
3229Sensors and Materials, Vol. 31, No. 10 (2019) 3229–3244
MYU Tokyo

S & M 2007

*Corresponding author: e-mail: minsoo@dju.ac.kr
https://doi.org/10.18494/SAM.2019.2365

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Dynamic Mashup Performance Comparison Using
Open Application Programming Interface

of Geoweb Map Platforms Available in Korea

Min-Soo Kim1* and In-Sung Jang2

1Department of Computer Engineering, Daejeon University,
62 Daehak-ro, Dong-gu, Daejeon 34520, Korea

2Hyper-connected Communication Research Laboratory, ETRI,
218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea

(Received March 6, 2019; accepted April 30, 2019)

Keywords:	 mashup, Open API, map platform, geoweb, tile map

	 Recently, users have been more interested in the development of a dynamic mashup
application that integrates and renders large amounts of real-time sensor data and geospatial
data. However, such a dynamic mashup application has caused performance issues in large
amounts of real-time sensor data integration and time series rendering. In this study, we
compare and analyze the dynamic mashup performance characteristics of various types of map
platform. For accurate performance comparison, we define performance comparison metrics
of data loading time, mashup time, and user interaction time. We also implement a mashup
prototype system composed of a Geoweb client, a sensor data server, and several map platforms
in order to efficiently perform various experiments. The experimental results show the mashup
performance characteristics of Google Maps, OpenStreetMap (OSM), VWorld, olleh Map,
Daum Map, and Naver Map. Finally, we present which map platforms have good and stable
performance in the dynamic mashup of large amounts of sensor data.

1.	 Introduction

	 With the advent of Geoweb 2.0 technologies, particularly Ajax, Open application
programming interface (API), and tiling, various types of geospatial web application have
been developed.(1) Particularly after the launch of Google Maps based on the Geoweb 2.0
technologies, the number of geospatial web applications that can mashup Google Maps with
information from other web sites has greatly increased. Compared with the previous geospatial
web applications that require significant programming skills, the new applications based on
Open API allow users to easily share and integrate geospatial data and other information on
the web.(2) Recently, users have been more interested in the development of geospatial mashup
applications with the advent of many map platforms. For example, the map platforms of Google
Maps,(3) Bing Maps,(4) and OpenStreetMap (OSM)(5) have been released. Such map platforms’
front end normally utilizes Ajax technologies, and their back end offers Open API that allows

3230	 Sensors and Materials, Vol. 31, No. 10 (2019)

tiled maps to be embedded on third party web applications. In Korea, in addition to Google
Maps, Bing Maps, and OSM, various map platforms such as Vworld,(6) olleh Map,(7) Daum
Map,(8) and Naver Map(9) can be used in the mashup applications. Furthermore, recent mashup
applications can integrate various types of geospatial data such as vector map, imagery map,
street level map, 3D map, and indoor map. In particular, with the recent development of O2O,
LBS, and Smart City services, the number of mashup applications integrating large amounts
of third-party real-time sensor data has been increasing rapidly.(10,11) For example, third-party
developers can embed real-time locations of moving objects and real-time weather, air quality,
and traffic information into maps to create new dynamic mashup applications. However, such a
dynamic mashup has caused performance issues in the front end owing to the large amounts of
real-time sensor data integration and time series rendering.(12)

	 In this work, we try to compare and analyze the performance characteristics of various map
platforms in the dynamic mashup that integrates large amounts of real-time sensor data. In the
performance comparison using various map platforms, we compare the geospatial data loading
time, the mashup time, and the time of user interaction such as zoom or pan. Specifically, we
use map platforms of Google Maps, OSM, VWorld, olleh Map, Daum Map, and Naver Map,
which are easily accessible in Korea. We also use various web browsers, namely, Chrome,
Firefox, and Internet Explorer.
	 The remaining sections of this paper are structured as follows: we review related works
regarding dynamic mashup applications using large amounts of real-time sensor data and their
performance in Sect. 2. In Sect. 3, we propose the performance comparison methodology
among various map platforms. In Sect. 4, we show a series of experiments on the performance
analysis and discuss the results. In Sect. 5, we conclude this work.

2.	 Related Works

	 There have been several studies on the performance of Geoweb services. When the early
GeoWeb services facilitated geospatial data sharing through the web, researchers first were
interested in the performance improvement of Open GIS Consortium (OGC) Web Map Service
(WMS).(13–18) Loechel and Schmid(14) argued that fast response time to a web request is a
mandatory performance of WMS. They proposed several caching techniques such as tile
caching and reverse proxy caching for the fast response of WMS. For example, the caching
techniques had limits of 5 s maximum for a full map load and 2 s maximum for visual feedback
for military situational awareness system application.(19) Schmid and Reinhardt(15) argued that
Geoweb services require a certain quality of service (QoS) and the QoS becomes increasingly
important. They presented a general evaluation procedure for the QoS and demonstrated its
applicability using WMS. Specifically, they defined a goal as the fast response of geospatial
data to quite a number of users and analyzed the response time using WMS.
	 Yang et al.(16) argued that WMS servers are not well optimized for real-world requirements
and WMS clients are not well designed for multiple connections to WMS servers. Thus, they
analyzed performance patterns of several WMS servers and proposed a new design of a WMS
client by using the patterns. To improve the performance of a WMS server, Garcia et al.(18)

Sensors and Materials, Vol. 31, No. 10 (2019)	 3231

proposed algorithms to optimize WMS tile caching (WMS-C). The WMS-C approach
divides the map into a discrete set of images, called tiles, and restricts user requests to the
set of images.(20) The Open Source Geospatial Foundation (OSGeo) announced WMS-C,
and OGC released the Web Map Tile Service (WMTS) Standard(21) inspired by the WMS-C.
Wu et al.(17) argued that it is significant and challenging to select a satisfactory WMS server,
because it requires the consideration of multiple factors such as user preference, quality of data,
and performance. Thus, they proposed a web portal that can explore and compare the service
quality of many WMS servers. The web portal allows a user to query and filter a WMS server
using various types of user interaction. Schmid et al.(13) presented a WMS server using NoSQL
as well as the SQL database for huge amounts of geospatial data storage. They also compared
the performance characteristics of two WMS servers, which consisted of PostgreSQL and
MongoDB.
	 Besides the performance improvement of OGC WMS, there have been several studies
related to the performance of general Geoweb services.(22–25) Zhang(25) proposed a main-
memory-based quad tree to efficiently support dynamic geospatial window queries. He used
the quad tree to improve the performance of window queries on the Geoweb services. Huang
and Chang(23) proposed a Geoweb search engine called Geoweb Crawler that can efficiently
find various Geoweb resources. To improve the performance of the Geoweb Crawler, they
used the MapReduce concept(26) to execute the crawling process in parallel. The Geoweb
Crawler could efficiently find Geoweb resources such as OGC web services, KML, and shape
data. Sani and Rinner(22) were interested in scalability, which was identified as a key concern
with participatory Geoweb applications. They argued that scalability describes the ability of a
Geoweb server to accommodate an increased number of users through the addition of system
resources. Thus, they proposed a cloud computing implementation for the scalability and
performance improvement of a Geoweb server. Dalton(24) analyzed the social and technological
limits and possibilities of third-party Geoweb applications based on web services such as
Google Maps.
	 In recent years, Geoweb 2.0 technology and standards have transformed a simple Geoweb
server into a Geoweb platform. The Geoweb platform enables the creation of new knowledge
and applications through the mashup of user data and geospatial data. Karnatak et al.(27)
and Gong et al.(28) proposed geospatial mashup solutions for disaster management and urban
management, respectively. They provided online access, visualization, geospatial analysis, and
real-time sensor data sharing services following a mashup framework of the Geoweb 2.0. They
aimed at contributing to sustainable disaster management and urban management by using a
Geoweb 2.0 map platform to quickly and easily develop mashup solutions.
	 Thus far, these studies on the performance of Geoweb services have been mainly interested
in the improvement of the Geoweb server or Geoweb search engine. They never took the
performance of a Geoweb client into account. Therefore, we try to analyze the mashup
performance of a web client that integrates large amounts of real-time sensor data with
geospatial data using the Geoweb 2.0 technologies. The performance analysis will show how
many real-time data can be efficiently mashed up on the Geoweb 2.0 map platforms.

3232	 Sensors and Materials, Vol. 31, No. 10 (2019)

3.	 Performance Comparison of Map Platforms in the Dynamic Mashup

3.1	 Performance comparison metrics

	 We present a performance comparison metrics of various Geoweb 2.0 map platforms in
the dynamic mashup that integrates large amounts of time series data with geospatial data. A
Geoweb client performs such a dynamic mashup using Open API of Geoweb 2.0 platforms. In
the dynamic mashup process, a Geoweb client performs several time-consuming tasks. The
tasks are data loading, mashup, and user interaction as shown in Fig. 1. The data loading task
downloads geospatial data from a map platform and loads user sensor data from a client’s
data store. The mashup task processes the real-time integration and time series rendering
of geospatial data and user sensor data. The user interaction task processes the real-time
rendering of the data integrated into a zoom or pan operation. The performance of three tasks
depends mainly on the Open API performance of a map platform. Therefore, we try to compare
the performance characteristics of the three tasks in relation to the Open API performance. In
particular, we propose a performance comparison methodology to be able to accurately compare
the total time spent in three main tasks.

	 As shown in Fig. 1, we perform three main tasks of data loading, mashup, and user
interaction in this order. In this study, we define the total dynamic mashup performance of
a map platform as a sum of each task performance, and each performance is measured by
experiment on each task. The total dynamic mashup performance can be defined as

 Total Performance (Tp) = 	Data Loading Time (Td) + Mashup Time (Tm)
	 + User Interaction Time (Ti).	

(1)

	 First, Td means the time it takes for a Geoweb client to load data. A Geoweb client may load
geospatial data and user sensor data. However, we consider that the loading time of user sensor
data is independent of the mashup performance of a map platform, since user data are directly

Fig. 1.	 (Color online) Three main tasks in a dynamic mashup: (a) data loading, (b) mashup, and (c) user
interaction.

(a) (b) (c)

Sensors and Materials, Vol. 31, No. 10 (2019)	 3233

loaded from user’s local data store. Therefore, we define Td as the loading time of geospatial
data only. Second, Tm means the time it takes for a Geoweb client to mashup the loaded data.
The mashup task is composed of the real-time integration and time series rendering of the
loaded data. Specifically, a Geoweb client integrates geospatial data with user sensor data
to create an integrated layer and renders the integrated layer. Therefore, we define Tm as the
total time for the integration and rendering. Third, Ti means the time it takes for a Geoweb
client to process user interaction on the integrated layer. User interactions such as zoom or
pan can often be used in the dynamic mashup. Moreover, they require new data loading and
mashup tasks frequently. Therefore, we think that user interaction can be an important factor in
measuring the performance of a map platform. We define Ti as the total time to perform such
user interaction.
	 From Td, we can see the initialization time of a Geoweb client. In the initialization, a
Geoweb client downloads an Open API module and initial geospatial data from a map platform.
Although Td may vary depending on not only Open API but also a map platform status such
as network condition, installation location, and hardware specifications, it has an important
meaning in terms of the initialization performance in the dynamic mashup. From Tm, we can
see the integration and rendering time consumed by Open API operations. In other words, Tm
measures the performance of only Open API in a Geoweb client. Therefore, we can exactly
compare the Open API performance characteristics of various types of map platform in the
process of integration and rendering. From Ti, we can see the user interaction time consumed
by Open API in a zoom or pan operation. The user interaction sometimes requires new
data loading as well as integration and rendering. Finally, we think that Td, Tm, and Ti are
meaningful in the performance measurement in the dynamic mashup. Also, we think that
Tp is needed to measure the total performance of the dynamic mashup, since normal mashup
applications perform all of the initialization, integration and rendering, and user interaction. In
Sect. 3.2, we will explain how to measure Td, Tm, Ti, and Tp specifically.

3.2	 Prototype system for performance measurement

	 In this subsection, we implement a mashup prototype system shown in Fig. 2, which can
efficiently measure Td, Tm, and Ti. The system consists of three parts: a Geoweb client, a user
data server, and six types of Geoweb 2.0 map platform.
	 First, we implement a user data server in order to use it as an input source of large amounts
of real-time sensor data. The server is implemented using a web server of Node.js and a
database system of PostgreSQL. The server only provides a Geoweb client with real-time
sensor data that would be integrated with geospatial data. We use the server as a client’s data
store for user sensor data. We exclude the loading time from the user data server in Td, as
mentioned in Sect. 3.1.
	 Second, we implement a Geoweb client using Open APIs of six types of Geoweb 2.0 map
platform. The Geoweb client consists of three performance measurement modules for the main
tasks of data loading, mashup, and user interaction. On the other hand, the Geoweb client
based on JavaScript can be implemented using the web browsers Chrome, Firefox, and Internet

3234	 Sensors and Materials, Vol. 31, No. 10 (2019)

Explorer. In the data loading module, we measure Td, which is the time spent in loading a
discrete set of tiled images within the experimental map extent from a map platform. Td is
measured in two cases with and without a web browser cache specifically. Such a web browser
cache can significantly improve Td when a Geoweb client repeatedly loads tiled images within
a similar map extent. In the mashup module, we measure Tm, the time spent in integrating and
rendering geospatial data and user sensor data. Tm is basically measured in order to examine
the change in mashup performance as the number of user sensor data increases. In this study,
we vary the number of user sensor data from 1000 to 20000 to see enough performance
difference in a Geoweb client. Tm is measured in two rendering cases of a vector layer and a
heat map layer. Tm_v and Tm_h are measured on a vector layer and a heat map layer, respectively.
In the user interaction module, we measure Ti, the time spent in processing user interaction
such as zoom or pan. Ti is measured in order to examine the change in mashup and rendering
performance when user interaction occurs in a Geoweb client. In this study, we process one
level zoom in and pan as much as the current map size to see the performance change. Ti is also
measured in two rendering cases, namely, Ti_v and Ti_h.
	 Third, we use six types of GeoWeb 2.0 map platform as an input source of geospatial
data. As shown in Fig. 2, each map platform sends geospatial data to a Geoweb client upon
the request of the data loading and user interaction modules. Each map platform also sends
an Open API module to a Geoweb client. In this study, we try to compare the performance
characteristics of six types of map platform to find out the best map platform for dynamic
mashup application.

4.	 Performance Study

	 We run our experiments on map platforms of Google Maps, OSM, VWorld, olleh Map,
Daum Map, and Naver Map, which are readily available in Korea. We also run experiments on

Fig. 2.	 Mashup prototype system composed of a Geoweb client, a user data server, and six types of Geoweb 2.0
map platform.

Sensors and Materials, Vol. 31, No. 10 (2019)	 3235

three web browsers, namely, Chrome, Firefox, and Internet Explorer. As a user sensor data set,
we use the number of people getting on and off by time of all subway stations in Seoul. The
user sensor data set is an actual data set collected from the data portal of the city of Seoul. As
a geospatial data set, we use tiled images that are contained within the map extent of the entire
area of Seoul. Finally, we run experiments on two rendering cases of a vector layer and a heat
map layer, which are mostly used to render time-series data set in real time. Figure 3 shows
examples of a vector layer and a heat map layer. The vector layer is rendered using circles
whose area increases with respect to the increase in the number of people in all subway stations.
	 To obtain accurate experimental results, we run our experiments five times using the same
experimental setups and calculate the average. Table 1 summarizes the experimental setups
used in our experiments.

Fig. 3.	 (Color online) Two rendering cases on the number of people by hour of day in all subway stations in Seoul:
(a) rendering using a vector layer and (b) rendering using a heat map layer.

(a) (b)

Table 1
Experimental setups of a map platform, a web browser, a rendering case, and a user sensor data set.
Category Setups Features

Map platform

- Google Maps 3.30
- OpenStreetMap 3.0
- VWorld 2.0
- olleh Map 3.0
- Daum Map 3.0
- Naver Map 3.1.0

- World 2D,3D map, TLS1(3)

- World 2D map, TLS, OpenLayers compatibility(5)
- Domestic 2D/3D map, OpenLayers compatibility(6)

- Domestic 2D map, OpenLayers compatibility(7)

- Domestic 2D map(8)

- Domestic 2D map(9)

Web browser
- Internet Explorer 11
- Chrome 66
- Firefox 60

- With and without a web browser cache

Rendering - Vector layer
- Heat map layer

- For time-series data, a vector layer using a circle whose
 area changes and a heat map layer

User sensor
data set - Time series data

- Time series data from 1000 to 20000
- Number of people by hour of day in all subway stations
 within the experimental map extent (Seoul)

Geospatial
data set - Tiled images - Tiled images within the experimental map extent

1Transport Layer Security (TLS) is a cryptographic protocol that provides communications security over a network.

3236	 Sensors and Materials, Vol. 31, No. 10 (2019)

4.1	 Experimental results of data loading time (Td)

	 In this experiment, we measure the data loading time (Td) of geospatial data. In other
words, we measure the time it takes for a Geoweb client to load and render the tiled images of
geospatial data. We perform the experiment with the most minimum load on the map platform
as possible. Table 2 shows the experimental results of Td for six types of map platform shown in
Table 1.
	 First, with no browser cache, OSM needs too much Td from 2939.2 to 6843.3 ms and Google
Maps needs somewhat much Td from 604.8 to 684.6 ms. Other map platforms need much
less Td than OSM and Google Maps. Td with no browser cache depends on the server-side
performance of a map platform. The server-side performance is typically determined by the
throughput and response time of a server system. The throughput and response time of OSM
are not comparable to those of other commercial map platforms since OSM is a free world
map platform located overseas. Therefore, we think that the experimental result for OSM
is understandable. In contrast, even though Google Maps is also located overseas, it shows
relatively good performance to be used in Korea. We think that this is because of the powerful
throughput of the Google Cloud platform all over the world and the outstanding response time
of Google Maps. Other domestic map platforms of VWorld, olleh Map, Naver Map, and Daum
Map show better performance than OSM and Google Maps. That is because the map platforms
are in Korea and they have to provide commercial services with high performance. Td is
measured only from 227.2 to 448.4 ms at the maximum in Table 2.
	 Second, with a browser cache, all map platforms need Td of less than only 244.4 ms on all
web browsers. That is because a Geoweb client may load geospatial data from a browser cache
rather than a map platform and most Td has only rendering time with little loading time. Google
Maps unusually increases Td slightly. We think that Google Maps does additional work for
some advanced rendering. However, such a slight increase does not make a big difference in Td.
	 Third, we calculate each difference in order to see how much time difference in Td exists
among web browsers. We calculate the difference except for OSM, which needs unusually too
much Td. The calculation results are

	 −14.2 ms ≤ Td in Chrome − Td in Firefox ≤ −79.8 ms, 	 (2)

	 −4.4 ms ≤ Td in Chrome − Td in Internet Explorer ≤ −23.8 ms,	 (3)

Table 2
Experimental results of the data loading time in milliseconds for six types of map platform.
Web browser Google OSM VWorld olleh Naver Daum

Chrome No Cache 604.8 4275.4 227.2 448.4 307.8 238.4
Cache 192.0 46.8 88.8 21.6 37.0 11.8

Firefox No Cache 684.6 6843.4 277.6 473.0 383.8 253.8
Cache 223.6 65.2 103.0 45.4 115.6 34.6

Internet
Explorer

No Cache 607.6 2939.2 231.6 441.6 302.0 232.0
Cache 244.4 52.2 65.0 32.4 70.6 16.0

Sensors and Materials, Vol. 31, No. 10 (2019)	 3237

	 −20.8 ms ≤ Td in Firefox − Td in Internet Explorer ≤ 81.8 ms.	 (4)

	 From Eqs. (2)–(4), it can be seen that there is no big difference in Td among web browsers.
There is a small time difference from the minimum 0.0044 s to the maximum 0.0818 s. It can
be said that a web browser does not have a markedly large effect on Td.
	 In conclusion, the performance of Td seems to have no problem building mashup applications
using all map platforms except for OSM having no cache. Even for OSM, although it takes
much time for the initial loading of geospatial data, it seems that there is no problem to build
mashup applications after the initial loading.

4.2	 Experimental results of mashup time (Tm)

	 In this experiment, we measure the mashup time (Tm) of geospatial data and user data. In
other words, we measure the time at which Open API is called for the mashup and then the
rendering of the mashup data is complete. We perform the same experiment on the vector and
heat map layers to obtain the results of Tm_v and Tm_h. Figure 4 shows Tm_v and Tm_h for map
platforms shown in Table 1. The X-axis represents 2000 to 20000 user data and the Y-axis
represents the mashup time in milliseconds. In particular, a base-10 log scale is used for the
Y-axis for a large range of quantities of Tm_v and Tm_h.
	 First, as shown in Figs. 4(a)–4(c), Google Maps, OSM, VWorld, and olleh Map show good
performance at Tm_v of less than one second for the maximum number of user data. On the
other hand, Naver Map and Daum Map show poor performance at Tm_v of 10 s or more for the
maximum number of user data. Naver Map and Daum map need Tm_v of 7822.2 to 22866.8 ms
and 2874 to 22780.8 ms, respectively, for 20000 user data in three web browsers. Therefore, we
can see that Naver Map and Daum Map may have difficulty in the mashup of real applications,
because Tm_v increases greatly when the number of user data increases. In addition, we can
see that there is a difference in the Tm_v of each map platform for each web browser and that
the difference increases much more as the number of user data increases. In Figs. 4(a)–4(c),
Daum Map and Naver Map show that Internet Explorer generally requires much more Tm_v than
Chrome and Firefox. For example, the Tm_v of Naver Map increases up to 2.9 times from 7822.2
to 22866.8 ms and the Tm_v of Daum Map increases up to 7.9 times from 2874 to 22780.8 ms.
Therefore, we can see that a mashup application with a large number of user data can benefit
from using Chrome or Firefox rather than Internet Explorer.
	 Second, as shown in Figs. 4(d)–4(f), we obtain Tm_h for the heat map layer of only four map
platforms. Daum Map and olleh Map do not support Open API for the heat map layer. Figures
4(d)–4(f) show that Tm_h has a similar pattern to the previous Tm_v in Figs. 4(a)–4(c). Google
Maps, OSM, and VWorld still show good performance at Tm_h of less than one second for the
maximum number of user data. Naver Map shows the worst performance at Tm_h of 2.4 to 21.7
s in Firefox. For each web browser, Google Maps, OSM, and VWorld have almost no difference
at Tm_h of less than 0.2 s, but Naver Map has a large difference at Tm_h from 1.9 s in Chrome
and 12.5 s in Internet Explorer to even 21.7 s in Firefox. Therefore, we can also see that Naver
Map may have difficulty in mashup as shown in Figs. 4(d)–4(f) when the number of user data
increases even when using a heat map.

3238	 Sensors and Materials, Vol. 31, No. 10 (2019)

(a) (b)

(c) (d)

(e) (f)

Fig. 4.	 Experimental results of the mashup time in milliseconds for six types of map platform: (a)–(c) result (Tm_v)
for the vector layer and (d)–(f) result (Tm_h) for the heat map layer.

Sensors and Materials, Vol. 31, No. 10 (2019)	 3239

	 Third, except for Naver Map, there is no significant difference between Tm_v and Tm_h in the
two rendering cases. In Fig. 4, we can see a small difference of less than 0.27 s for Google Map
and a difference of less than 0.06 s for OSM and VWorld. In contrast, Naver Map has a large
difference. Naver Map renders the heat map faster than the vector map by 5.9 and 10.3 s in
Chrome and Internet Explorer, respectively, and renders the vector map faster than the heat map
by 12.3 s in Firefox.
	 Finally, we can conclude that a user can build a mashup application using any map platform
regardless of the result of Tm except for Naver Map and Daum Map when the number of user
data increases significantly.

4.3	 Experimental results of user interaction time (Ti)

	 In this subsection, we discuss the results of the experiment with only five or four map
platforms excluding olleh Map or Daum Map. The experiment excludes olleh Map that does
not support Open API for zoom-in and panning in Figs. 5(a)–5(c) and 6(a)–6(c). It also excludes
olleh Map and Daum Map that does not support Open API for a heat map in Figs. 5(d)–5(f)
and 6(d)–6(f). We measure the user interaction time (Ti) at which Open API is called for zoom
and pan and then their renderings are complete. We perform this experiment on the vector and
heat map layers as described in Sect. 4.2. Figures 5 and 6 show Ti_v and Ti_h for zoom and pan,
respectively. The X-axis represents the number of user data and the Y-axis represents the user
interaction time in milliseconds of a base-10 log scale for Ti_v and Ti_h, as shown in Fig. 4.
	 As shown in Figs. 5(a)–5(c), OSM and VWorld show the best performance, followed by
Daum Map, Google Map, and Naver Map. OSM and VWorld show Ti_v of 149.2 to 310.6 ms
and 175.8 to 421.6 ms, respectively, for 20000 user data in three web browsers. Daum Map
and Google Maps show a slightly higher Ti_v than OSM and VWorld. For example, Daum
Map shows Ti_v values of 292.9, 231.2, and 1306 ms for 20000 user data in Chrome, Firefox,
and Internet Explorer, respectively. Finally, Naver Map shows the worst performance at Ti_v
of 3819.8 ms for 20000 user data in Fig. 5(c). Unlike Figs. 5(a)–5(c), we can see a performance
result slightly different from that shown in Figs. 5(d)–5(f). All map platforms except for Naver
Map show good performance at Ti_h of less than 231 ms in the worst case. Only Naver Map
shows very poor performance at Ti_h of 1334.2 to 8597.8 ms. This experiment shows that the
zoom interaction works well on all map platforms except Naver Map, regardless of the number
of user data and type of web browser.
	 Figure 6 shows a performance pattern similar to that shown in Fig. 5. OSM and VWorld
show the best performance, whereas Daum Map and Google Maps show mid-range performance
among all map platforms. Naver Map shows the worst performance. On the other hand, we
can see that the panning interaction is performed slightly faster than the zoom interaction in
most cases from Figs. 5 and 6. For example, in almost all cases except for Google Maps in Figs.
6(d)–6(f), we can see that Ti_v and Ti_h in Fig. 6 are less than those in Fig. 5 when the number
of user data increases. This experiment also shows that the panning interaction works well on
all map platforms except Naver Map, regardless of the number of user data and type of web
browser.

3240	 Sensors and Materials, Vol. 31, No. 10 (2019)

(a) (b)

(c) (d)

(e) (f)

Fig. 5.	 Experimental results of zoom time in milliseconds for map platforms: (a)–(c) result (Ti_v) for the vector
layer and (d)–(f) result (Ti_h) for the heat map layer.

Sensors and Materials, Vol. 31, No. 10 (2019)	 3241

(a) (b)

(c) (d)

(e) (f)

Fig. 6.	 Experimental results of panning time in milliseconds for map platforms: (a)–(c) result (Ti_v) for the vector
layer and (d)–(f) result (Ti_h) for the heat map layer.

3242	 Sensors and Materials, Vol. 31, No. 10 (2019)

	 Finally, we can conclude that the user can perform user interaction with good performance
in most cases except for Naver Map when the number of user data increases significantly.

4.4	 Discussion

	 Here, we summarize the experimental results of the data loading, mashup, and user
interaction time. Table 3 shows the total mashup performance (Tp) consisting of the sum of
Td, Tm, and Ti, which was defined in Sect. 3.1. In Table 3, we calculate Tp using the Td, Tm,
and Ti results when the number of user data is the median of 10000. In more detail, in order
to calculate Tp, we use Td when the web browser cache is applied, use each Tm_v and Tm_h
considering the vector and heat map layers, and also use each average of Ti_v and Ti_h for zoom
and pan.
	 We define Tp as a simple sum of Td, Tm, and Ti in order to compare the total time that each
map platform actually consumes in a mashup application. First, olleh Map and Daum Map do
not provide Open API for the heat map or user interaction, so it is difficult to compare their Tp

values with those of the other map platforms. However, we can easily guess from the lack of
such an Open API that a user’s preference for the two map platforms is worse than the others.
	 Second, the comparison of Tp by each web browser shows a good result in the order of
Chrome, Firefox, and Internet Explorer. For example, except for olleh Map and Daum Map,
Chrome shows 711.7 to 7020.6 ms, Firefox 702 to 20961.2 ms, and Internet Explorer 838.6 to
23337.7 ms. In Google Maps, OSM, and VWorld, the maximum differences in Tp among web
browsers are about 0.41, 0.14, and 0.33 s, respectively, so we can see that there is not much
difference when using any web browser. However, the maximum difference in the Tp of Naver
Map is about 16.3 s; thus, we can see that it is certainly advantageous to use Chrome.

Table 3
Comparison of total performance (Tp) values among Chrome, Firefox, and Internet Explorer.
Browser Performance Google OSM VWorld olleh Daum Naver

Chrome

Td 192.0 46.8 88.8 21.6 11.8 37.0
Tm_v 142.2 255.6 275.6 385.4 1241.2 3989.6
Tm_h 256.2 277.4 291.2 — — 1063.2
Ti_v 256.8 69.5 74.6 — 127.9 1137.8
Ti_h 152.6 62.4 64.1 — — 793.0
Tp 999.8 711.7 794.3 407 1380.9 7020.6

Firefox

Td 223.6 65.2 103.0 45.4 34.6 115.6
Tm_v 99.8 242.0 295.4 514.6 3887.6 4623.6
Tm_h 230.0 254.6 335.4 — — 10573.2
Ti_v 505.6 83.9 86.1 — 245.2 1438.8
Ti_h 145.3 56.3 81.2 — — 4165.0
Tp 1204.3 702.0 901.1 560.0 4167.4 20916.2

Internet
Explorer

Td 244.4 52.2 65.0 32.4 16.0 70.6
Tm_v 217.2 299.2 371.2 768.0 5115.0 11884.6
Tm_h 245.4 312.0 429.6 — — 7451.6
Ti_v 579.6 110.7 153.9 — 623.6 1093.7
Ti_h 127.4 64.5 105.9 — — 2837.2
Tp 1414 838.6 1125.6 800.4 5754.6 23337.7

Sensors and Materials, Vol. 31, No. 10 (2019)	 3243

	 Third, the comparison of Tp by each map platform shows a good result in the order of OSM,
VWorld, Google Maps, and Naver Map. For example, OSM shows 702 to 838.6 ms, VWorld
794.3 to 20961.2 ms, Google Maps 999.8 to 1414 ms, and Naver Map 7020.6 to 23337.7 ms.
Except for Naver Map, the maximum differences in Tp among map platforms are 0.29 s for
Chrome, 0.5 s for Firefox, and 0.58 s for Internet Explorer, so there is little difference when
using any map platform. However, the maximum differences of Naver Map are about 6.3 s for
Chrome, 20.2 s for Firefox, and 22.5 s for Internet Explorer, so we can see that it is certainly
advantageous to use other map platforms.
	 Most users think that all map platforms may support Open API for time-efficient mashup
and user interaction. However, we can see that the Tp values of only Google Maps, OSM,
and VWorld show good performance despite the increase in the number of user data from our
experiments. In addition, we can see that Google Maps sometimes cannot perform the mashup
and user interaction when the number of user data increases to nearly 20000, and Daum Map
and olleh Map do not provide Open API for the heat map and user interaction. Therefore,
from only the Tp perspective, we can conclude that OSM and VWorld are the most desirable
for mashup applications that use a lot of dynamic user data. Besides Tp, there may be the
type, quality, and service range of geospatial data and the degree of free use of Open API as
the important criteria for a user to select a map platform. However, we focus on only Tp and
exclude the above criteria from this discussion.

5.	 Conclusions

	 In this study, we compared and analyzed the dynamic mashup performance characteristics
of various map platforms. To efficiently compare the performance, we defined and measured
performance comparison metrics of the data loading time (Td), mashup time (Tm), and user
interaction time (Ti). We also implemented a mashup prototype system composed of a Geoweb
client, a user data server, and map platforms to accurately measure the performance.
	 Our experimental results showed that Google Maps, OSM, and VWorld generally outperform
the others in Tp. However, Google Maps sometimes could not perform a time-series mashup
when the number of user sensor data increases to nearly 20000. As a result, any map platform
can be used if the number of user sensor data is very small or it is not a time series mashup.
However, when performing a time series mashup for large amounts of sensor data, we think that
it is better to use OSM and VWorld, if possible.
	 We plan to extend this work in two directions. First, we would like to define new
performance comparison metrics on a dynamic mashup. We expect that new performance
metrics can more accurately measure the mashup performance of map platforms. Second, we
would like to propose a map platform selection criterion for users considering various situations
such as the quality and service range of geospatial data and the degree of free use of Open API.
We expect it to be a more realistic selection criterion.

3244	 Sensors and Materials, Vol. 31, No. 10 (2019)

Acknowledgments

	 This research was supported by a grant#(19DRMS-B147287-02) from the development of
customized realistic 3D geospatial information update and utilization technology based on
consumer demand, funded by the Ministry of Land, Infrastructure and Transport of Korean
government.

References

	 1	 S. Gabriel: Beginning Google Maps API3 (Apress, New York, 2010) p. 1. https://doi.org/10.1007/978-1-4302-
2803-5

	 2	 S. Jun and S. Lee: Spatial Inf. Res. 25 (2017) 725. https://doi.org/10.1007/s41324-017-0138-y
	 3	 Google Maps: https://www.google.com/maps (accessed March 2019).
	 4	 Bing Maps: https://www.bing.com/maps (accessed March 2019).
	 5	 OpenStreetMap: https://www.openstreetmap.org/ (accessed March 2019).
	 6	 VWorld: http://map.vworld.kr/map/ (accessed March 2019).
	 7	 olleh Map: https://www.apistore.co.kr/api/apiList.do (accessed March 2019).
	 8	 Daum Map: https://map.kakao.com/ (accessed March 2019).
	 9	 Naver Map: https://map.naver.com/ (accessed March 2019).
	10	 M. Kim: Spatial Inf. Res. 26 (2018) 113. https://doi.org/10.1007/s41324-017-0161-z
	11	 M. Kim: Spatial Inf. Res. 25 (2017) 735. https://doi.org/10.1007/s41324-017-0131-5
	12	 H. Jang, D. Kim, J. Kim, and I. Jang: Spatial Inf. Res. 24 (2016) 367. https://doi.org/10.1007/s41324-016-0038-

6
	13	 S. Schmid, E. Galicz, and W. Reinhardt: Proc. 2015 Int. Conf. Military Technologies (ICMT 2015) 1. https://

doi.org/10.1109/MILTECHS.2015.7153736
	14	 A. J. Loechel and S. Schmid: IJSDIR. 8 (2013) 43. https://doi.org/10.2902/1725-0463.2013.08.art3
	15	 S. Schmid and W. Reinhardt: Proc. 2015 Int. Cartographic Conf. (ICC 2015) 23.
	16	 P. Yang, Y. Cao, and J. Evans: GIScience Remote Sens. 44 (2007) 320. https://doi.org/10.2747/1548-

1603.44.4.320
	17	 S. Wu, M. Zhang, Q. Huang, Y. Zhang, C. Wan, K. Zhang, J. Cao, Z. Gui, and K. Qin: Proc. 2015 Int. Conf.

Geoinformatics 1. https://doi.org/10.1109/GEOINFORMATICS.2015.7378687
	18	 R. Garcia, J. P. Castro, E. Verdu, M. J. Verdu, and L. M. Requeras: Cartography – A Tool for Spatial Analysis, C.

Bateira, Ed. (Intech, London, 2012) p. 26. https://doi.org/10.5772/46129
	19	 F. Nah: Behav. Inf. Technol. 23 (2004) 153. https://doi.org/10.1080/01449290410001669914
	20	 J. T. Sample and E. Loup: Tile-Based Geospatial Information Systems (Springer US, Boston, 2010) p. 17.

https://doi.org/10.1007/978-1-4419-7631-4
	21	 OpenGIS Web Map Tile Service Implementation Standard: https://www.opengeospatial.org/standards/wmts

(accessed March 2019).
	22	 A. Sani and C. Rinner: GEOMATICA 65 (2011) 145. https://doi.org/10.5623/cig2011-023
	23	 C. Y. Huang and H. Chang: ISPRS Int. J. Geo-Inf. 5 (2016) 136. https://doi.org/10.3390/ijgi5080136
	24	 C. M. Dalton: Environ. Plann. A: Econ. Space 47 (2015) 1029. https://doi.org/10.1177/0308518X15592302
	25	 J. Zhang: Ecol. Inf. 8 (2012) 68. https://doi.org/10.1016/j.ecoinf.2012.01.004
	26	 J. Dean and S. Ghemawat: Commun. ACM 51 (2008) 107. https://doi.org/10.1145/1327452.1327492
	27	 H. C. Karnatak, R. Shukla, V. K. Sharma, Y. V. S. Murthy, and V. Bhanumurthy: Geocarto Int. 27 (2012) 499.

https://doi.org/10.1080/10106049.2011.650651
	28	 H. Gong, M. Simwanda, and Y. Murayama: ISPRS Geo-Inf. 6 (2017) 257. https://doi.org/10.3390/ijgi6080257

https://doi.org/10.1007/978-1-4302-2803-5
https://doi.org/10.1007/978-1-4302-2803-5
https://doi.org/10.1007/s41324-017-0138-y
https://www.google.com/maps
https://www.bing.com/maps
https://www.openstreetmap.org/
http://map.vworld.kr/map/
https://www.apistore.co.kr/api/apiList.do
https://map.kakao.com/
https://map.naver.com/
https://doi.org/10.1007/s41324-017-0161-z
https://doi.org/10.1007/s41324-017-0131-5
https://doi.org/10.1007/s41324-016-0038-6
https://doi.org/10.1007/s41324-016-0038-6
https://doi.org/10.1109/MILTECHS.2015.7153736
https://doi.org/10.1109/MILTECHS.2015.7153736
https://doi.org/10.2902/1725-0463.2013.08.art3
https://doi.org/10.2747/1548-1603.44.4.320
https://doi.org/10.2747/1548-1603.44.4.320
https://doi.org/10.1109/GEOINFORMATICS.2015.7378687
https://doi.org/10.5772/46129
https://doi.org/10.1080/01449290410001669914
https://doi.org/10.1007/978-1-4419-7631-4
https://www.opengeospatial.org/standards/wmts
https://doi.org/10.5623/cig2011-023
https://doi.org/10.3390/ijgi5080136
https://doi.org/10.1177/0308518X15592302
https://doi.org/10.1016/j.ecoinf.2012.01.004
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1080/10106049.2011.650651
https://doi.org/10.3390/ijgi6080257

