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	 The objective of this study is to evaluate the spatial distribution patterns of species diversity 
at different spatial scales, focusing on the Baekdudaegan Protected Area, which is a biodiversity 
hotspot in the Republic of Korea.  The tree species diversity index (Shannon–Weaver index; 
H′) was calculated using tree species data from a 1:5k forest-type map, and the spatial analysis 
was performed with a 1 × 1 km2 grid.  Ten factors were selected to estimate the impact of 
topographic (elevation, slope, northern slope, curvature, wetness, and relief) and geographic 
(distances from water, road, forest road, and urban area) factors on H′ using the ordinary least 
squares (OLS) and geographically weighted regression (GWR) models.  H′ increased with the 
spatial scale.  Also, the coefficient of determination (R²) of the GWR and OLS models increased 
proportionally and the R² of the GWR model was higher than that of the OLS model.  Corrected 
Akaike information criterion (AICc) was lower in the GWR model than in the OLS model, 
which indicates that the GWR model fits the calculated H′ better than the OLS model.  Thus, 
the GWR model is considered to be more practical than the OLS model for understanding the 
effects of topographic and geographic factors on H′ at different scales.

1.	 Introduction

	 Rapidly increasing deforestation and the resulting environmental changes have caused a 
significant reduction in global biodiversity.  The Convention on Biological Diversity held in 
Rio de Janeiro in 1992 led to the establishment of the Nagoya Protocol in 2010, which aims 
to conserve global biodiversity.(1)  To cope with the changing environmental policy in inter-
governmental relations on global biodiversity issues, the Republic of Korea established a 
national plan for forest biodiversity (2013 to 2017) and made related efforts including hosting 
the 12th Convention on Biological Diversity.(2,3)  The Baekdudaegan region is well known for 
abundant biological and ecological communities and for playing a key role in forest ecosystems 
in the Republic of Korea.  Owing to its unique vegetative characteristics within varied 
topographic features, the Baekdudaegan region has a diverse range of wildlife and plant species 
and is a hotspot for biodiversity both ecologically and for academic research.(4,5)
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	 Determining the factors that affect species and biodiversity distributions is critical in 
conservation perspectives.(6)  However, huge gaps in the available information on the spatial 
distribution of plant species pose a major challenge for regional conservation planning in many 
parts of the world.(7)  Previous studies on domestic forest distribution patterns have examined 
the relationships of the distribution of Salicaceae plant species, topography, and soils with 
the factors that affect the distribution patterns of plants in the northern Gyeonggi region by 
principal component analysis (PCA).(8,9)  Many studies have investigated the spatial patterns of 
species diversity and the relationship between species diversity and topographic and geographic 
factors using various methods such as correlation, regression, and geographic information 
system (GIS) analyses.(10–12)  Various regression, habitat, and fitness models have been 
developed in an attempt to quantitatively evaluate biodiversity and spatial distribution features.(13)  
Although the spatial range of biodiversity research studies has been expanded, it is still limited 
to site-specific studies along with the recognition of environmental issues including climate 
change.(14,15)

	 In the Republic of Korea, Han and Lee(16) and Sim et al.(17) conducted studies on the 
dependence of the distribution modeling of species on the spatial scale and distribution patterns 
of biodiversity.  The topographic and geographic factors affecting forest biodiversity were often 
spatially inconsistent with similar distributions in adjacent areas but different distributions 
in distant areas.(18,19)  In addition, because the vegetation exhibits various communities in a 
continuous pattern, causing spatial autocorrelation, the spatial location of attribute information 
should be considered to analyze the quantitative spatial pattern.(20,21)

	 The geographically weighted regression (GWR) model has been used in forestry sectors, 
such as for forest resource evaluation (e.g., timber volume estimation), because it allows the 
estimation of the regression model even in cases where the requirements for spatial correlation, 
normality, and homoscedasticity are not met.(22,23)  Although the distribution of species 
diversity varies regionally and with the spatial scale within a forest ecosystem, few studies have 
examined its correlation with the tree species diversity index.(24) 
	 Our study aims to compare the GWR model with the ordinary least squares (OLS) model 
in terms of the variation with the spatial scale and evaluate major factors affecting tree species 
diversity by examining the effects of topographic and geographic factors on the tree species 
diversity index (H′) of vegetation communities in the Baekdudaegan region.  
	 We concluded that the GWR model is more practical than the OLS model for understanding 
the effects of topographic and geographic factors on H′ at different spatial scales.  It is hoped 
that this study will be an important reference for future studies on the biodiversity distribution 
in the region.

2.	 Materials and Methods

2.1	 Study area

	 The study site is the Baekdudaegan Protected Area of Gangwon Province, which is 
well known as a biodiversity hotspot in the Republic of Korea, as shown in Fig. 1.  The 
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Baekdudaegan Protected Area of Gangwon Province is divided into 10 sections according 
to the ecological map of Baekdudaegan Mountains; the northern region (Goseong, Inje, 
Sokcho, and Yangyang) containing section 10; the central region (Hongcheon, Gangneung, 
and Pyeongchang) contains sections 8 and 9; and the southern region (Jeongseon, Donghae, 
Samcheok, Taebaek, and Yeongwol) contains sections 6 and 7.(25)

	 The total study area is 134093 ha, 70% of which is the core area and 30% the buffer zone.  
The total area of the forest is 126363 ha, 74% of which is deciduous forest, 14% coniferous 
forest, and 12% mixed coniferous and deciduous forests.(26) The major deciduous species 
are Quercus mongolica, Fraxinus rhynchophylla, Carpinus cordata, Betula costata, Acer 
pseudosieboldianum, and Lindera obtusiloba.  The major coniferous species are Pinus 
densiflora, Pinus koraiensis, Larix leptolepis, and Abies koreana.(27–31)

	 The average elevation is higher in the northern (894 m) and southern (863 m) regions than in 
the central region (758 m).  The average slope gradient is also higher in the northern (33°) and 
southern (29°) regions than in the central region (28°).

Fig. 1.	 Map of the Baekdudaegan Protected Area of Gangwon Province, the location of the study.  The gray 
area in the left map is the Baekdudaegan Protected Area and the right map is an enlargement of the Baekdudaegan 
Protected Area of Gangwon Province.
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2.2	 Data and study methods

	 In this study, the tree species diversity index, which is a dependent variable to be applied to 
the GWR and OLS models, was calculated for each of the spatial scales 3 by 3 (s3), 5 by 5 (s5), 
7 by 7 (s7), and 9 by 9 (s9) using the Baekdudaegan Protected Area map (1:25000 scale) and the 
forest-type map (1:5000 scale) provided by the Korea Forest Service.  Topographic factors were 
used as independent variables to obtain a digital elevation model [e.g., DEM (30 m) from forest 
type map (1:5000 scale)] and geographic factors were calculated as independent variable using  
a river map, a road map, a forest road map, and a building map (1:25000 scale).  
	 The calculated factor values were applied to the OLS and GWR models; then, the 
corresponding values obtained with both models were compared and the major factors affecting 
H′ were evaluated, as shown in Fig. 2.  The ArcGIS 10.1 software was used to calculate H′.  The 
dependent variable H and independent variables, and the topographic and geographic factors 
were used to construct the GIS database by using the ArcGIS 10.1 program.  GWR and OLS 
were calculated by using “Geographically weighted regression” tool and the “Ordinary least 
squares” tool of the ArcGIS 10.1 program.

2.3	 Tree species diversity index (H′)

	 H′ is related to species richness and species evenness.  It provides more information than 
simply the number of species present and makes species richness and evenness easier to see 
through numerical structures by quantifying the local tree species diversity.(32)   

Fig. 2.	 Schematic diagram of the research methodology.
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	 H′ was estimated using tree species data in the forest-type map.  The forest-type map 
is a spatial digital map that shows the age and diameter classes of trees on a map of 1:5000 
scale in the Republic of Korea.  The tree species data of the forest-type map is composed of 
approximately 52 items of forest information obtained from a forest of less than 0.5 ha, which is 
the minimum area unit of the forest.  Tree species data were converted from the polygon form to 
the grid form except for nonforest and deforested areas.  The spatial resolution of the grid was 
set to 1 × 1 km2.  Graham and Hijmans analyzed correlation at a resolution using 1 × 1 km2, 
25 × 25 km2, and 50 × 50 km2 in the calculation of species richness and found that the 
calculation of species richness is more correlated at a low resolution than at a high resolution.(15)  
However, in this study, the forest-type map used in the calculation of the species diversity index 
had a scale of 1:5000.  Therefore, when converting from the polygon form to the grid form, 
the highest resolution of 1 × 1 km2 was used.  The spatial scale used to determine the range of 
population in the species diversity index calculation was set to 3 by 3 (s3), 5 by 5 (s5), 7 by 7 (s7), 
and 9 by 9 (s9).  
	 As shown in Fig. 3, 3 by 3 means that the value of each cell is calculated by moving the cell 
from the total of nine populations to determine the value of H′ of the central grid at the spatial 
scale that was calculated by applying the spatial scale technique.(17) This was carried out to 
determine H′ according to the change in spatial scale.
	 The Shannon–Weaver index, which is the most widely used index for calculating H′ in 
forest ecosystems, was chosen to calculate H′ according to the spatial scale.  H′ is calculated 
by applying the tree species diversity index to Shannon’s formula.  H′ is the Shannon–Weaver 
index, whose value is the number of grids of all species at the spatial scale divided by the total 
number of grids at the spatial scale.(32)  The formula used to calculate H′ is as follows.(33) 
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Fig. 3.	 (Color online) Various spatial scale units for calculating tree species diversity index.
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2.4	 Topographic and geographic factors

	 As the independent variables to be applied to the GWR and OLS models,  six topographic 
factors and four geographic factors were selected as additional factors that were judged 
to affect biodiversity by referring to prior studies on the evaluation of species diversity in 
Baekdudaegan.(8,10,34)  Song and Cao reported that elevation and wetness significantly correlate 
with tree species richness.(35)  Gonzalez and Mata reported that tree species richness and 
diversity correlate with elevation and slope, which are important factors for predicting tree 
species richness and diversity.(36)

	 On the other hand, slope is expressed as one of the eight directions, and cannot be 
digitalized; thus, in this study, calculations were performed using the northern slope, which can 
be digitalized.
	 The following factors are considered to affect tree species diversity.  The topographic factors 
included elevation, slope, northern slope, curvature, relief, and wetness data extracted from the 
DEM, and the geographic factors included distance from water (D_water), distance from a road (D_
road), distance from a forest road (D_forest road), and distance from an urban area (D_urban), 
which were calculated using the Euclidean distance, as shown in Table 1.  The spatial analysis 
unit of the grid for topographic and geographic factors was set to 1 × 1 km2 and constructed 
using the GIS database.

2.5	 GWR model

	 The GWR model is used to determine tree species diversity from topographic and 
geographic factors.

Table 1 
Six topographic and four geographic factors affecting tree species diversity applied to GWR model.

Factor Note

Topographic
factors

Elevation elevation information using DEM
Slope slope extracted from DEM

Northern slope

Curvature curvature
= −2(A + B) × 100

2

2

4 6 5
2

2 8 5
2
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z zB z L

L
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 

+ = − − 
 

=
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z4 z5 z6

z7 z8 z9

Relief DEM 3 × 3 neighborhood standard deviation

Wetness
 

 1wetness ln
1

flowaccumulation
slope

 +
=  + 

Geographic
factors

D_water

Euclidean distance
D_road

D_forest road
D_urban

north slope cos  360 1, 180 0
180

aspect π× = °= °= 
 
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	 The GWR model provides each spatial position with a regression coefficient, which is 
unattainable using the global model (OLS).  The regression analysis performed with the 
GWR model selects the center point and the standard distance in each selected area under 
the assumption that different regression coefficients can be acquired.  This means that the 
regression coefficient is not calculated using a constant value but using the position functions 
for each geographic location i.(37,38)  The formulas used for the OLS and GWR models are given 
in Eqs. (2) and (3), where Yi are the response variables.  Xk are the set of predictor variables p (k 
= 1, 2, ..., p); β0(ui, vi), β1(ui, vi), ..., βp(ui, vi) are the regression coefficients for the kth predictor 
variable and ith location and εi are the random error terms.  The GWR model calculation 
was used only when the location coefficient (ui, vi) was assigned to the OLS model and the 
population parameter could be estimated for the position.(39)

	 β ε= +Y X 	 (2)

	 ( ) ( )0
1

, ,
p

i i i k i i ki i
k

u v u vβ β ε
=

= + +∑Y X 	 (3)

	 The regression coefficient βk was assigned a weighted value as a function of the position.  A 
location near geographic location i had a greater effect than a distant area.  Although the GWR 
model followed the weighted least squares (WLS) structure, the regression coefficient was 
weighted as 
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	 The weighted matrix Wi for geographic location i produced different estimated results 
depending on the spatial composition method.  It was generally used as a bandwidth using a 
different kernel function depending on the density tendency of the data.  When the bandwidth 
that determined the weighted value was fixed, the fixed kernel method was used, whereas when 
the bandwidth was variable, the adaptive kernel method was used.  In the present study, the 
fixed kernel method was used when the observed sites were distributed regularly throughout 
the study area, whereas the adaptive kernel method was used when the sites were distributed 
irregularly or had uncertainty to determine.  In addition, the corrected Akaike information 
criterion (AICc) method [Eq. (5)] was used to determine bandwidth because it considers the 
difference between observed and estimated values, and the complexity of a model.(23,40)  We 
used the residuals between the regression points to evaluate the models.
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2.6	 Model evaluation

	 The coefficient of determination (R²), the root mean square error (RMSE), the AICc index, 
and, the global Moran’s I values were used to assess the OLS and GWR models.(23)  The AICc 
was calculated using the bandwidth between the data point and the regression point, and used 
to determine the degree of improvement of the GWR model in comparison with the OLS 
model.  If the GWR model had a lower AICc value and the difference was greater than 4, it was 
considered that the GWR model was better than the OLS model.(40,41)

	
( )
( )

2 log ( ) log (2
2

ˆ )
ˆ

e e
n tr S yAICc n n n S

n tr S y
σ π
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	 (5)

Here, n is the number of features, y is the dependent variable, ŷ is the estimation, and σ̂  is the 
estimated standard error of residuals.
	 To determine the spatial autocorrelation of residuals in spatial data, we used global Moran’s 
I values.  Also, Moran’s I value was used to determine the similarities between the attribute 
data of the surrounding feature and the average attribute data of the total study area from the 
target feature.  As Moran’s I value approaches 0, spatial autocorrelation rarely appears and the 
observed value becomes more random; as it approaches +1, a positive spatial autocorrelation 
exists and the observed value becomes more clustered; and as it approaches −1, a negative 
spatial autocorrelation exists and the observed value becomes more dispersed.(42,43)  For 
the spatial weight matrix Wij, the inverse distance method was used, in which the spatial 
heterogeneity increases with the distance between spatial unit features i and j.  The Euclidean 
distance was measured as the distance between features.(21)  The weighted distance was set as 
1 km so that the grids facing the surrounding area could be included.  
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Here, n is the number of observations (grids), x  is the mean of the variable, xi is the value of the 
variable at a particular location, xj is the value of the variable at another location, and Wij is the 
weight index for the location of i relative to j.

3.	 Results and Discussion

3.1	 Distribution of H′ at different scales

	 There are 12 tree species within the current study area, Pinus densiflora, Pinus koraiensis, 
Larix leptolepis, Abies holophylla, Quercus mongolica, Quercus variabilis, other Quercus spp. 
(Quercus aliena, Quercus dentata, and Quercus serrata), Betula platyphylla var. japonica, 
Fraxinus rhynchophylla, and Juglans sinensis, as well as other deciduous forests (deciduous 
broad-leaved trees), and mixed coniferous and deciduous forest.
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	 The average H′ value at the different spatial scales ranged from 0.991 (s3) to 1.371 (s9).  
These values were similar to the average H′ value calculated for areas from Hyangnobong 
to Gitdaebaggybong in the Baekdudaegan region of Gangwon Province by Jeong and Oh.(44)  
Gabriel et al.(45) reported that there were significant differences in the tree species diversity 
distribution according to the spatial scale.  In this study, the average H′ increased with the 
spatial scale and was 1.37 times higher at s9 than at s3.  Moreover, the minimum H′ increased 
from s7, but the maximum H′ hardly changed with the spatial scale.
	 The average H′ was higher in the northern and southern regions, whose elevation and slope 
were higher than those of the central region regardless of the spatial scale.  In particular, in the 
southern region, H′ had the highest value of 1.879 at s9, similar to the value of H′ calculated by 
Hwang et al.(28) as shown in Table 2 and Fig. 4.

3.2	 Selection of major factors affecting H′

	 The correlation coefficients between the major factors, except for that between the slope and 
the relief, ranged from 0.005 to −0.511.  The correlation coefficient between the slope and the 
relief was 0.811 but the variance inflation factors (VIFs) for the slope and relief factors were 
lower than 10 and multicollinearity did not occur, as shown in Table 3.  Therefore, we included 
all 10 factors when constructing the regression model.

3.3	 Evaluating model fitness

	 In this study, the fitness of the OLS and GWR models was evaluated to analyze the spatial 
relationship between the dependent and independent variables.  OLS is a global model that 
estimates regression coefficients at the overall level, and if there is geographic irregularity, 
it cannot distinguish spatial changes.  GWR is a regional model that is used to analyze the 
difference according to the spatial location.  
	 By comparing the fitness between OLS and GWR, it was determined which model was more 
suitable for analyzing the spatial relationship between the dependent and independent variables.  
The coefficient of determination of the OLS and GWR models increased with the spatial scale.  
In the case of s9, the coefficient of determination was 0.41 for the GWR model, which was 3.4 
times higher than that in the OLS model.  Also, the coefficient of determination was higher for 
GWR than for OLS regardless of the spatial scale.  This was consistent with the results of other 
studies.  Liu et al. used GWR to determine the changes in microregions.(23)

	 The RMSE tended to decrease for both models as the spatial scale increased.  Also, the 
RMSE was lower for the GWR model than for the OLS model regardless of the spatial scale, 

Table 2
Summary of statistics of H′ at different spatial scales.
Spatial scale Min. Max. Avg. St. Dev.
s3 0.000 1.792 0.991 0.333
s5 0.000 1.848 1.214 0.285
s7 0.586 1.871 1.309 0.248
s9 0.705 1.879 1.361 0.230
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Fig. 4.	 (Color online) Distribution maps of H′ for four spatial scales in the Baekdudaegan Protected Area of 
Gangwon Province. (a) s3, (b) s5, (c) s7, and (d) s9.

Table 3
Correlation between six topographic and four geographic factors in the Baekdudaegan Protected Area of Gangwon 
Province. 

Elevation Slope North slope Curvature Wetness Relief D_water D_road D_forest_road D_urban VIF
Elevation 1 1.698
Slope −.158*** 1 6.449
North slope −.168*** .099*** 1 1.055
Curvature .475*** −.085*** −.052* 1 1.873
Wetness −.338*** −.478*** .026 −.511*** 1 2.463
Relief −.062** .881*** .092*** −.026 −.388*** 1 4.880
D_water .205*** −.061** −.007 .012 −.026 −.045 1 1.102
D_road .229*** −.011 .030 −.003 .048* .021 .046 1 1.082
D_forest road .050* .018 −.006 −.029 .005 .034 .185*** .046 1 1.047
D_urban .097*** −.068** .074*** −.025 .063** −.073*** .117*** .022 .054* 1 1.050
*p < 0.10, **p < 0.05, and ***p < 0.01

(a) (b)

(d)(c)
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and the difference in RMSE between the models increased with the spatial scale.  In addition, 
the AICc of the models tended to decrease as the spatial scale range increased; it was lower for 
GWR than for OLS.  Jo(46) and Kim and Jun(38) reported the improvement factors evaluated on 
the basis of the difference in AICc, and in the present study, as the spatial scale increased, the 
difference in AICc between models occurred, indicating that GWR performed better than OLS.
	 Moreover, the Moran’s I of the two models increased with the spatial scale.  In the case of s3, 
Moran’s I, values of the OLS and GWR models were close to 0, and thus, there was no spatial 
autocorrelation.  Similarly to that reported by Kim et al.,(47) Moran’s I was lower in GWR than 
in OLS and the vegetation distribution characteristics were differently composed with clusters.  
Therefore, the GWR model is more suitable when considering the spatial effect in the current 
study area, as shown in Table 4.

3.4	 Dependence of distribution of local R² and residual values on the GWR results

3.4.1	 Distribution of local R² of tree diversity index calculated by incorporating six 
topographic factors and four geographic factors 

	 The main advantage of the GWR model is that the local R² and residual values can be 
determined for each feature,(48) and the coefficient of determination was used to measure the 
fitness of the regression equations at each spatial scale.  When the coefficient of determination 
is near 1, ten factors have a strong effect on H′.(49)  Figure 5 shows the distribution of the local 
R² at each spatial scale.
	 The distributions of local R² values were calculated using each grid, which is the spatial unit 
in the GWR model, as shown in Fig. 5.  The difference between the maximum and minimum 
local R² values was the highest (0.46) for the s9 spatial scale.  The differences in the R² values 
for the s3, s5, and s7 spatial scales were 0.11, 0.24, and 0.40, respectively, indicating that as the 
spatial scale increased, the difference in the coefficient of determination also increased.  
	 In terms of spatial distribution characteristics, the coefficient of determination of the 
southern region (Samcheok, Taebaek, and Yeongwol) was the highest in s3, but that of the 
central region (Gangneung and Pyeongchang) was the highest in s5 and s7.  Moreover the local 
R² of s9 was high in the southern region (Taebaek and Yeongwol) as well as in the central region 
(Gangneung and Pyeongchang).  

Table 4
Comparison of model fitting between the OLS model and the GWR model using R2, RMSE, AICc, and Moran’s I.

Spatial
scale

OLS GWR

R2 RMSE AICc Moran’s I
(Z-Score) R2 RMSE AICc Moran’s I

(Z-Score)

s3 0.02 0.3281 797 0.1931
(47.19) 0.11 0.2974 620 0.0916

(22.49)

s5 0.06 0.2754 353 0.3741
(93.69) 0.22 0.2207 –137 0.1609

(39.38)

s7 0.09 0.2364 –35 0.5298
(129.12) 0.33 0.1634 –899 0.2102

(51.38)

s9 0.12 0.2146 –281 0.6345
(154.57) 0.41 0.1290 –1500 0.2773

(67.71)
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3.4.2	 Distribution of local R² of H′ calculated by separating each factor 

	 In this study, the tree species diversity distribution obtained using the GWR model depended 
on the region owing to the effects of topographic and geographic factors.  
	 The correlation was determined by regression analysis to examine the effects of topographic 
and geographic factors on the tree species diversity.  Table 5 gives the regression coefficient 
distribution of the six topographic factors and four geographic factors affecting H′, which 
includes the coefficients, average, minimum, and maximum values of each factor in the study 
area.

Fig. 5.	 (Color online) Distribution map of local R2 values calculated from the GWR model using four spatial 
scales in the Baekdudaegan Protected Area of Gangwon province. (a) s3, (b) s5, (c) s7, and (d) s9.

(a) (b)

(c) (d)
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	 The GWR model was used to determine H′, which is a variable dependent on the topographic 
and geographic factors.  H′ was calculated to determine which topographic and geographic 
factors affected the tree species diversity.
	 The average coefficient of regression for elevation was low for all four spatial scales with 
values of less than –0.0007.  The coefficients of regression for the average slope were 0.00763 
and 0.00187 for s3 and s5, respectively, indicating that H′ increased with the slope.  For s7 and 
s9, the coefficients of regression for the average slope were −0.00189 and −0.00207, respectively, 
demonstrating that H′ decreased with decreasing slope.  The coefficients of regression for the 
average northern slope were −0.01051 and −0.00447 for s3 and s5, respectively, indicating 
that H′ increased as far as the northern slope of high value.  For s7 and s9, the coefficients 
of regression were 0.00332 and 0.01030, respectively, indicating that H′ increased as close 
to the northern slope of high value.  For the curvature, the average coefficient of regression 
was positive for all four spatial scales (s3, 0.51848; s5, 0.12887; s7, 0.15992; and s9, 0.10466), 
showing that H′ increased with the curvature.  By comparing the curvature with the other 
factors, the average coefficient of regression for the curvature was high and had the greatest 
impact on H′.  The coefficients of regression for average wetness were 0.01135 and 0.00465 for 
s3 and s5, respectively.  H′ increased with the wetness, whereas for s7 and s9, H′ increased with 
decreasing wetness.  The coefficient of regression for the average relief had positive values for 
all four spatial scales (s3, 0.00006; s5, 0.00058; s7, 0.00076; and s9, 0.00057), indicating that H′ 
increased with the difference in the elevation of the surrounding terrain.  However, the effect of 
elevation on H′ was minimal.  The coefficient of regression for the four geographic factors of 
D_water, D_road, D_forest road, and D_urban ranged from −0.00002 to 0.00000, showing that 
their effects on H′ were negligible.  
	 The major topographic factors determining H′ for the GWR model were curvature, northern 
slope, slope, and wetness.  In particular, the curvature and northern slope were positive, and 
when the curvature and northern slope increased or when the slope and wetness decreased, 
H′ increased.  The relief was also positive, and when the relief increased, H′ also increased.  
However, the regression coefficient of the relief is low, meaning that it has a negligible effect on 
H′.  The effect of geographic factors was lower in the H′ prediction model.

Table 5
Relationships of species diversity index with six topographic factors and four geographic factors according to 
spatial scales using GWR model.

Statistics s3 s5 s7 s9
Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Intercept 0.70516 1.49188 1.10347 0.85179 1.98074 1.38954 0.87986 2.21285 1.49941 0.89178 2.37775 1.56644
Elevation −0.00029 0.00023 −0.00009 −0.00033 0.00023 −0.00010 −0.00039 0.00035 −0.00009 −0.00042 0.00042 −0.00007
Slope −0.01016 0.03539 0.00763 −0.01241 0.02691 0.00187 −0.01740 0.02497 −0.00189 −0.01441 0.02065 −0.00207
North slope −0.09988 0.10645 −0.01051 −0.07687 0.06050 −0.00447 −0.05099 0.02830 0.00332 −0.03872 0.02602 0.01030
Curvature −0.49519 1.09952 0.51848 −0.95276 0.55400 0.12887 −0.35150 0.60976 0.15992 −0.46532 0.60145 0.10466
Wetness −0.05008 0.06741 0.01135 −0.03436 0.06742 0.00465 −0.03699 0.05851 −0.00275 −0.02667 0.04744 −0.00190
Relief −0.00310 0.00283 0.00006 −0.00304 0.00313 0.00058 −0.00309 0.00306 0.00076 −0.00284 0.00259 0.00057
D_water −0.00004 0.00004 0.00000 −0.00005 0.00004 −0.00001 −0.00005 0.00004 −0.00001 −0.00005 0.00004 −0.00001
D_road −0.00004 0.00001 −0.00001 −0.00006 0.00001 −0.00001 −0.00005 0.00001 −0.00001 −0.00004 0.00001 −0.00001
D_forest road −0.00006 0.00002 0.00000 −0.00003 0.00003 0.00001 −0.00004 0.00004 0.00000 −0.00004 0.00005 0.00000
D_urban −0.00003 0.00001 −0.00001 −0.00004 0.00001 −0.00001 −0.00005 0.00001 −0.00002 −0.00005 0.00001 −0.00002
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	 Our study found that topographic factors significantly correlate with tree species diversity, 
proving the practicality of topographic factors for studying the tree species diversity distribution 
for each grid (region).  
	 On the basis of the above discussion, we can predict how tree species diversity will change 
with topographic factors.  In Table 5, each number gives the impact of a factor on the dependent 
variable H′ for the corresponding grid unit (region).  
	 Figure 6 shows the regional coefficient distribution of the explanatory variables for tree 
species diversity calculated by the regression formula at spatial scale s9.  The effect of each 
coefficient on tree species diversity varies from region to region.  The coefficient for each factor 
has positive and negative values, and the magnitude of the coefficient is different for each grid 
(region).  
	 The northern region of the study area has high elevation and slope.  As the elevation and 
slope increased, H′ also increased.  In contrast, the central and southern regions have low 
values, which led to low H′.  In addition, the northern slope and curvature are high in most 
areas, and as the northern slope and curvature increased in most areas of the study area, H′ also 
increased.

Fig. 6.	 (Color online) Distribution maps of local R2 values calculated from the GWR model at spatial scale s9 in 
the Baekdudaegan Protected Area of Gangwon province.
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	 From the effects of each factor on R² for the s9 spatial scale, which had the highest R² 
among the four spatial scales, the elevation, wetness, and D_water had the greatest effects in 
the northern areas; the slope and northern slope had the greatest effects in the central area; 
the curvature and D_road had the greatest effects in the southern area; and the relief, D_forest 
road, and D_urban had the greatest effects in the northern and southern areas.  These results 
indicate that H′ was affected differently according to differences in the regional distribution of 
topographic and geographic factors, as shown in Fig. 6.  

4.	 Conclusions

	 This study was carried out to determine the spatial distribution characteristics and effects 
of topographic and geographic factors on H′ at four spatial scales (s3, s5, s7, and s9) in the 
Baekdudaegan Protected Area using the GWR model.
	 The method of calculating H′ at each spatial scale using a forest-type map was effective for 
understanding and displaying the spatial distribution characteristics of species diversity in the 
Baekdudaegan Protected Area.  In addition, OLS and GWR were compared in terms of their 
effectiveness in determining the relationship between topographic and geographic factors, and 
species diversity.  Two models were compared using R², RMSE, AICc, and Moran’s I.
	 The GWR model was more suitable for examing the relationship of H′ with topographic and 
geographic factors because R² was higher in the GWR model than in the OLS model, and AICc 
and RMSE were lower in the GWR model than in the OLS model.  Because the GWR model 
shows the variations of properties caused by spatial specificity, it is possible to determine the 
variations of species diversity depending on the relationship of variables.  By calculating H′ at 
each spatial scale, the coefficient of determination between the 10 factors and H′ was obtained, 
and the effect of each factor on tree species diversity and the effects of the different regions 
were determined.
	 In a future study, if the variables affecting tree species diversity are predicted for each 
grid (region) through the GWR model, or if other factors are added to the factors proposed in 
this study, it will be important to increase the efficiency of the investigation of tree species 
diversity by identifying the spatial changes in the region.  Localized and detailed information 
of factors affecting tree species diversity can be useful for the management and planning of the 
Baekdudaegan Protected Area by estimating the distribution of tree species diversity in each 
region, which is expected to be important for improving the forest protection system.  
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