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	 In recent years, the Ministry of Land, Infrastructure, and Transport of the Republic of 
Korea has been developing two land observation satellites, KAS500-1 and KAS500-2, to 
rapidly observe the territory of South Korea and maximize the utilization of satellite images.  
Essential data, such as high-quality satellite images and ground control points, must be 
quickly provided to users, to ensure the successful utilization of the land observation satellite 
images.  Furthermore, the users should be able to easily use application technologies, such as 
land use (LU) classification and spatial feature extraction, which are essential for utilizing 
satellite images.  Object-based methods are mainly used for extracting spatial features from 
submeter-grade high-resolution satellite images with a ground sample distance (GSD) of 0.5 
m.  In recent years, advances in artificial intelligence (AI) have led to an increase in the use of 
deep learning.  Herein, an object-based spatial feature extraction software tool based on open-
source software and a deep learning-based spatial feature extraction module are developed to 
successfully utilize the data from land observation satellites.  Images from the KOMPSAT-
3A satellite, which have specifications similar to those of the KAS500 satellite images, were 
used to extract road features, and a quality analysis of the two methods was performed.  For the 
quality analysis, the object-based spatial feature extraction software developed in this study, 
a commercial software product, and the deep learning-based spatial extraction module were 
each used to extract road features, and the extracted road features were analyzed.  The results 
showed that extraction of road features using the commercial software showed 84.1% accuracy 
and 54.0% recall, whereas that using the software developed in this study using an open-source 
software product showed 83.9% accuracy and 50.2% recall.  Thus, the software developed in 
this study and the commercial software can extract spatial features at similar levels of accuracy 
and recall.  Road features were extracted using the module based on deep learning with 88.6% 
accuracy and 29.7% recall.



3336	 Sensors and Materials, Vol. 31, No. 10 (2019)

1.	 Introduction

	 The Ministry of Land, Infrastructure, and Transport of the Republic of Korea has been 
developing two satellites, KAS500-1 and KAS500-2, that are capable of acquiring images 
with a ground sample distance (GSD) of 0.5 m.  The KAS500 satellites are intended to be 
used solely for land observation purposes.  By gaining competence in technologies for land 
surface monitoring, such as land use (LU) classification and spatial feature extraction, change 
detection and time-series monitoring, and digital surface model/digital terrain model (DSM/
DTM) extraction, the Ministry has been developing software that enables the utilization of the 
information provided by these satellites.
	 LU classification and spatial feature extraction technologies are excellent tools for evaluating 
the environment and its changes.(1)  LU and land cover (LC) changes over a certain period 
are essential to understand the development of human activities within a region to define the 
impact of anthropogenic and natural activities.(2)  Remote sensing technology, which is similar 
to LU classification and spatial feature extraction technologies, provides information about the 
environment on a regional or global scale using time-series data, as well as real-time data.(3,4)  
Various image classification technologies associated with LU classification and spatial feature 
extraction have been developed.  Threshold values can be applied using a brake or boundary 
threshold value in a single-reflection bandwidth or using a derived spectral index or changed 
bandwidth(5–7) to either distinguish a single object or classify it into multiple classes.  There 
are two techniques involved in this type of classification method: the supervised classification 
technique, which uses ground verification data,(8,9) and the unsupervised classification 
technique, which searches the endmembers first.(10)  With the unsupervised classification 
technique, the linear unmixing method utilizes the endmembers to solve the spectrum of the 
image and classifies the image by detecting the proportion of a feature in each pixel’s spectrum.(11,12)  
Another method of extracting features is the object-based classification method.  Object-
based classification typically uses spatial information of the pixel’s group, which is recognized 
along with the object.  It has been demonstrated that this method is effective primarily for 
high-resolution satellite imagery, such as ASTER,(13) KOMPSAT-2,(14) QuickBird,(15–17) and 
WorldView-3 imagery.(18)  Object-based analysis has been gaining importance in the fields of 
remote sensing, especially for high-spatial-resolution image processing.(19)

	 Recently, deep learning—an algorithm that uses artificial intelligence (AI)-based machine 
learning—has been utilized in diverse image analysis fields.  A vast amount of input imagery 
is needed for machine learning.(20)  Machine learning in image analysis has been applied to the 
development of a semantic segmentation algorithm(21) that distinguishes the desired target from 
an image by implementing a fully convolution network (FCN) by performing network surgery 
on a convolution neural network (CNN).  Recent achievements in machine learning have shown 
that its performance is similar to or exceeds the decision-making capability of humans.(22)  
Owing to the advancements in the field of high-resolution remote sensing and the success of 
semantic segmentation using deep learning in computer version, extracting a road network from 
a high-resolution remote sensing image is becoming increasingly popular, and has become a 
new tool to update the geospatial database.(23)  AI-Khudhairy et al. extracted roads using object-
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based methods.(24)  Their method contains three steps: texture information extraction road 
extraction and postprocessing.  Compared with unsupervised methods, supervised methods are 
generally more accurate.(25)  These methods, which include support vector machine (SVM), 
random decision forests, and deep learning, extract the roads on the basis of training using 
labeled samples.(26)

	 In this study, two solutions—an object-based spatial feature extraction software tool 
developed using on open-source software and the “eCognition developer” commercial software 
developed by Trimble—were used to extract road features from satellite imagery, and the 
feasibility of using the software developed in this study was determined by quality analysis.  In 
addition, a deep-learning-based spatial feature extraction module was developed and evaluated.  
Issues with the deep learning technique and needs for its improvement were identified by 
road feature extraction and quality analysis.  Only the images taken by the KOMPSAT-3A 
satellite were used for the experiment in this study because the KAS500 satellite is still under 
development and cannot capture images.  Figure 1 shows an overview of this study.

2.	 Materials and Methods

	 Currently, the Korea Land Satellite Center of the National Geographic Information Institute 
of the Republic of Korea is developing the KAS500 satellite, as well as object-based spatial 
feature extraction software in an open-source environment to maximize the utilization of 
images obtained by the KAS500 satellite.(27)  In this study, both object-based spatial feature 
extraction software developed in an open-source environment and commercial software 
were used to extract road features, as shown in Fig. 2, and quality analysis of the results was 
performed.  In addition, road features were extracted using deep learning training to assess the 
applicability of deep learning techniques to the same task.

Fig. 1.	 (Color online) Research overview.
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2.1	 Study Area

	 The area of the target region selected for this study is approximately 6.167 km2.  The top 
left corner of the region is at 531054.370m(N), 281930.629m(E) and the bottom right corner is 
at 528257.670m(N), 284172.949m(E), using the GRS80 TM coordinate system.  This area is 
located in Wonju-si, Gangwon-do, South Korea (Fig. 3).  The altitude above sea level is between 
104.173 and 193.257 m.

2.2	 Satellite images used in road feature extraction

	 Because the KAS500 satellite is currently under development, satellite images taken by it 
are not yet available.  Therefore, KOMPSAT-3A satellite images, which are expected to have 
similar specifications to those of the images to be acquired by the KAS500 satellite, were used 
to conduct this research.  High-resolution multispectral data acquired by the KOMPSAT-3A 
satellite on October 29, 2015 were used in this study.  The KOMPSAT-3A satellite images used 
in this study were purchased from the Korea Aerospace Research Institute (KARI) through the 
Arirang Satellite Image Search and Order System (ASIOS) portal.  These data consist of red (R), 
green (G), blue (B), near-infrared (NIR), and panchromatic images in the GeoTIFF format, and 
they are level-1G images.  The KOMPSAT-3A satellite images collected for this study were 14 
bits; however, in this study, they were converted to 8 bits.  Table 1 shows the specifications of 
the KOMPSAT-3A satellite images used in this study.

Fig. 2.	 (Color online) Flowchart for conducting this research.
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3.	 Development of Object-based Spatial Feature Extraction Software Based on 
Open Source Software

3.1	 Design of object-based spatial feature extraction software

	 System for Automated Geoscientific Analyses (SAGA) GIS version 6.4.0 was chosen as 
the basic platform for use in developing the object-based spatial feature extraction software 
based on open-source software.  SAGA GIS is open-source software that supports the object-
based classification technique, and the level of difficulty for development is low.  In addition, 
it was determined that functions already implemented on the platform could be utilized in 
this study.  Libraries such as GDAL, OpenCV, CXSparse, and the SAGA GIS engine were 
required to develop the software.  The software was designed in two phases: a data creation and 
visualization phase and data postprocessing phase.  The required functions were designed as 
shown in Fig. 4.

(a) (b)

Fig. 3.	 (Color online) Location map of the study area in Korea: (a) Full KOMPSAT-3A scene natural-color 
composite image taken on October 29, 2015 and (b) Natural-color composite of the study area.

Table 1
Specifications of the satellite images used in road feature extraction.

Satellite Acquisition data GSD Cloud level Tilt angle
Roll Pitch

KOMPSAT-3A 2015.10.29 Approx. 0.55 m A −16.2976266° −12.0765214°

KOMPSAT-3A satellite specification
Spectral bands Optics Data quantization Swath width

PAN
Blue
Green
Red
NIR

450–900 µm
450–520 µm
520–600 µm
630–690 µm
760–900 µm

Focal length 8.6 m
14 bit 12 km

(at nadir)
F number  f/11.5
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	 The user interface (UI) of the object-based spatial feature extraction software was designed 
to show the process of extracting spatial features using satellite images and to provide various 
attribute properties and layers of information.  As shown in Fig. 5, the UI is composed of 
multiple windows, such as the window that allows the user to verify the layer information of the 
input data, the main window, and the window that shows the attribute properties.

Fig. 5.	 (Color online) UI of the object-based spatial feature extraction software.

Fig. 4.	 (Color online) Basic design plan for developing the object-based spatial feature extraction software.
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3.2	 Development of object-based spatial feature extraction software

3.2.1	 Development of image segmentation function

	 If spatial feature extraction is performed using the object-based classification technique, 
image segmentation must be performed.  The image segmentation analyzes the similarity of the 
pixels that make up the image and creates pixel groups.
	 Because SAGA GIS was selected as the development platform for this study, the seeded 
region growing algorithm—the image segmentation algorithm used by the SAGA GIS 
platform—was implemented.  The seeded region growing algorithm calculates the similarity 
among the pixels using the mean and the standard deviation of the pixels surrounding the 
extracted seed and forms a cluster consisting of pixels with high similarity (Fig. 6).
	 The image segmentation stores the observed values of the pixels in a table format based on 
the seed.  The pixels are grouped into clusters based on similarity.  During this process, pixels 
with low similarity are corrected.  The values of the neighboring pixels are checked, and pixels 
with low similarity are grouped into clusters (Fig. 7).  

3.2.2	 Development of image classification function

	 Clusters that have high similarity are formed by performing image segmentation, and these 
clusters need to include parameters for performing the image classification.  Polygon-shaped 
files are created for the clusters that have high similarity.  Parameters such as the spectrum 
average, standard deviation, and spectrum ratio are calculated using the pixels for each band 
inside the polygon.  The parameters are stored as attribute properties in each polygon.  In 
addition, the normalized difference vegetation index (NDVI) and normalized difference water 
index (NDWI) are determined through the computation of the image in each band, and the 

Fig. 6.	 (Color online) Image segmentation process using the seeded region growing algorithm.
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average value of the values inside the polygon is inputted as an attribute property.  NDVI can 
identify or monitor vegetation such as crops.(28)  NDWI can detect water bodies and wetlands.(29)  
In addition to the computation using the bands of the satellite images, the average slope 
inside the polygon, which is calculated using a DTM, and the average value of the normalized 
digital surface model (nDSM), which is obtained by subtracting DTM from DSM, are entered 
as attribute properties.  All these attribute properties are used as parameters for the image 
classification.  Table 2 shows the algorithms used in this study to create parameters for image 
classification.

3.2.3	 Development of function that merges image segmentation and classification results

	 A spatial feature extracted through the image segmentation and classification process 
consists of several clusters of pixels, so it contains a considerable number of polygons.  If 
polygons of the same class are connected to each other as shown in Fig. 8, a function that 
merges these polygons into a single polygon is needed.  However, the SAGA GIS platform does 
not support a function for merging the polygons.  Hence, a function to merge polygons of the 
same class was implemented by linking to an open-source database service called PostgreSQL.

3.2.4	 Accelerating satellite image processing

	 When inputting a satellite image with a size of 9041 × 10771, it took approximately 40 s to 
load the new image onto the SAGA GIS development platform.  Additionally, performing the 
image segmentation using the seeded region growing algorithm took more than 3 h.  From the 
software user’s perspective, the spatial feature extraction process taking more than 3 h is very 
inconvenient.  Therefore, a parallel processing technique that utilizes Intel’s advanced vector 

Fig. 7.	 (Color online) Result of performing the seeded region growing algorithm and correcting the abnormal 
pixel.
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extensions 2 (AVX2) was employed to accelerate data processing during the spatial feature 
extraction (Fig. 9).  Intel’s AVX2 serializes two-dimensional image data into one-dimensional 
data.
	 By using AVX2 during the satellite image loading process, the image data were serialized 
into one-dimensional data, and the image loading time was reduced to approximately 1 s.  In 
addition, the image segmentation process, which is the most time-consuming part of the spatial 
feature extraction process, took between 20 min and 1 h, depending on the value of the scale 
factor.

Table 2
Parameters used for image classification.
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Fig. 8.	 (Color online) An example of merging polygons of the same class.

Fig. 9.	 (Color online) Process of performing AVX2 to accelerate image data processing.
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4.	 Road Feature Extraction Using Object-based Method

	 To analyze the quality of the object-based spatial feature extraction software developed in an 
open-source environment, both this software and the commercial software were used to extract 
road features in the target area of this study, and quality analysis of the results was performed.  
In this study, roads were defined as paved surfaces on which vehicles can be driven.

4.1	 Establishing spatial feature extraction process using object-based method

	 Instead of the existing serial process for creating a thematic map, a parallel process for 
extracting individual features and utilizing the extracted features by classification item was 
applied to the object-based spatial feature extraction software developed in this study.
	 The serial process is a process that extracts from the largest feature to the smallest feature 
in sequential order.  It takes a long time to extract all the features, and this method also has the 
disadvantage of having to extract features not needed by the user to extract a small feature.  On 
the other hand, the parallel process utilizes a specific feature as spatial information.  Unlike the 
serial process, the parallel process extracts only specific features.  The parallel process is faster 
than the serial process because it selects the feature you want to extract and removes the feature 
that you do not need, and it is expected that this process can be automated.(30)  Therefore, the 
parallel process was used in this study.  Figure 10 shows a comparison between the serial and 
parallel processes.

Fig. 10.	 (Color online) Comparison of the serial and parallel processes for spatial feature extraction. 
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4.2	 Road feature extraction using object-based spatial feature extraction software based 
on open-source software and commercial software

	 The object-based spatial feature extraction software developed based on open-source 
software uses the seeded region growing algorithm during the image segmentation and uses 
the size of the region clustered around the seed as the parameter.  The commercial software, 
Trimble’s eCognition Developer, version 9.2.1, utilizes a multiresolution segmentation 
algorithm, which is the most commonly used algorithm for image segmentation.  The scale, 
shape, and compactness are used as parameters, and ideally, the same threshold values for the 
shape and compactness are used.  In addition, it is most efficient to apply the algorithm after 
setting the threshold values of the shape parameter and compactness parameter to 0.1 and 0.5, 
respectively.(31)

	 Image segmentation was performed for both the object-based spatial feature extraction 
software and the commercial software, such that the sizes of the polygons created after the 
image segmentation for both software tools were similar.  In addition, image classification for 
road feature extraction was performed after configuring the parameters and the threshold values 
of the parameters to be identical for both software tools, as shown in Fig. 11.  

5.	 Development of Deep-learning-based Spatial Feature Extraction Module and 
Road Feature Extraction

	 The deep learning module was designed to use the Deep U-net model to train and extract 
spatial features.  Implementation and development of the module were carried out using 
TensorFlow as the development platform.

5.1	 Deep U-net model for data learning and spatial feature extraction

	 Because the purpose of applying deep learning in this study was to extract the region of 
features corresponding to the road, semantic segmentation, which classifies each pixel from 

Fig. 11.	 (Color online) Process of applying the parameters and threshold values for road feature extraction. 
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the satellite images, was used.  Because deep learning training must be carried out first to 
perform the semantic segmentation, the Deep U-net model was implemented using TensorFlow.  
Compared with the existing U-net model,(32) which can perform accurate semantic segmentation 
using a small amount of learning data, the Deep U-net model used in this study can reduce 
losses.  As shown in Fig. 12, the Deep U-net model consists of the DownBlock and UpBlock 
components, so it has a symmetrical structure like the U-net model.  This model can solve the 
problem of loss errors increasing as the network deepens.  Furthermore, the Deep U-net model 
demonstrates excellent performance when performing segmentation of complex images.(33)

5.2	 Deep learning training and spatial feature extraction

5.2.1	 Collection of deep learning training data

	 In this study, images from the WorldView-2 and WorldView-3 satellites were used for deep 
learning training.  Considering the regional characteristics and the specifications of the satellite 
images, conducting deep learning training using images acquired over South Korea by the 
KOMPSAT-3A satellite would yield the best results.  However, there was an insufficient amount 
of satellite image data collected over South Korea available from the KOMPSAT-3A satellite, 
and it was also difficult to obtain these data.  Therefore, images from the satellites WorldView-2 
and WorldView-3 were collected from SpaceNet on the Amazon Web Service (AWS), because 
it was easy to collect these images and because the specifications of the images taken by 
these satellites are similar to those of the KOMPSAT-3A satellite images.  Table 3 shows the 
spectral region of each band for the WorldView-2 and WorldView-3 satellite images, as well 
as the KOMPSAT-3A satellite images.  Table 4 shows information about the WorldView-2 and 
WorldView-3 satellite images that were collected for use in the deep learning training.

Fig. 12.	 (Color online) Deep U-net detailed structure and annotations.
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5.2.2	 Deep learning training through preprocessing of training data and road feature 
extraction

	 True values corresponding to roads in the satellite images should be learned to extract road 
features through semantic segmentation.  The true values of training information for the roads 
were generated by digitizing the regions corresponding to the roads on the WorldView-2 and 
WorldView-3 images, as shown in Fig. 13.
	 For the deep learning training, road mask data were generated through digitizing using the 
satellite images.  They were then cropped to 256 × 256 pixels using a sliding window to create 
training data sets.  A total of 8000 data sets were created, including sets for red, green, blue, 
and near-infrared band images and road mask data.  The total duration of the deep learning 
training was 126 h, and the training was conducted after setting the number of learning cycles 
to 600 epochs for the learning data sets.  To extract the road features, the training information 
was applied to the KOMPSAT-3A satellite images of the target region for this study.

6.	 Results

6.1	 Results of road feature extraction for target region of study

	 In this study, road objects extracted with open-source-based developed software, commercial 
software, and deep learning were compared.  The software developed in this study allowed 
algorithms such as NDVI and NDWI to be calculated, and parameters generated by algorithm 
calculation were used for object extraction.
	 The road features extracted using the object-based spatial feature extraction software, which 
was developed based on open-source software, and the commercial software were created as 
binary data, as shown in Figs. 14(a) and 14(b).  Data of this type have a value of either 0 or 1.  A 
value of 0 indicates that the extracted feature is not a road, and a value of 1 indicates that the 

Table 4
Information about the satellite images collected for the deep learning training.
Satellite Acquisition data GSD (m) Area of interest Area (km2)

WorldView-2 Unknown 0.5 Rio de Janeiro 2544
2009.12 Atlanta 17685

WorldView-3

2015.10

0.3

Las Vegas 216
2016.02 Paris 1030
2015.06 Shanghai 1000
2015.04 Khartoum 765

Table 3
Spectral range of satellite images by band.
Band WorldView-2 WorldView-3 KOMPSAT-3A
Red 630–690 nm 630–690 nm 630–690 nm
Green 510–580 nm 510–580 nm 520–600 nm
Blue 450–510 nm 450–510 nm 450–520 nm
NIR 770–895 nm 770–895 nm 760–900 nm
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extracted feature is a road.  In addition, regions that are not roads are marked in white, and the 
regions that correspond to the roads are marked in black.  Results showed that road features 
extracted by the two methods were similar.  
	 The deep-learning-based spatial feature extraction module used the completed deep learning 
training results to extract the road features in the target region of this study, as shown in Fig. 
14(c).  The results of the road feature extraction using deep learning were generated as raster 
data with values between 0 and 1.  If the value is closer to 1, it is highly probable that the 
extracted feature corresponds to a road.  If the value is equal to 1, it indicates that the extracted 
feature is definitely a road.  A value of 0 indicates that the extracted feature is definitely not a 
road.  Road features extracted by deep learning showed different shapes from those extracted 
by object-based classification methods.

(a) (b)

Fig. 14.	 Road features extracted using the developed object-based spatial feature extraction software and the 
commercial software. (a) Road features extracted using the object-based spatial feature extraction software 
developed in this study. (b) Road features extracted using eCognition, a commercial software produced by Trimble. (c) 
Road features extracted using deep learning.

Fig. 13.	 (Color online) Satellite image and road: (a) WorldView-3 satellite image and (b) road masks data for the 
deep learning training.

(a) (b) (c)
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	 The roads extracted by the object-based classification method and the deep learning method 
were compared at the same location.  Results showed that the roads extracted with the object-
based spatial feature development software developed in this study and eCognition were similar, 
but the roads extracted by deep learning were clearly extracted from broad roads, as shown in 
Fig. 15.
	 As a result of extracting the road feature by each method, the object-based method had a 
problem that the road was not properly extracted because of shadows.  Moreover, the deep 
learning method used satellite images from overseas regions, so there was a problem that 
narrow roads were not extracted.

6.2	 Quality analysis of road feature extraction results

	 In the quality analysis of the road feature extraction results, a confusion matrix was used to 
evaluate the performance of a binary classification technique that checks whether the extracted 
road feature is equal to an actual road feature.  The confusion matrix assesses the quality of 
extraction results using true positive (TP), false negative (FN), false positive (FP), and true 
negative (TN) classifications.  Recall indicates the capability of the method to extract a pixel, 
and accuracy indicates the ratio of the successfully extracted or recognized pixels to the entire 
set of pixels.(34)

	 On the basis of the ground truth of the target region in this study shown in Fig. 16, the 
quality analysis involved using the confusion matrix to calculate the recall and accuracy of the 
road features extracted using the developed object-based spatial feature extraction software, the 
commercial software, and the deep-learning-based module using Eqs. (1) and (2).

	 Recall = TP / (TP + FP)	 (1)

	 Accuracy = (TP + TN) / (TP + TN + FP + FN)	 (2)

(a) (b) (c)

Fig. 15.	 Comparison of road feature extraction results at the same location. (a) Road features extracted using 
the object-based spatial feature extraction software developed in this study. (b) Road features extracted using 
eCognition, a commercial software produced by Trimble. (c) Road features extracted using deep learning.
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	 TP is the number of pixels that correctly matched what is actual as actual, and TN is the 
number of pixels that correctly matched what is not actual as not actual.  FP is the number of 
pixels that incorrectly matched what is not actual as actual, and FN is the number of pixels that 
incorrectly matched what is actual as not actual.
	 The quality analysis was conducted with the confusion matrix using the extracted road 
features and the ground truth.  The results showed that the roads extracted using the object-
based spatial feature extraction software were represented with 83.9% accuracy and 50.2% 
recall.  The roads extracted using the commercial software were represented with 84.1% 
accuracy and 54.0% recall.  The roads extracted using the deep-learning-based module were 
represented with 88.6% accuracy and 29.7% recall (Tables 5 and 6).

Fig. 16.	 Ground truth of the target region in the study for conducting the quality analysis of the road feature 
extraction results.

Table 6
Quality analysis results obtained using the confusion matrix.

Accuracy (%) Recall (%)
Object-based spatial feature extraction SW 83.9 50.2
Commercial SW 84.1 54.0
Deep learning 88.6 29.7

Table 5
TP, TN, FP, and FN information using accuracy analysis.

TP TN FP FN
Object-based spatial feature extraction SW 861505 16200050 2402357 852945
Commercial SW 925746 16170482 2428714 788513
Deep learning 742616 16851328 972048 1751474
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7.	 Conclusions

	 In this study, quality analysis was conducted on road features extracted using (1) an object-
based spatial feature extraction software tool developed using open-source software, (2) 
commercial software, and (3) a module developed based on deep learning.  The accuracy of the 
extracted road features for all three methods was over 80%.  
	 Image classification for road feature extraction was performed after configuring the 
parameters and the threshold values of the parameters to be identical for both software tools.  
The road feature extraction recall for the object-based spatial feature extraction software and 
the commercial software were similar, both being approximately 50%.  The reason the recall 
was as low as 50% in areas where the road could not be extracted is that shadows covered the 
road.  Since this research is ongoing, it is expected that the developed software and commercial 
software will be similar to the current level, but will be capable of outperforming commercial 
software through ongoing research.
	 AVX2 was used in the object-based spatial feature extraction software to improve the image 
processing speed.  As a result, the image processing time, which used to be more than 3 h, was 
reduced to between approximately 20 min and 1 h.  Hence, it is anticipated that the object-based 
spatial feature extraction software developed in this study will be attractive for widespread use.
	 The module developed based on deep learning demonstrated a very low recall of 
approximately 29%.  This can be attributed to the fact that the satellite images used in the 
deep learning training were taken over overseas regions instead of South Korea, and the 
road conditions in the overseas regions and in South Korea are different.  In addition, it was 
determined that the recall was low because the satellite images used for the deep learning 
training and road feature extraction were not identical.  Through continued study and the use of 
images taken by the same satellite over South Korea for both deep learning training and spatial 
feature extraction, the spatial feature extraction recall of the deep-learning-based module can be 
improved.
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