the 
friction shear stress on the tool–workpiece contact interface were obtained through continuous 
measurement of the ring outer diameter and ultrasonic measurement of the contact interface.(15,16)  
The AE sensor measures elastic waves propagating in the machine and tool.  The detection 
area of the AE sensor is wide.  However, the information obtained by the AE sensor contains 
noise, and signal processing is required to evaluate the information.  The evaluation of some 
defects is not easy because the AE sensor seems to be unclear regarding the target evaluated.  In 
contrast, the reflection of ultrasonic waves can directly clear the contact state between the tool 
and the workpiece.  Although the ultrasonic method has a narrower inspection range than the 
AE method, it is effective for evaluating some defects including wrinkles.  In the investigation 
of the use of a flat die and a V-shaped die, it was revealed that the material and thickness of 
pressed products affected the ultrasonic reflection and transmission characteristics.(17)  The 
ultrasonic probe embedded in the die detected the change in the reflection intensity owing to 
the difference in the contact ratio between the die and the workpiece.  Thus, this method is 
applicable to the detection of wrinkles generated during press forming.(18)

	 The authors performed the ultrasonic measurement using the vertical probe in deep drawing 
and showed a method of evaluating wrinkle defects during processing on the basis of the change 
in the maximum amplitude of reflected waves.(19)  The frequency characteristics of the reflected 
waves were also used to evaluate wrinkles.(20)  The experiments on the use of wrinkle model 
specimens simulating actual wrinkles revealed that the ultrasonic reflection characteristics 
were affected by the wrinkle wavelength, ultrasonic effective probe diameter, and ultrasonic 
irradiation diameter.(21–23)
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	 In this study, to verify the effectiveness of the angled beam technique for wrinkle evaluation, 
ultrasonic experiments were conducted using angled probes and the evaluation apparatus 
presented in a previous paper.(24)  In detecting wrinkles, the vertical probe should be placed 
just above the location where a defect is predicted to occur.  However, the angled probe can be 
placed at an angled position to the defect.  In other words, the angled probe can be placed at 
any position as long as the ultrasonic waves directly reach the target.  The ultrasonic detection 
method can be applied to various tools and dies by coupling the vertical probe and angled angle 
probe.  In addition, the detection accuracy can be improved by the coupling.  

2.	 Experimental Conditions and Procedures

2.1	 Principle of wrinkle evaluation using ultrasonic waves

	 Ultrasonic waves simultaneously reflect and transmit at the interface when the acoustic 
impedances (sound velocity × density) of two contact media are different.  The wrinkles in press 
forming can be evaluated using the above property.  Figure 1 shows the relationship between 
the reflection of the ultrasonic waves irradiated from the vertical probe and the die–workpiece 
contact state.  The maximum amplitude of the reflected wave is defined as the reflection intensity I.  
As shown in Fig. 1(a), the reflection intensity is I0 when the upper die is not in contact with 
the workpiece.  As shown in Figs. 1(b) and 1(c), the reflection intensity changes to I1 and I2 
depending on the occurrence state of wrinkles.  The reflection intensity is I3 in the no-wrinkle 
state shown in Fig. 1(d).  The amplitude order of these reflection intensities is I0 > I1 > I2 > I3.  
In this way, the reflection characteristic of the ultrasonic waves depends on the die–workpiece 
contact state, which is changed by the wrinkling.  In this study, the relative reflection intensity, 
I/I0, was used as an index of wrinkle evaluation.

Fig. 1.	 Contact states of dies and ultrasonic reflection characteristic (I0 > I1 > I2 > I3): (a) contact with air, (b) 
contact with one wrinkle, (c) contact with wrinkles, and (d) contact without wrinkles.
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2.2	 Experimental procedures

	 Figure 2 shows the evaluation apparatus.  This experimental apparatus was improved for the 
angled probe on the basis of the structure of the evaluation apparatus for the vertical probe.(24)   
The apparatus is composed of four parts: the probe-fixing parts, the upper die, the middle 
die, and the lower die [Fig. 2(a)].  The probe-fixing parts not only fix the position of the probe 
but also keep the probe–die contact state constant.  In the convex area of the upper die, the 
distance from its upper surface to its lower surface is 20 mm.  The middle die is made of acrylic 
material so that the die–workpiece contact state could be visually confirmed after setting the 
workpiece in the experimental apparatus.  The other parts are made of JIS-S50C steel.  The 
model specimens with a trapezoidal geometry simulated wrinkles occurring in press forming.  
They were made of JIS-A1050 aluminum and fabricated by wire electric discharge machining.  
In this study, the model specimens with a periodic trapezoidal geometry, i.e., multiple wrinkles, 
and with a single trapezoidal geometry, i.e., a single wrinkle, were used in the experiments.  
Figure 3 shows the parameters of wrinkle shape: contact width cw, wrinkle wavelength λw, 

Fig. 2.	 (Color online) Schematic of apparatus for evaluation by angled beam technique.  (a) Apparatus 
configuration and details of parts and (b) measurement principle and mechanism of apparatus.

(a)

(b)
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wrinkle slope angle α, thickness tw, and wrinkle height h.  cw, tw, and h are all 1 mm in this 
study.  λw is 4, 8, and 12 mm in the model specimens of the periodic wrinkle.  α of the single 
wrinkle is the same as that of the periodic wrinkles with λw = 4 mm.  The gaps between the 
wrinkle model specimen and the die were filled with glycerin so that no air enters.  The O-ring 
prevents glycerin from leaking through the gap between the middle and lower dies.  The middle 
and lower dies are moved with high precision in the horizontal direction, as shown in Fig. 2(b), 
by turning the positioning bolt.  The surfaces where the dies come in contact with the specimen 
were finished by grinding and have appropriate roughness.
	 Figure 4 shows the ultrasonic measurement equipment.  The ultrasonic flaw detector 
EPOCH1000i made by OLYMPUS was used.  For the angled probes, standard angled probes 
5C10×10A70 made by KGK were used for both the transmitting and receiving sides (frequency 
f = 5 MHz, refraction angle of 70°).  In this probe, ultrasonic waves propagate as longitudinal 
waves in the wedge of the probe.  Once the ultrasonic waves penetrate into the die, they are 
converted into transverse waves, which propagate in the die.
	 The ultrasonic reflection characteristics were investigated by irradiating ultrasonic waves 
onto various model specimens.  In the experiments, the ultrasonic irradiation position x was 
changed.  x is the distance from the center position of the ultrasonic waves reaching the lower 
surface of the upper die to the end of the workpiece, as shown in Fig. 2(b).  The reflection 
intensity was measured at 20 points within wrinkle waves, i.e., double wrinkle wavelength.  The 
measurement was repeated three times and their mean value was calculated.

3.	 Results and Discussion

3.1	 Influence of wrinkle shape and irradiation position

	 Figure 5 shows the variation in the ultrasonic reflection intensity with the ultrasonic 
irradiation position x.  The model specimens with periodic trapezoidal wrinkles (Wrinkles), 
with a single trapezoidal wrinkle (Wrinkle), and with no wrinkles (No wrinkle) were used in 
the experiments.  The wrinkle shapes are arranged in the figures in accordance with x so that 
the relationship between the wrinkle shape and the irradiation position can be understood.  
In all the figures, I/I0 varied with x.  Except for the wrinkles with λw = 4 mm [Fig. 5(c)], the 
tendency of their variation was similar to the experimental results obtained with the vertical 

Fig. 3.	 Shape parameters of model specimen.  Contact width cw, wrinkle wavelength λw, wrinkle slope angle α, 
thickness tw, and wrinkle height h.
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Fig. 5.	 Relationship between irradiation position of ultrasonic waves and I/I0 (cw, tw, h = 1 mm).  Wrinkles with (a) 
λw = 12 mm, (b) λw = 8 mm, and (c) λw = 4 mm, and (d) single wrinkle.

Fig. 4.	 Measurement equipment used in this study.
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probe.(22)  It was found that the evaluation method with the angled beam technique captured the 
change in the contact state within the irradiation region of ultrasonic waves.  Even for the single 
wrinkle, I/I0 varied with x and the change in the contact state was detected.
	 For the periodic wrinkle with λw = 4 mm, i.e., a short wrinkle interval, the results obtained 
using the angled probe were different from those obtained using the vertical probe.  It can be 
reasoned that the difference could be caused by the change in the ultrasonic irradiation diameter 
owing to the oblique transmission of ultrasonic waves.  

3.2	 Change in reflection intensity from convex portion

	 Figure 6 shows the variation in the increment in I/I0, ΔI/I0, with the movement of the 
irradiation position, Δx, for the single wrinkle and the periodic wrinkles with λw = 8 and 12 mm.  
Δx is the amount of movement of the irradiation position with reference to the center position 
of the die–workpiece contact surface.  The ranges of x are from 47 to 53 mm for the periodic 
wrinkle with λw = 12 mm, from 44.2 to 49.8 mm for the periodic wrinkle with λw = 8 mm, and 
from 40 to 46 mm for the single wrinkle.  The relationships between Δx and the wrinkle shape 
are also illustrated in Fig. 6(a).  The slope of ΔI/I0 for the single wrinkle is greater than that for 
the periodic wrinkles because the die–workpiece contact surface in wrinkles other than the 
reference wrinkle could affect I/I0.

3.3	 Relationship between contact state and reflection characteristics

	 Figure 7 shows the relationship between I/I0 and the contact state of the lower surface of the 
upper die.  Values of I/I0 are average ones.  Convex indicates average measured values of convex 
areas in Wrinkle and Wrinkles.  The measured values for periodic wrinkles with λw = 4 mm 
were excluded.  The angled probe detected the difference in the contact state from the change 

Fig. 6.	 Variation of ΔI/I0 from contact region between die and specimen. (a) Relationship between wrinkle shape 
and Δx. (b) Relationship between ΔI/I0 and Δx.
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in I/I0 depending on the presence or absence of wrinkles.  However, I/I0 for the convex area of 
wrinkles was roughly the same as that for no wrinkle.  The reason for this may be related to the 
irradiation position and propagation distance of ultrasonic waves.  In order to obtain information 
on the contact surface and the glycerin around the convex area, the propagation distance and the 
irradiation position should be adjusted.  

4.	 Conclusions

	 The evaluation of wrinkles by the angled beam technique was examined.  The following 
conclusions were obtained.

1.	 	The angled probe is effective for evaluating the wrinkles using the relative reflection 
intensity because it captures the change in relative reflection intensity owing to the 
wrinkling.  Nevertheless, it is difficult to use for evaluating the convex part of wrinkles 
and the continuous wrinkles with small wrinkle wavelengths.

2.	 	Except for wrinkles with small wrinkle wavelengths, the reflection characteristics of the 
angled beam, i.e., the angled probe, changed depending on the irradiation position of the 
ultrasonic waves, similar to the vertical probe.  However, the angled probe seems to have 
low sensitivity due to the longer ultrasonic propagation distance than the vertical probe.  
A detailed comparison between the angled and vertical probes regarding their sensitivity 
and N/S ratio will be investigated in the near future.  In addition, the ultrasonic detection 
coupling the vertical and angled probes will be examined.
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