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	 The demand for highly detailed 3D spatial data is continuously increasing with the 
development of information technology.  However, these 3D spatial data have a large capacity, 
which is a major cause of service degradation.  To solve this problem, an algorithm for reducing 
the 3D data size by removing duplicate vertices, which contain information that is not used 
for 3D building object visualization, was proposed.  Furthermore, prototype software was 
developed to verify this algorithm.  The results of duplicate point elimination were similar to or 
slightly better than the features of professional 3D graphics software.  The proposed technology 
is expected to be useful because it reduces the data capacity while maintaining the quality of 3D 
spatial information data.

1.	 Introduction

	 The 3D spatial information services market is exhibiting very rapid and continued growth 
around the world.  Particularly in the case of a smart city, a representative 3D service field, 
MarketsandMarkets projected the 0.3 trillion dollar market in 2018 to grow to 0.7 trillion dollars 
by 2023,(1) and Frost & Sullivan projected it to grow into a market worth 2.0 trillion dollars by 
2025.(2)  In line with this trend, the Government of the Republic of Korea [Ministry of Land, 
Infrastructure and Transport (MOLIT)] has resolved to promote the creation of smart city 
industrial ecosystems; specifically, it has announced a master plan to operate a world-class 
national pilot system.  To implement the “digital twin”, which constitutes the core of a smart 
city, various research and development projects have been proposed to implement the range of 
technologies needed to build virtual 3D spatial information identical to a real-world city model.
	 In order to create a successful digital twin, realistic high-precision 3D data that can be used 
by linking information collected from various sensors are essential.  Furthermore, information 
services should be continuously improved to make relevant data sets more applicable to diverse 
areas such as urban planning, visualization, spatial analysis, disaster management, films, 
and games; therefore, it is essential to improve the service efficiency.  In this regard, the level 
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of detail (LOD) is a widely used 3D data structure.(3)  LOD is a technique for hierarchically 
structuring data so that only the necessary features of spatial objects are selectively displayed 
according to the distance on the map; this facilitates large-volume data services.  However, 
these technical features alone cannot satisfy the continuously growing user demand for highly 
detailed 3D data and high-quality service.
	 As such, there is a need to develop technologies for improving the production efficiency of 
high-resolution 3D data.  Existing spatial information technologies have focused on producing 
true-to-life 3D data, with the main research focus on automatic 3D modeling using high-
resolution aerial photogrammetry or aerial light detection and ranging (LiDAR) data.(4,5) 
However, this approach is cost-intensive and time-consuming.  To address this limitation, 
significant research efforts have been devoted to using existing data for efficient 3D data 
generation; for example, 3D building modeling methods using 2D scanned plans or aerial 
imagery products provided by Internet map services,(6,7) or images captured from unmanned 
aerial vehicles instead of expensive aerial photogrammetry or aerial LiDAR data.(8)

	 It is also necessary to develop technologies for improving the 3D data service efficiency.  To 
provide city-scale 3D data services, various technologies are required to process large-volume 
spatial data.  To address this need, researchers have proposed various methods to reduce the 
data volume, such as setting the LOD-based data visualization level and reducing the numbers 
of edges and vertices that constitute the 3D objects.(9)  For example, the Korean government 
launched the “V-World” service in 2013 and has since provided 3D geospatial imagery across 
the country (and beyond) and 3D spatial views of urban objects (buildings, streets, and subways) 
in Seoul and other metropolitan areas.  It is a government-run spatial information open platform 
that provides maps and various types of public spatial data.  Since the service was released in 
Korea, a number of follow-up studies have been conducted with a focus on “light-weight” or 
“simplification” for easier and more accurate 3D data services.(10,11)  For example, Kim et al. (i) 
developed a method of minimizing building-related data and standardizing the 3D building data 
format to ensure data service efficiency and interoperability,(12) and (ii) conducted an evidence-
based study to improve the V-World service quality by analyzing the update status and errors of 
3D models and attribute data by verifying them using a publicly available cadastral registry.(13)  
Similar studies conducted in the construction sector have sought to improve the screen 
visualization efficiency of building information modeling (BIM) data.(14,15)  This is associated 
with a light-weight algorithm considering BIM characteristics, which is indispensable for 
ensuring the smooth operation of large-scale BIM data on the geographic information system (GIS) 
platform.
	 Thus, with increasing demand for 3D data, various 3D-related technologies have been 
studied by different approaches.  However, the majority of these studies have focused on 
developing techniques for producing and constructing highly detailed 3D data, and relatively 
little effort has been spent on improving the 3D data structure to provide better services to 
users.  Generally, providing users with high-resolution 3D models is time-consuming and 
cost-intensive on account of their large data volume.  Therefore, to provide general users with 
accurate data for a realistic 3D experience, it is important to not only produce highly detailed 
3D data, but also improve the data retrieval speed by reducing the data volume.
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	 The purpose of this study is to develop a data volume minimization algorithm that removes 
duplicate vertices that are unnecessary for visualizing a 3D spatial object, thereby improving 
the efficiency of 3D data services.  Test data were generated using the aerial imagery-based 3D 
modeling software PLW Modelworks.  An algorithm used to remove duplicate vertices from 
aerial-imagery-based highly detailed 3D objects was defined using these data, and a prototype 
was implemented to analyze its performance.  Duplicate vertex removal performance was 
verified by comparing and analyzing similar functions using two specialized computer graphics 
software tools.  The software developed in this study outperformed the other two software tools 
according to its duplicate vertex removal rate.  Furthermore, we conclude that duplicate vertex 
removal is a key process following 3D building modeling.

2.	 Data Structure of 3D Spatial Object Data

	 Aerial-imagery-based 3D object data are generally produced in the Autodesk 3DS format.  
The 3DS format is a binary file format that represents 3D geometric meshes made of triangles 
as the minimum unit.  The component units of this 3DS format are a vertex, a face, a mesh, and 
a file, which are used on the basis of texture, as shown in Table 1.  By design, each file of this 
3DS format can have multiple meshes and textures; however, most 3D spatial data consist of one 
mesh and one texture.  
	 In general, a 3D rendering system registers each object’s vertex and texture coordinates 
separately and defines each list as an index.  An index usually specifies the vertex and texture 
coordinates of an object with a float or double data type using the integer data type.  An index 
thus defined can replace the repeatedly used corresponding vertex and texture coordinates, 
reducing the size allocated to the object data.  Coordinate data are stored by using either two 
separate indices for vertex and texture coordinates or one index for the combined vertex and 
texture coordinates.  A widely used format for the former is the OBJ format.  The structure of 
the 3DS format data used in this study is the latter type of index storage.  
	 For example, the 3D object data of a cube can be stored in 3DS format as follows: A cube 
is composed of vertex coordinates (X, Y, Z), which represent the eight vertices in a 3D space, 
and 14 texture coordinates (U, V), which correspond to the 14 corners matching their respective 
vertices when laid out flat in the 2D texture space from the 3D space of the cube (Fig. 1, Table 2).  
To store the data set in 3DS format using an index, 23 texture and 23 vertex coordinate indices 
are generated and stored (Table 3).  The 12 triangle faces constituting the 3D object are stored 
on the basis of the coordinate indices (Table 4).

Table 1
3DS format component.
Component Details
Vertex The point that constitutes the model, expressed in 3D coordinates
Face A triangle consisting of three vertices; the smallest unit of the model
Mesh A group of multiple faces
File A group of multiple meshes
Texture The image corresponding to the position of the vertex (reference element in 3DS format)
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Table 4
Vertex and texture coordinates of a polygon.
# P1 P2 P3
1 1 6 8
2 1 8 11
3 15 17 20
4 15 20 23
5 3 13 22
6 3 22 4
7 5 21 19
8 5 19 7
9 9 18 17

10 9 17 12
11 14 2 10
12 14 10 16

Fig. 1.	 (Color online) A cube laid out flat in (a) 2D texture space (U, V) and (b) 3D object space (X, Y, Z).

(a) (b)

Table 2
Vertex and texture coordinates.

Vertex coordinates Texture coordinates
# X Y Z # U V # U V
1 −1 −1 1 1 0.39 0.28 8 0.39 0.94
2 −1 −1 −1 2 0.61 0.28 9 0.39 0.06
3 1 −1 −1 3 0.61 0.50 10 0.61 0.06
4 1 −1 1 4 0.39 0.50 11 0.17 0.28
5 −1 1 1 5 0.39 0.72 12 0.17 0.50
6 1 1 1 6 0.61 0.72 13 0.83 0.28
7 1 1 −1 7 0.61 0.94 14 0.83 0.50
8 −1 1 −1

Table 3
Vertex and texture coordinate indices of a 3D object.
# X Y Z U V # X Y Z U V
1 −1 −1 1 0.39 0.28 13 −1 1 1 0.61 0.06
2 −1 −1 1 0.83 0.28 14 −1 1 1 0.61 0.28
3 −1 −1 1 0.39 0.06 15 −1 1 1 0.39 0.72
4 −1 −1 −1 0.39 0.28 16 1 1 1 0.61 0.50
5 −1 −1 −1 0.17 0.28 17 1 1 1 0.61 0.72
6 −1 −1 −1 0.61 0.28 18 1 1 −1 0.61 0.50
7 1 −1 −1 0.17 0.50 19 1 1 −1 0.39 0.50
8 1 −1 −1 0.61 0.50 20 1 1 −1 0.61 0.94
9 1 −1 −1 0.39 0.50 21 −1 1 −1 0.39 0.28

10 1 −1 1 0.83 0.50 22 −1 1 −1 0.61 0.28
11 1 −1 1 0.39 0.50 23 −1 1 −1 0.39 0.94
12 1 −1 1 0.39 0.72 — — — — — —

3.	 Methods to Remove Duplicate Vertices

	 In principle, removing duplicate vertices means removing the vertex coordinates with 
exactly the same coordinate values.  Functionally, however, it involves removing the texture 
coordinates with exactly the same coordinate values.  In the removal method where two separate 
indices are used for the vertex and texture coordinates, as explained in the previous section, the 
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duplicate vertices should be removed in their respective coordinates.  In the removal method 
where one index is used for the combined vertex and texture coordinates, the duplicate points 
exist in both vertex and texture coordinates.  It is often the case that 3D object optimization 
functions, including the removal of duplicate vertices, are embedded in specialized computer 
graphics software; for example, open source software such as Blender, which can construct and 
edit 3D objects, and MeshLab, which provides diverse methods and algorithms for analyzing 
and transforming 3D objects.

3.1	 Review of existing techniques

	 MeshLab is a 3D mesh processing software system developed by the Institute of Information 
Science and Technology of the Italian National Research Council.  It is provided under the 
General Public License (GPL), available for various operating systems such as Windows, 
Mac, and Linux, and is broadly used in academic and research work (Fig. 2).  Blender is also 
a general public license (GNU) GPL open source 3D creation software tool developed by the 
Blender Foundation and supported by the Dutch government.  It provides business solutions that 
comprehensively support the 3D creation process encompassing modeling, rigging, animation, 
and simulation, and is widely used in commercial fields (Fig. 3).
	 Both tools have diverse in-built functions for 3D object manipulation, some of which can 
remove duplicate vertices.  MeshLab provides the “Cleaning and Repairing” function under 
the menu “Filters”, with which duplicate vertices and texture coordinates can be eliminated by 
invoking the filter “Remove Duplicated Vertices.” Blender provides the function of removing 

Fig. 2.	 (Color online) Basic screen layout of MeshLab.
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duplicate texture coordinates under the menu “Remove Doubles UV” and removing duplicate 
texture and vertex coordinates under the menu “Remove Doubles”.  Note that invoking “Remove 
Doubles” automatically activates the function “Remove Doubles UV”.
	 Although these software systems are verified techniques, the related functions are 
complicated to use and cannot be employed separately for redundant vertex removal because 
they are built-in functions.  More importantly, it is impossible to process a data set as a whole, 
which makes it infeasible to use existing software tools for processing data in the field of spatial 
information, in which large-volume spatial object data sets are created and updated.  To address 
this problem and ensure the efficient processing of 3D object data created in 3DS format, we 
define a duplicate vertex removal algorithm and develop the related software.

3.2	 Development of a method to remove duplicate vertices of multi-structured data

	 To use the diverse duplicate vertex removal functions of the software tools presented 
above, it is necessary to convert the 3D data of different formats into the format required 
by each software system.  The algorithm developed in this study is optimized for the 3DS 
format in which 3D objects are created and stored.  Its main focus is detecting the duplicate 
vertices sharing the same coordinate combinations occurring in the 3DS format structure and 
reconstructing the faces linked to the corresponding vertices.  The details of the proposed 
method are as follows.
	 First, a data structure, in which the vertex and texture coordinates (X, Y, Z+U, V) can be 
stored as one record, is constructed, and coordinate and mapping lists are compiled.  The 
coordinate list manages the record index and the mapping list is used to map the index in 

Fig. 3.	 (Color online) Basic screen layout of Blender.



Sensors and Materials, Vol. 31, No. 10 (2019)	 3361

the original vertex list and the index in the new vertex list.  All the vertices of the object are 
then sequentially inspected, thereby checking all vertex and texture coordinates, so that the 
coordinate list can be completed without duplicate coordinate values.  That is, each vertex 
is checked against the list and discarded or added to the list depending on whether or not it 
shares the same coordinate values with any of the vertex and texture coordinates in the list.  
The mapping list is updated accordingly, i.e., it is updated using information about the indices 
related to the vertices discarded from the original list and added to the new list.
	 The coordinate list free of duplicate vertices and the mapping list are completed along 
with the completion of the sequential inspection of all vertices.  The process of duplicate 
vertex removal is completed by inspecting each face and updating the indices of the related 
vertices and creating new original data using the completed mapping list.  Figure 4 shows the 
pseudocode presented in this study for duplicate vertex removal.  This algorithm is for the 
removal of duplicate points in 3DS format data characterized by using the same index for vertex 
and texture coordinates.  If it is to be applied to other 3D formats that use indexes separately, 
the vertex and texture coordinate lists must be removed separately.
	 To determine whether two records share the same vertex and texture coordinates, individual 
sets of coordinate values (X, Y, Z+U, V) are checked, whereby checking for the same coordinate 
values corresponds to checking for the same floating points.  In general, if the absolute value 
of the difference between two floating point numbers is lower than the reference value (e.g., 
epsilon: the smallest number represented by the related data type), then these two floating 
point numbers are considered to be equal.  A negligible difference in value can be used as the 
reference value, i.e., if the unit of vertex coordinates of the 3D spatial object data is meters, 
a value of 0.001 m (1 mm) can be used as the reference value.  Accordingly, the number of 
vertices can be gradually reduced by expanding the number of duplicate vertices to be reduced 
on the basis of the set reference value.  

Fig. 4.	 Pseudocode for removing duplicate vertices.
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	 Similarly, comparing the texture coordinates is the same as comparing the floating point 
numbers, whereby the texture coordinates are inverse-normalized to the pixel coordinates 
depending on the texture size.  That is, texture coordinates are values obtained by normalizing 
the pixel coordinates in the texture space to values between 0 and 1.  Accordingly, the number 
of vertices can be gradually reduced by applying the value of 0.01 (= 0.01 pixels) as the reference 
value.
	 In this study, the floating point number was compared on the basis of the minimum value 
of the data type provided by the software language, which was set as the default value, with 
the option for specifying different values as the need arises.  When determining whether a 
vertex shares the same coordinate values with a vertex in the list, the number of operations is 
proportional to the number of vertices in the list.  The number of operations can be substantially 
reduced by using an appropriate space index.  In this study, the number of operations was 
reduced by using the distance of each vertex from the center of the 3D spatial object data as the 
index of each vertex.

4.	 Comparison of Duplicate Vertex Removal Outcomes

	 The duplicate vertex removal performance of the proposed algorithm was tested with 
Spatial Object Tool (SPOTool), an in-house prototype software tool that employs C++ as the 
development language.  SPOTool was configured to be implemented in the console environment 
without GUI.  For other functions related to duplicate vertex removal, namely, 3DS file input 
and output and spatial index, lib3ds and gdal open source libraries were used.
	 As the test data, 3DS-format building objects modeled with PLW Modelworks 3D object 
modeling software were used.  The test objects were 12 buildings located in the Yeouido area 
of Seoul.  Various building types, from simple bungalows to high-rise structures, were selected 
to diversify the number of vertices (Table 5).  The total number of vertices of the 12 data sets 
amounted to 16789 and the total file size was 444.81 kB.  
	 To verify the performance of the proposed algorithm, MeshLab and Blender were used for 
comparison testing.  The test was conducted in the following order: load the test data set into 
the software, remove duplicate vertices, save the data set in 3DS format, reopen the stored file, 
and count the number of remaining vertices.  Table 6 presents the results of the duplicate vertex 
removal testing on 12 data sets comparing the performance levels of three tools (SPOTool, 
MeshLab, and Blender).
	 The performance comparison of the three software tools yielded similar overall vertex 
removal rates (Table 7); however, SPOTool based on the algorithm proposed in this study 
showed a slightly higher average removal rate.  MeshLab and Blender employed their respective 
additional processes for optimization, yielding different removal outcomes, with more 
reductions than simply the removal of duplicate vertices.  SPOTool also added a process to 
enhance the removal rate.  Specifically, some of the 3D spatial object data contain records of 
texture coordinates lying outside the texture space containing faces without texture allocation.  
SPOTool was configured to process such data as duplicate vertices after providing them with 
random values, further reducing the number of vertices.  Furthermore, after the first run of 
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duplicate vertex removal, the vertices constituting faces without an area as a result of duplicate 
vertex removal were additionally eliminated.

Table 5 
Test data.
File name bldg001 bldg072 bldg135 bldg218
No. of vertices 24 270 24 1816
File size (kB) 1.02 7.57 1.02 47.5

Image

File name bldg281 bldg343 bldg437 bldg503
No. of vertices 4722 1451 1888 1809
File size (kB) 126 37.3 50.1 48

Image

File name bldg566 bldg621 bldg710 bldg774
No. of vertices 394 2032 1149 1210
File size (kB) 10.5 53.6 30.4 31.8

Image

Table 6
Number of vertices remaining after removal of 
duplicate vertices.

Original 
data SPOTool MeshLab Blender

bldg001 24 14 15 14
bldg072 270 202 207 210
bldg153 24 14 14 14
bldg218 1816 1148 1148 1148
bldg281 4722 3519 3520 3519
bldg343 1451 778 778 774
bldg437 1888 1354 1355 1355
bldg503 1809 1191 1193 1193
bldg566 394 195 196 195
bldg621 2032 1379 1380 1379
bldg710 1149 787 791 791
bldg774 1210 772 775 772

Table 7
Comparison of vertex removal efficiency for different 
software systems.

Original 
data SPOTool MeshLab Blender

No. of vertices 16789 11353 11372 11364
No. of vertices 
 removed — 5436 5417 5425

Vertex removal 
 rate — 32.38 32.27 32.31
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	 By comparing the number of duplicate point eliminations, the same number of duplicate 
points were removed in the three software programs for the bldg153 and bldg218 objects.  
However, in the other 10 objects, SPOTool removed one or more redundancy points compared 
with the other two software programs (Table 6).  By comparing the results of eliminating 
duplicate points for all 12 objects, SPOTool showed the performance of removing 19 more 
duplicate points than MeshLab and 11 more than Blender (Table 7).
	 Additionally, considering that the object size is proportional to the number of vertices, 
the correlation between the object size and the duplicate vertex removal rate was analyzed.  
Although a larger number of vertices were removed from a larger object, given the 
proportionally larger number of vertices in a larger object, the comparison of removal rates with 
respect to the ratio between the numbers of vertices before and after duplicate vertex removal 
revealed that the removal rate does not correlate with the object size (Fig. 5).  This suggests that 
the occurrence of duplicate vertices does not follow a specific mechanism depending on certain 
conditions but is a random phenomenon.

5.	 Conclusions

	 The visualization of 3D object data, which can implement the realistic rendering of objects 
as a result of recent advancements in computer graphics technologies, requires a cost-intensive 
large-volume storage space and a broad network bandwidth.  Thus, with the continuously 
increasing demand for 3D data, there is a growing need to improve the efficiency of data 
production and service structures.  In the spatial information market, 3D data should meet 
the requirements for the accurate representation of collective 3D objects based on geospatial 
information, such as buildings, streets, and facilities, rather than provide a realistic rendering 
of the objects themselves, as required in the fields of animation and gaming.  It is therefore 

Fig. 5.	 (Color online) Duplicate vertex removal rates for objects of different sizes.
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essential to develop technologies that consider service efficiency so that users can easily and 
continuously check the collective 3D objects that constitute a virtual city space.
	 In this study, an algorithm for automated duplicate vertex removal from 3D object models 
was proposed in an attempt to improve the service efficiency of spatial information services by 
reducing the volume of 3D data.  The test data sets were extracted from the data provided by the 
Korean 3D map service “V-World” in 3DS format for urban modeling based on aerial imagery.  
In 3DS format, duplicate vertices should be checked among the combined vertex and texture 
coordinates (X, Y, Z+U, V).  Accordingly, the duplicate vertex removal algorithm was developed 
in a way to remove duplicate vertices by identifying data points with the same vertex (X, Y, Z) 
and texture (U, V) coordinate values, and reconstruct the faces linked to the corresponding 
vertices.  To test the duplicate vertex removal performance of the proposed algorithm, we 
developed SPOTool, an in-house prototype software tool, and performed comparison testing 
using SPOTool and two widely used 3D graphics software tools, MeshLab and Blender.
	 3D format object models of 12 buildings located in the Yeouido area of Seoul were used 
as test data.  In the comparison testing, the software developed in this study showed a mean 
duplicate vertex removal rate of 32.38%, outperforming the other two software tools.  For all 12 
objects, SPOTool removed the same or slightly higher numbers of duplicate vertices.  However, 
the large standard deviations of the removal rate distribution, which ranged from 23 to 51% (more 
than double), do not allow for the generalization of the duplicate vertex removal rate.  Moreover, 
although a larger number of vertices were removed from larger objects, given the proportionally 
larger number of vertices in a larger object, no correlation was observed between the file size 
and the removal rate.  This suggests that duplicate vertices occur in an unpredictable, random 
manner and are a common phenomenon affecting most object models.  To conclude, duplicate 
vertex removal is an indispensable process after conducting 3D building modeling.  The process 
of removing such unnecessary information can make the size of the 3D data small, which is 
expected to slightly improve the service speed.
	 3D data generation and service delivery are cost-intensive and time-consuming and therefore 
subject to many limitations.  To overcome such limitations, there is a need for continuous 
research efforts to develop technologies that can meet the requirements of the constantly 
growing 3D spatial information services market, specifically to improve the service efficiency 
by minimizing the 3D spatial information data volume.
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