
3355Sensors and Materials, Vol. 31, No. 10 (2019) 3355–3366
MYU Tokyo

S & M 2016

*Corresponding author: e-mail: kangdaejang@lx.or.kr
https://doi.org/10.18494/SAM.2019.2491

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Algorithm for Removing Duplicate Vertices
from 3D Spatial Objects to Improve Service Efficiency

Jihun Kang,1* Sewon Lee,1 and Jihhyeok Park2

1Spatial Information Research Institute, Korea Land and Geospatial Informatix Corporation,
Jeollabuk-do 55365, Korea

2Advance Technology Research Institute, LoDiCS, Seoul 04890, Korea

(Received June 19, 2019; accepted September 4, 2019)

Keywords:	 duplicate vertex, 3D spatial object, service efficiency, 3DS, SPOTool

	 The demand for highly detailed 3D spatial data is continuously increasing with the
development of information technology. However, these 3D spatial data have a large capacity,
which is a major cause of service degradation. To solve this problem, an algorithm for reducing
the 3D data size by removing duplicate vertices, which contain information that is not used
for 3D building object visualization, was proposed. Furthermore, prototype software was
developed to verify this algorithm. The results of duplicate point elimination were similar to or
slightly better than the features of professional 3D graphics software. The proposed technology
is expected to be useful because it reduces the data capacity while maintaining the quality of 3D
spatial information data.

1.	 Introduction

	 The 3D spatial information services market is exhibiting very rapid and continued growth
around the world. Particularly in the case of a smart city, a representative 3D service field,
MarketsandMarkets projected the 0.3 trillion dollar market in 2018 to grow to 0.7 trillion dollars
by 2023,(1) and Frost & Sullivan projected it to grow into a market worth 2.0 trillion dollars by
2025.(2) In line with this trend, the Government of the Republic of Korea [Ministry of Land,
Infrastructure and Transport (MOLIT)] has resolved to promote the creation of smart city
industrial ecosystems; specifically, it has announced a master plan to operate a world-class
national pilot system. To implement the “digital twin”, which constitutes the core of a smart
city, various research and development projects have been proposed to implement the range of
technologies needed to build virtual 3D spatial information identical to a real-world city model.
	 In order to create a successful digital twin, realistic high-precision 3D data that can be used
by linking information collected from various sensors are essential. Furthermore, information
services should be continuously improved to make relevant data sets more applicable to diverse
areas such as urban planning, visualization, spatial analysis, disaster management, films,
and games; therefore, it is essential to improve the service efficiency. In this regard, the level

3356	 Sensors and Materials, Vol. 31, No. 10 (2019)

of detail (LOD) is a widely used 3D data structure.(3) LOD is a technique for hierarchically
structuring data so that only the necessary features of spatial objects are selectively displayed
according to the distance on the map; this facilitates large-volume data services. However,
these technical features alone cannot satisfy the continuously growing user demand for highly
detailed 3D data and high-quality service.
	 As such, there is a need to develop technologies for improving the production efficiency of
high-resolution 3D data. Existing spatial information technologies have focused on producing
true-to-life 3D data, with the main research focus on automatic 3D modeling using high-
resolution aerial photogrammetry or aerial light detection and ranging (LiDAR) data.(4,5)
However, this approach is cost-intensive and time-consuming. To address this limitation,
significant research efforts have been devoted to using existing data for efficient 3D data
generation; for example, 3D building modeling methods using 2D scanned plans or aerial
imagery products provided by Internet map services,(6,7) or images captured from unmanned
aerial vehicles instead of expensive aerial photogrammetry or aerial LiDAR data.(8)

	 It is also necessary to develop technologies for improving the 3D data service efficiency. To
provide city-scale 3D data services, various technologies are required to process large-volume
spatial data. To address this need, researchers have proposed various methods to reduce the
data volume, such as setting the LOD-based data visualization level and reducing the numbers
of edges and vertices that constitute the 3D objects.(9) For example, the Korean government
launched the “V-World” service in 2013 and has since provided 3D geospatial imagery across
the country (and beyond) and 3D spatial views of urban objects (buildings, streets, and subways)
in Seoul and other metropolitan areas. It is a government-run spatial information open platform
that provides maps and various types of public spatial data. Since the service was released in
Korea, a number of follow-up studies have been conducted with a focus on “light-weight” or
“simplification” for easier and more accurate 3D data services.(10,11) For example, Kim et al. (i)
developed a method of minimizing building-related data and standardizing the 3D building data
format to ensure data service efficiency and interoperability,(12) and (ii) conducted an evidence-
based study to improve the V-World service quality by analyzing the update status and errors of
3D models and attribute data by verifying them using a publicly available cadastral registry.(13)
Similar studies conducted in the construction sector have sought to improve the screen
visualization efficiency of building information modeling (BIM) data.(14,15) This is associated
with a light-weight algorithm considering BIM characteristics, which is indispensable for
ensuring the smooth operation of large-scale BIM data on the geographic information system (GIS)
platform.
	 Thus, with increasing demand for 3D data, various 3D-related technologies have been
studied by different approaches. However, the majority of these studies have focused on
developing techniques for producing and constructing highly detailed 3D data, and relatively
little effort has been spent on improving the 3D data structure to provide better services to
users. Generally, providing users with high-resolution 3D models is time-consuming and
cost-intensive on account of their large data volume. Therefore, to provide general users with
accurate data for a realistic 3D experience, it is important to not only produce highly detailed
3D data, but also improve the data retrieval speed by reducing the data volume.

Sensors and Materials, Vol. 31, No. 10 (2019)	 3357

	 The purpose of this study is to develop a data volume minimization algorithm that removes
duplicate vertices that are unnecessary for visualizing a 3D spatial object, thereby improving
the efficiency of 3D data services. Test data were generated using the aerial imagery-based 3D
modeling software PLW Modelworks. An algorithm used to remove duplicate vertices from
aerial-imagery-based highly detailed 3D objects was defined using these data, and a prototype
was implemented to analyze its performance. Duplicate vertex removal performance was
verified by comparing and analyzing similar functions using two specialized computer graphics
software tools. The software developed in this study outperformed the other two software tools
according to its duplicate vertex removal rate. Furthermore, we conclude that duplicate vertex
removal is a key process following 3D building modeling.

2.	 Data Structure of 3D Spatial Object Data

	 Aerial-imagery-based 3D object data are generally produced in the Autodesk 3DS format.
The 3DS format is a binary file format that represents 3D geometric meshes made of triangles
as the minimum unit. The component units of this 3DS format are a vertex, a face, a mesh, and
a file, which are used on the basis of texture, as shown in Table 1. By design, each file of this
3DS format can have multiple meshes and textures; however, most 3D spatial data consist of one
mesh and one texture.
	 In general, a 3D rendering system registers each object’s vertex and texture coordinates
separately and defines each list as an index. An index usually specifies the vertex and texture
coordinates of an object with a float or double data type using the integer data type. An index
thus defined can replace the repeatedly used corresponding vertex and texture coordinates,
reducing the size allocated to the object data. Coordinate data are stored by using either two
separate indices for vertex and texture coordinates or one index for the combined vertex and
texture coordinates. A widely used format for the former is the OBJ format. The structure of
the 3DS format data used in this study is the latter type of index storage.
	 For example, the 3D object data of a cube can be stored in 3DS format as follows: A cube
is composed of vertex coordinates (X, Y, Z), which represent the eight vertices in a 3D space,
and 14 texture coordinates (U, V), which correspond to the 14 corners matching their respective
vertices when laid out flat in the 2D texture space from the 3D space of the cube (Fig. 1, Table 2).
To store the data set in 3DS format using an index, 23 texture and 23 vertex coordinate indices
are generated and stored (Table 3). The 12 triangle faces constituting the 3D object are stored
on the basis of the coordinate indices (Table 4).

Table 1
3DS format component.
Component Details
Vertex The point that constitutes the model, expressed in 3D coordinates
Face A triangle consisting of three vertices; the smallest unit of the model
Mesh A group of multiple faces
File A group of multiple meshes
Texture The image corresponding to the position of the vertex (reference element in 3DS format)

3358	 Sensors and Materials, Vol. 31, No. 10 (2019)

Table 4
Vertex and texture coordinates of a polygon.
P1 P2 P3
1 1 6 8
2 1 8 11
3 15 17 20
4 15 20 23
5 3 13 22
6 3 22 4
7 5 21 19
8 5 19 7
9 9 18 17

10 9 17 12
11 14 2 10
12 14 10 16

Fig. 1.	 (Color online) A cube laid out flat in (a) 2D texture space (U, V) and (b) 3D object space (X, Y, Z).

(a) (b)

Table 2
Vertex and texture coordinates.

Vertex coordinates Texture coordinates
X Y Z # U V # U V
1 −1 −1 1 1 0.39 0.28 8 0.39 0.94
2 −1 −1 −1 2 0.61 0.28 9 0.39 0.06
3 1 −1 −1 3 0.61 0.50 10 0.61 0.06
4 1 −1 1 4 0.39 0.50 11 0.17 0.28
5 −1 1 1 5 0.39 0.72 12 0.17 0.50
6 1 1 1 6 0.61 0.72 13 0.83 0.28
7 1 1 −1 7 0.61 0.94 14 0.83 0.50
8 −1 1 −1

Table 3
Vertex and texture coordinate indices of a 3D object.
X Y Z U V # X Y Z U V
1 −1 −1 1 0.39 0.28 13 −1 1 1 0.61 0.06
2 −1 −1 1 0.83 0.28 14 −1 1 1 0.61 0.28
3 −1 −1 1 0.39 0.06 15 −1 1 1 0.39 0.72
4 −1 −1 −1 0.39 0.28 16 1 1 1 0.61 0.50
5 −1 −1 −1 0.17 0.28 17 1 1 1 0.61 0.72
6 −1 −1 −1 0.61 0.28 18 1 1 −1 0.61 0.50
7 1 −1 −1 0.17 0.50 19 1 1 −1 0.39 0.50
8 1 −1 −1 0.61 0.50 20 1 1 −1 0.61 0.94
9 1 −1 −1 0.39 0.50 21 −1 1 −1 0.39 0.28

10 1 −1 1 0.83 0.50 22 −1 1 −1 0.61 0.28
11 1 −1 1 0.39 0.50 23 −1 1 −1 0.39 0.94
12 1 −1 1 0.39 0.72 — — — — — —

3.	 Methods to Remove Duplicate Vertices

	 In principle, removing duplicate vertices means removing the vertex coordinates with
exactly the same coordinate values. Functionally, however, it involves removing the texture
coordinates with exactly the same coordinate values. In the removal method where two separate
indices are used for the vertex and texture coordinates, as explained in the previous section, the

Sensors and Materials, Vol. 31, No. 10 (2019)	 3359

duplicate vertices should be removed in their respective coordinates. In the removal method
where one index is used for the combined vertex and texture coordinates, the duplicate points
exist in both vertex and texture coordinates. It is often the case that 3D object optimization
functions, including the removal of duplicate vertices, are embedded in specialized computer
graphics software; for example, open source software such as Blender, which can construct and
edit 3D objects, and MeshLab, which provides diverse methods and algorithms for analyzing
and transforming 3D objects.

3.1	 Review of existing techniques

	 MeshLab is a 3D mesh processing software system developed by the Institute of Information
Science and Technology of the Italian National Research Council. It is provided under the
General Public License (GPL), available for various operating systems such as Windows,
Mac, and Linux, and is broadly used in academic and research work (Fig. 2). Blender is also
a general public license (GNU) GPL open source 3D creation software tool developed by the
Blender Foundation and supported by the Dutch government. It provides business solutions that
comprehensively support the 3D creation process encompassing modeling, rigging, animation,
and simulation, and is widely used in commercial fields (Fig. 3).
	 Both tools have diverse in-built functions for 3D object manipulation, some of which can
remove duplicate vertices. MeshLab provides the “Cleaning and Repairing” function under
the menu “Filters”, with which duplicate vertices and texture coordinates can be eliminated by
invoking the filter “Remove Duplicated Vertices.” Blender provides the function of removing

Fig. 2.	 (Color online) Basic screen layout of MeshLab.

3360	 Sensors and Materials, Vol. 31, No. 10 (2019)

duplicate texture coordinates under the menu “Remove Doubles UV” and removing duplicate
texture and vertex coordinates under the menu “Remove Doubles”. Note that invoking “Remove
Doubles” automatically activates the function “Remove Doubles UV”.
	 Although these software systems are verified techniques, the related functions are
complicated to use and cannot be employed separately for redundant vertex removal because
they are built-in functions. More importantly, it is impossible to process a data set as a whole,
which makes it infeasible to use existing software tools for processing data in the field of spatial
information, in which large-volume spatial object data sets are created and updated. To address
this problem and ensure the efficient processing of 3D object data created in 3DS format, we
define a duplicate vertex removal algorithm and develop the related software.

3.2	 Development of a method to remove duplicate vertices of multi-structured data

	 To use the diverse duplicate vertex removal functions of the software tools presented
above, it is necessary to convert the 3D data of different formats into the format required
by each software system. The algorithm developed in this study is optimized for the 3DS
format in which 3D objects are created and stored. Its main focus is detecting the duplicate
vertices sharing the same coordinate combinations occurring in the 3DS format structure and
reconstructing the faces linked to the corresponding vertices. The details of the proposed
method are as follows.
	 First, a data structure, in which the vertex and texture coordinates (X, Y, Z+U, V) can be
stored as one record, is constructed, and coordinate and mapping lists are compiled. The
coordinate list manages the record index and the mapping list is used to map the index in

Fig. 3.	 (Color online) Basic screen layout of Blender.

Sensors and Materials, Vol. 31, No. 10 (2019)	 3361

the original vertex list and the index in the new vertex list. All the vertices of the object are
then sequentially inspected, thereby checking all vertex and texture coordinates, so that the
coordinate list can be completed without duplicate coordinate values. That is, each vertex
is checked against the list and discarded or added to the list depending on whether or not it
shares the same coordinate values with any of the vertex and texture coordinates in the list.
The mapping list is updated accordingly, i.e., it is updated using information about the indices
related to the vertices discarded from the original list and added to the new list.
	 The coordinate list free of duplicate vertices and the mapping list are completed along
with the completion of the sequential inspection of all vertices. The process of duplicate
vertex removal is completed by inspecting each face and updating the indices of the related
vertices and creating new original data using the completed mapping list. Figure 4 shows the
pseudocode presented in this study for duplicate vertex removal. This algorithm is for the
removal of duplicate points in 3DS format data characterized by using the same index for vertex
and texture coordinates. If it is to be applied to other 3D formats that use indexes separately,
the vertex and texture coordinate lists must be removed separately.
	 To determine whether two records share the same vertex and texture coordinates, individual
sets of coordinate values (X, Y, Z+U, V) are checked, whereby checking for the same coordinate
values corresponds to checking for the same floating points. In general, if the absolute value
of the difference between two floating point numbers is lower than the reference value (e.g.,
epsilon: the smallest number represented by the related data type), then these two floating
point numbers are considered to be equal. A negligible difference in value can be used as the
reference value, i.e., if the unit of vertex coordinates of the 3D spatial object data is meters,
a value of 0.001 m (1 mm) can be used as the reference value. Accordingly, the number of
vertices can be gradually reduced by expanding the number of duplicate vertices to be reduced
on the basis of the set reference value.

Fig. 4.	 Pseudocode for removing duplicate vertices.

3362	 Sensors and Materials, Vol. 31, No. 10 (2019)

	 Similarly, comparing the texture coordinates is the same as comparing the floating point
numbers, whereby the texture coordinates are inverse-normalized to the pixel coordinates
depending on the texture size. That is, texture coordinates are values obtained by normalizing
the pixel coordinates in the texture space to values between 0 and 1. Accordingly, the number
of vertices can be gradually reduced by applying the value of 0.01 (= 0.01 pixels) as the reference
value.
	 In this study, the floating point number was compared on the basis of the minimum value
of the data type provided by the software language, which was set as the default value, with
the option for specifying different values as the need arises. When determining whether a
vertex shares the same coordinate values with a vertex in the list, the number of operations is
proportional to the number of vertices in the list. The number of operations can be substantially
reduced by using an appropriate space index. In this study, the number of operations was
reduced by using the distance of each vertex from the center of the 3D spatial object data as the
index of each vertex.

4.	 Comparison of Duplicate Vertex Removal Outcomes

	 The duplicate vertex removal performance of the proposed algorithm was tested with
Spatial Object Tool (SPOTool), an in-house prototype software tool that employs C++ as the
development language. SPOTool was configured to be implemented in the console environment
without GUI. For other functions related to duplicate vertex removal, namely, 3DS file input
and output and spatial index, lib3ds and gdal open source libraries were used.
	 As the test data, 3DS-format building objects modeled with PLW Modelworks 3D object
modeling software were used. The test objects were 12 buildings located in the Yeouido area
of Seoul. Various building types, from simple bungalows to high-rise structures, were selected
to diversify the number of vertices (Table 5). The total number of vertices of the 12 data sets
amounted to 16789 and the total file size was 444.81 kB.
	 To verify the performance of the proposed algorithm, MeshLab and Blender were used for
comparison testing. The test was conducted in the following order: load the test data set into
the software, remove duplicate vertices, save the data set in 3DS format, reopen the stored file,
and count the number of remaining vertices. Table 6 presents the results of the duplicate vertex
removal testing on 12 data sets comparing the performance levels of three tools (SPOTool,
MeshLab, and Blender).
	 The performance comparison of the three software tools yielded similar overall vertex
removal rates (Table 7); however, SPOTool based on the algorithm proposed in this study
showed a slightly higher average removal rate. MeshLab and Blender employed their respective
additional processes for optimization, yielding different removal outcomes, with more
reductions than simply the removal of duplicate vertices. SPOTool also added a process to
enhance the removal rate. Specifically, some of the 3D spatial object data contain records of
texture coordinates lying outside the texture space containing faces without texture allocation.
SPOTool was configured to process such data as duplicate vertices after providing them with
random values, further reducing the number of vertices. Furthermore, after the first run of

Sensors and Materials, Vol. 31, No. 10 (2019)	 3363

duplicate vertex removal, the vertices constituting faces without an area as a result of duplicate
vertex removal were additionally eliminated.

Table 5
Test data.
File name bldg001 bldg072 bldg135 bldg218
No. of vertices 24 270 24 1816
File size (kB) 1.02 7.57 1.02 47.5

Image

File name bldg281 bldg343 bldg437 bldg503
No. of vertices 4722 1451 1888 1809
File size (kB) 126 37.3 50.1 48

Image

File name bldg566 bldg621 bldg710 bldg774
No. of vertices 394 2032 1149 1210
File size (kB) 10.5 53.6 30.4 31.8

Image

Table 6
Number of vertices remaining after removal of
duplicate vertices.

Original
data SPOTool MeshLab Blender

bldg001 24 14 15 14
bldg072 270 202 207 210
bldg153 24 14 14 14
bldg218 1816 1148 1148 1148
bldg281 4722 3519 3520 3519
bldg343 1451 778 778 774
bldg437 1888 1354 1355 1355
bldg503 1809 1191 1193 1193
bldg566 394 195 196 195
bldg621 2032 1379 1380 1379
bldg710 1149 787 791 791
bldg774 1210 772 775 772

Table 7
Comparison of vertex removal efficiency for different
software systems.

Original
data SPOTool MeshLab Blender

No. of vertices 16789 11353 11372 11364
No. of vertices
 removed — 5436 5417 5425

Vertex removal
 rate — 32.38 32.27 32.31

3364	 Sensors and Materials, Vol. 31, No. 10 (2019)

	 By comparing the number of duplicate point eliminations, the same number of duplicate
points were removed in the three software programs for the bldg153 and bldg218 objects.
However, in the other 10 objects, SPOTool removed one or more redundancy points compared
with the other two software programs (Table 6). By comparing the results of eliminating
duplicate points for all 12 objects, SPOTool showed the performance of removing 19 more
duplicate points than MeshLab and 11 more than Blender (Table 7).
	 Additionally, considering that the object size is proportional to the number of vertices,
the correlation between the object size and the duplicate vertex removal rate was analyzed.
Although a larger number of vertices were removed from a larger object, given the
proportionally larger number of vertices in a larger object, the comparison of removal rates with
respect to the ratio between the numbers of vertices before and after duplicate vertex removal
revealed that the removal rate does not correlate with the object size (Fig. 5). This suggests that
the occurrence of duplicate vertices does not follow a specific mechanism depending on certain
conditions but is a random phenomenon.

5.	 Conclusions

	 The visualization of 3D object data, which can implement the realistic rendering of objects
as a result of recent advancements in computer graphics technologies, requires a cost-intensive
large-volume storage space and a broad network bandwidth. Thus, with the continuously
increasing demand for 3D data, there is a growing need to improve the efficiency of data
production and service structures. In the spatial information market, 3D data should meet
the requirements for the accurate representation of collective 3D objects based on geospatial
information, such as buildings, streets, and facilities, rather than provide a realistic rendering
of the objects themselves, as required in the fields of animation and gaming. It is therefore

Fig. 5.	 (Color online) Duplicate vertex removal rates for objects of different sizes.

Sensors and Materials, Vol. 31, No. 10 (2019)	 3365

essential to develop technologies that consider service efficiency so that users can easily and
continuously check the collective 3D objects that constitute a virtual city space.
	 In this study, an algorithm for automated duplicate vertex removal from 3D object models
was proposed in an attempt to improve the service efficiency of spatial information services by
reducing the volume of 3D data. The test data sets were extracted from the data provided by the
Korean 3D map service “V-World” in 3DS format for urban modeling based on aerial imagery.
In 3DS format, duplicate vertices should be checked among the combined vertex and texture
coordinates (X, Y, Z+U, V). Accordingly, the duplicate vertex removal algorithm was developed
in a way to remove duplicate vertices by identifying data points with the same vertex (X, Y, Z)
and texture (U, V) coordinate values, and reconstruct the faces linked to the corresponding
vertices. To test the duplicate vertex removal performance of the proposed algorithm, we
developed SPOTool, an in-house prototype software tool, and performed comparison testing
using SPOTool and two widely used 3D graphics software tools, MeshLab and Blender.
	 3D format object models of 12 buildings located in the Yeouido area of Seoul were used
as test data. In the comparison testing, the software developed in this study showed a mean
duplicate vertex removal rate of 32.38%, outperforming the other two software tools. For all 12
objects, SPOTool removed the same or slightly higher numbers of duplicate vertices. However,
the large standard deviations of the removal rate distribution, which ranged from 23 to 51% (more
than double), do not allow for the generalization of the duplicate vertex removal rate. Moreover,
although a larger number of vertices were removed from larger objects, given the proportionally
larger number of vertices in a larger object, no correlation was observed between the file size
and the removal rate. This suggests that duplicate vertices occur in an unpredictable, random
manner and are a common phenomenon affecting most object models. To conclude, duplicate
vertex removal is an indispensable process after conducting 3D building modeling. The process
of removing such unnecessary information can make the size of the 3D data small, which is
expected to slightly improve the service speed.
	 3D data generation and service delivery are cost-intensive and time-consuming and therefore
subject to many limitations. To overcome such limitations, there is a need for continuous
research efforts to develop technologies that can meet the requirements of the constantly
growing 3D spatial information services market, specifically to improve the service efficiency
by minimizing the 3D spatial information data volume.

Acknowledgments

	 This research was supported by a grant (19DRMS-B147287-02) from the development of
customized realistic 3D geospatial information update and utilization technology based on
consumer demand, funded by the Ministry of Land, Infrastructure and Transport of the Korean
government.

References

	 1	 MarketsandMarkets: https://www.marketsandmarkets.com/Market-Reports/smart-cities-market-542.html
(accessed August 2019).

https://www.marketsandmarkets.com/Market-Reports/smart-cities-market-542.html(accessed
https://www.marketsandmarkets.com/Market-Reports/smart-cities-market-542.html(accessed

3366	 Sensors and Materials, Vol. 31, No. 10 (2019)

	 2	 Frost & Sullivan: https://ww2.frost.com/news/press-releases/frost-sullivan-experts-announce-global-smart-
cities-raise-market-over-2-trillion-2025/ (accessed August 2019).

	 3	 F. Biljecki, H. Ledoux, and J. Stoter: Comput. Environ. Urban Syst. 59 (2016) 25. http://doi.org/10.1016/
j.compenvurbsys.2016.04.005

	 4	 A. P. McClune, J. P. Mills, P. E. Miller, and D. A. Holland: Int. Arch. Photogramm. Remote Sens. Spatial Inf.
Sci., XLI-B3, 2016 XXIII ISPRS Congress, 641–648. https://doi.org/10.5194/isprs-archives-XLI-B3-641-2016

	 5	 E. J. Yoo, S. G. Yun, and D. C. Lee: J. Korean Soc. Surv. Geode. Photo. Carto. 30 (2012) 1. https://doi.
org/10.7848/ksgpc.2012.30.1.001

	 6	 L. Gimenez, S. Robert, F. Suard, and K. Zreik: WIT Trans. Built Environ. 149 (2015) 437. https://doi.
org/10.2495/BIM150361

	 7	 D. C. Lee: J. Korean Soc. Surv. Geode. Photo. Carto. 29 (2011) 687. https://doi.org/10.7848/ksgpc.2011.29.6.687
	 8	 J. Fernández-Hernandez, D. González-Aguilera, P. Rodríguez-Gonzálvez, and J. Mancera-Taboada:

Archaeometry 57 (2015) 128. https://doi.org/10.1111/arcm.12078
	 9	 J. Y. Na and C. H. Hong: Spat. Inf. Res. 21 (2013) 1. https://doi.org/10.12672/ksis.2013.21.6.001
	10	 B. Kim, M. Jeong, and D. Shin: Spat. Inf. Res. 24 (2016) 323. https://doi.org/10.1007/s41324-016-0034-x
	11	 H. Jang, D. Kim, J. Kim, and I. Jang: Spat. Inf. Res. 24 (2016) 367. https://doi.org/10.1007/s41324-016-0038-6
	12	 H. D. Kim, J. H. Kang, and H. J. Kim: J. Korean Soc. Geosp. Inf. Syst. 25 (2017) 63. https://doi.org/10.7319/

kogsis.2017.25.1.063
	13	 J. T. Kim, S. H. Yi, J. I. Kim, and S. W. Bae: J. Korean Soc. Geosp. Inf. Syst. 22 (2014) 137. https://doi.

org/10.7319/kogsis.2014.22.3.137
	14	 J. E. Kim, C. H. Hong, and S. D. Son: WIT Trans. Built Environ. 149 (2015) 355. https://doi.org/10.2495/

BIM150301
	15	 J. E. Kim, T. W. Kang, and C. H. Hong: J. Korea Acad. Ind. Coop. Soc. 15 (2014) 5333. https://doi.org/10.5762/

KAIS.2014.15.8.5333

About the Authors

	 Jihun Kang received his B.E. and M.S. degrees from Sungkyunkwan
University, Korea, in 2007 and 2009, respectively. Since 2012, he has been
a senior researcher at Korea Land and Geospatial Informatix Corporation,
Korea. His research interests are in 3D GIS, geospatial data analysis, and
natural hazard analysis. (kangdaejang@lx.or.kr)

	 Sewon Lee received his Ph.D. degree from Seoul National University, Korea,
in 2015. Since 2015, he has been a principal researcher at Korea Land and
Geospatial Informatix Corporation, Korea. His research interests are in 3D
GIS, geospatial data analysis, urban planning, and urban spatial structure.
(leesewon@lx.or.kr)

	 Jinhyeok Park received his B.S. degree from Hongik University, Korea,
in 2008. Since 2009, he has been a senior research engineer at LoDiCS
Corporation. His research interests are in remote sensing, distributed
environment, and 3D rendering systems. (daniel@lodics.com)

https://ww2.frost.com/news/press-releases/frost-sullivan-experts-announce-global-smart-cities-raise-market-over-2-trillion-2025/
https://ww2.frost.com/news/press-releases/frost-sullivan-experts-announce-global-smart-cities-raise-market-over-2-trillion-2025/
http://doi.org/10.1016/j.compenvurbsys.2016.04.005
http://doi.org/10.1016/j.compenvurbsys.2016.04.005
https://doi.org/10.5194/isprs-archives-XLI-B3-641-2016
https://doi.org/10.7848/ksgpc.2012.30.1.001
https://doi.org/10.7848/ksgpc.2012.30.1.001
https://doi.org/10.2495/BIM150361
https://doi.org/10.2495/BIM150361
https://doi.org/10.7848/ksgpc.2011.29.6.687
https://doi.org/10.1111/arcm.12078
https://doi.org/10.12672/ksis.2013.21.6.001
https://doi.org/10.1007/s41324-016-0034-x
https://doi.org/10.1007/s41324-016-0038-6
https://doi.org/10.7319/kogsis.2017.25.1.063
https://doi.org/10.7319/kogsis.2017.25.1.063
https://doi.org/10.7319/kogsis.2014.22.3.137
https://doi.org/10.7319/kogsis.2014.22.3.137
https://doi.org/10.2495/BIM150301
https://doi.org/10.2495/BIM150301
https://doi.org/10.5762/KAIS.2014.15.8.5333
https://doi.org/10.5762/KAIS.2014.15.8.5333

