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	 The objective of this study was to design a control interface for dual-input video/audio 
recognition consisting of two input interface systems, hand posture and speech recognition, 
with the use of specific hand postures or voice commands for control without the need 
for wearable devices.  Original video camera images were preprocessed for hand posture 
recognition, and the face in the image was used as the reference point and identified using the 
Adaboost classifier.  An image of a specific size was selected as the recognition input image to 
increase the recognition speed.  A neural network comprising convolutional, activation, max 
pooling, and fully connected layers was used to classify and recognize hand posture images as 
well as speech.  Long short-term memory (LSTM) in a recurrent neural network (RNN) was 
used to achieve speech recognition.  Speech features were extracted by preprocessing, and Mel-
frequency cepstral coefficients (MFCCs) and a fast Fourier transform (FFT) were then used 
to convert the signals from the time domain to the frequency domain.  The frequency domain 
signals subsequently underwent a discrete cosine transform through triangular bandpass 
filters to derive MFCCs as the speech eigenvalue input.  The speech feature parameters were 
then input to the LSTM neural network to make predictions and achieve speech recognition.  
Experimental results showed the image/speech dual-input control interface had good sound 
recognition capability, supporting the findings of this study.

1.	 Introduction

	 The convolutional neural network (CNN)(1) was first proposed by LeCun in 1989.  A CNN 
is a type of deep learning model with layered learning features.  However, owing to the limited 
performance of computer hardware at the time, the CNN concept could not be effectively 
realized.  However, modern graphics processing units (GPUs) are very powerful and their 
substantial computing power has been effectively applied in deep-learning computing.  As a 
result, CNN development has flourished and CNNs are widely used in many fields, such as 
object detection(2) and face recognition.  Current applications are focusing on the development 
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of artificial intelligence, and natural language processing and speech recognition have been 
established.(3)  The successful application of LeNet-5(4) in the field of handwritten character 
recognition has also drawn the attention of the academic community towards CNNs.  The 
features learned through CNNs display a stronger discriminative and learning ability than 
artificial design features.  Long short-term memory (LSTM)(5) was proposed by Hochreiter 
and Schmidhuber in 1997 and the advantage of “recurrence” has been widely applied in speech 
recognition and emotion analysis.  A CNN and LSTM were used as the main structures in this 
study in view of the excellent image/speech input feature recognition capability of CNNs.

2.	 Introduction of the Hardware and System Environment

	 The aim of this study was to enrich the control interface of a quadrotor system with control 
signals of gestures and voices, where the system structural diagram is shown in Fig. 1.  It 
consists of two parts: the ground computing terminal and the quadrotor flight controller.  
Wireless signals were transmitted between them using Wi-Fi.

3.	 Hand Posture Recognition

	 The images captured using a video camera were processed and then classified using a 
CNN, which consisted of convolutional, activation, maxpooling, and fully connected layers, to 
establish hand posture recognition from images.

3.1	 Image preprocessing

	 The preprocessing of the images included conversion from color to grayscale.  The Adaboost 
classifier(6,7) was used to identify the face in the image as a reference point, and an image of a 

Fig. 1.	 (Color online) Structure of system.
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specific size was selected as the recognition input.  The 45° Haar rectangle feature(8) proposed 
by Lienhart and Maydt was used to extract face sample features, which were placed in the 
classifier for use in training.  After classifier training, the robust linear tandem classifier(9) 
formed by multiple weak classifiers was obtained and is shown in Fig. 2.

3.2	 CNN network structure

	 The CNN network architecture used in this paper is shown in Table 1.

Fig. 2.	 (Color online) Structure of cascade classifier.

Table 1
CNN network structure.
Layer Setting Parameters

Conv 1

Input shape: 350 × 420
Filters: 16

Kernel size: 5 × 5
Activation: relu

Stride: 1 × 1
Padding: same

416

MaxPooling 1
Pool size: 2 × 2

Stride:2 × 2
Padding: valid

Dropout 1 0.25
Conv 2 32, 5 × 5, relu 12832
MaxPooling 2 Pool size: 2 × 2
Dropout 2 0.25
Conv 3 64, 5 × 5, relu 51264
MaxPooling 3 Pool size: 2 × 2
Dropout 3 0.25
Conv 4 128, 5 × 5, relu 204928
MaxPooling 4 Pool size: 2 × 2
Dropout 4 0.25
Conv 5 128, 5 × 5, relu 409728
MaxPooling 5 Pool size: 2 × 2
Dropout 5 0.25
FC Number of nodes: 256 16640

Dense Number of nodes: 18
Activation: softmax 774
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4.	 Speech Recognition

	 Speech commands were input to a microphone and converted into digital potential signals 
by an analog-to-digital converter (ADC).  After the features had been obtained, the LSTM(10) 
in a recurrent neural network (RNN)(11) was used to perform speech recognition.  Speech 
recognition was accomplished using voice signal preprocessing, speech eigenvalue extraction, 
and the RNN.

4.1	 Voice signal preprocessing

	 Voice signals were preprocessed to extract the required eigenvectors.  Preprocessing 
included digital sampling, preemphasis, frame, and window function steps, as shown in Fig. 3.

4.2	 Speech feature extraction

	 The signals were converted to the frequency domain using a discrete Fourier transform and 
observed using the energy distribution, and Mel-frequency cepstral coefficient (MFCCs)(12–14) 
were used to extract features.  Log energy and the delta cepstrum were added to increase the 
diversity of the eigenvalues.  The MFCC process is shown in Fig. 4.(15)

4.3	 LSTM

	 LSTM was employed to avoid the problem of gradient disappearance.  The concept of the 
memory cell and gate was incorporated into the RNN.  Figure 5 shows a single memory block 
of LSTM,(16) which includes three gates: Input, Output, and Forget.  The gates are all nonlinear 

Fig. 4.	 (Color online) Flowchart of Speech feature extraction. 

Fig. 3.	 (Color online) Flowchart of voice signal preprocessing.



Sensors and Materials, Vol. 31, No. 11 (2019)	 3455

summing units.  The main function of a gate is to determine whether to accept an input signal, 
to forget the past status, or to output a predicted result, as well as other actions.  The status 
update process can be represented by the following equations:

Input gate	 ( )i
t ti w xσ= ,	 (1)

Output gate	 ( )o
t to w xσ= ,	 (2)

Forget gate	 ( )f
t tf w xσ= ,	 (3)

New memory cell	 ( )tanh c
t tc w x=� ,	 (4)

Update memory cell	 1t t t t tc f c i c−= + � ,	 (5)

Update hidden cell	 tanht t th o c= .	 (6)

Here, t represents the time step, xt is the input vector of the LSTM block, σ(.) is the logistic 
sigmoid function, tanh(x) represents the hyperbolic tangent function, wi, wo, wf, and wc represent 
the weights of the matrices,  tc�  represents the candidate value, ct represents the cell status output, 
and ct−1 represents the status output of the previous unit.
	 After speech was input, eigenvectors were extracted through speech preprocessing, and  
speech features were extracted using MFCCs.  Finally, the processed speech features were 
placed in the LSTM to carry out recognition.  Recognition results were then converted into 
appropriate control signals.

Fig. 5.	 (Color online) Schematic diagram of LSTM memory block. 
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5.	 Experimental Results

	 This paper is divided into two parts.  The first part is concerned with hand posture 
recognition involving input images for gray scaling and the use of the Adaboost face recognition 
classifier to identify a face in the image as a reference point; the second part involves speech 
recognition voice signals, which underwent preprocessing to derive speech eigenvectors.  
MFCCs were then used to extract the speech features and the LSTM was used to perform 
recognition.

5.1	 Experimental results of hand posture recognition

	 The images used for the input were 640 × 480 pixels in size.  About 50000 images were used 
for training and 5000 images were used for testing.  Six different instructional postures were 
used as shown in Figs. 6–8.
	 Since the preset device in this paper was a quadrotor drone, the video camera was situated 
2 m above ground level and 3.5 m from the user, as shown in Fig. 9.  
	 After the input image had been grayscaled, the Adaboost face classifier was used to identify 
the face in the image as the reference point, and the face was selected as the input image for 
turning angle recognition, with a size of 40 × 40, as shown in Fig. 10.

Fig. 7.	 (Color online) Instructions for left oblique 
angles at 45°.

Fig. 8.	 (Color online) Instructions for right oblique 
angles at 45°.

Fig. 6.	 (Color online) Instructions for hand posture recognition.
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	 After the input image had been converted to grayscale, the Adaboost face recognition 
classifier was used to identify the face in the image as the reference point and select it as the 
input image for turning angle recognition.  The computing time was also reduced in addition 
to the improved recognition rate.  As shown in Fig. 11, the samples used for these datasets 
were from 10 people, although the recognition rate may be reduced if more people need to be 
recognized; the image on the left is the uncut original image.  The face and upper body were 
selected using Adaboost.
	 The posture recognition interface used in this study had two CNN structures, the batch size 
was 50, and each epoch had 1000 iterations.  The first CNN determines the angular view of the 
body presented to the camera based on the direction of the face, as shown in Fig. 12 and Table 2.  
The second CNN predicts the hand posture output as shown in Fig. 13 and Table 3.
	 Figures 14–16 show actual recognition images.  In recognition interface windows, the 
pictures show the postures of front, left oblique angle of 45°, and right oblique angle of 45° 
respectively, and the corresponding results of posture, appeared at the upper right window after 
recognition was completed.

5.2	 Experimental results of speech recognition

	 The training datasets of the speech recognition system contained 1187 data entries.  Among 
these, six were voice instructions: left, right, front, behind, up, and down.  Ten students 
recorded each instruction 20 times to make the training datasets and the recording time was 2 s.  

Fig. 9.	 (Color online) Test distance diagram. Fig. 10.	 Input image for turning angle recognition.

Fig. 11.	 (Color online) Image input for posture recognition.
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Fig. 12.	 (Color online) Structure diagram of CNN 
angle recognition. 

Fig. 13.	 (Color online) Structure diagram of CNN 
posture recognition.

Table 2
Angle recognition accuracy results.

Epoch Accuracy Loss Time (s)

CNN

1 0.8134 0.0763 636
2 0.9134 0.0301 594
3 0.9548 0.0213 570
4 0.9866 0.0174 567
5 0.9962 0.0138 585

SVM 1 0.9600 75600

Table 3
Posture recognition accuracy results.

Epoch Accuracy Loss Time (s)

CNN

1 0.7287 0.0847 1756
2 0.8531 0.0386 1703
3 0.9766 0.0289 1689
4 0.9823 0.0204 1697
5 0.9951 0.0138 1709

SVM 1 0.9400 162000

Fig. 14.	 (Color online) Actual test results of front posture recognition.

(a) (b) (c)

(d) (e) (f)
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Fig. 15.	 (Color online) Actual test results of posture recognition at a left oblique angle of 45°.

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

Fig. 16.	 (Color online) Actual test results of posture recognition at a right oblique angle of 45°.
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Fig. 17.	 (Color online) Waveforms signals of original voice input instructions: (a) left, (b) right, (c) front, (d) behind, (e) 
up, and (f) down. 

(a) (b) (c)

(d) (e) (f)

To increase the rate of recognition, the samples included loud and soft commands as well as 
fast and slow, and low- and high-pitched voices.  The original datasets contained 1200 samples, 
but after the defective samples had been removed, 1187 samples remained, which were used as 
training data.  Figure 17 shows the signals of the original voice instructions.
	 The speech feature extraction involves extracting features by preprocessing the speech 
signals and MFCCs.  Figure 18 shows the spectrograms of the voice instructions converted to 
the frequency domain.

Fig. 18.	 (Color online) Frequency domain spectrograms of voice instructions: (a) left, (b) right, (c) front, (d) behind, (e) 
up, and (f) down.

(a) (b) (c)

(d) (e) (f)
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	 In this study, LSTM improved by the RNN was used for speech recognition prediction.  
Figures 19–21 show flowcharts of the LSTM, RNN, and CNN, respectively.  The LSTM was 
used as the speech recognition system in this paper.
	 Table 4 shows the approximate accuracy rates of the LSTM, RNN, and CNN in terms of 
speech recognition.  Because the input voice signals used in this study had no correlation with 
the preceding or succeeding text and were simply single words input as sounds into the LSTM,  
the RNN memory function was not effectively implemented.  Figure 22 shows the image 
patterns obtained from actual speech recognition.

Fig. 19.	 (Color online) Flowchart of LSTM.

Fig. 20.	 (Color online) Flowchart of RNN.

Fig. 21.	 (Color online) Flowchart of CNN.

Table 4
Speech recognition accuracy results.

Epoch Accuracy Time (s)
LSTM 1 0.9836 325
RNN 1 0.9802 308

CNN

1 0.7923 239
2 0.8681 215
3 0.9482 211
4 0.9761 206
5 0.9811 216
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6.	 Conclusion

	 In this study, a dual-input control interface realized for a deep neural network was 
implemented.  A CNN and LSTM were used to achieve hand posture and voice recognition.  
This made control by a specific posture or voice command possible without the need for a 
wearable device.  In the hand posture recognition, the images were used for the CNN parameter 
training of the data server.  A Raspberry Pi3 Wi-Fi transmission module was used to transmit 
images to the video processing device where hand posture recognition was performed.  In the 
speech recognition, speech data were also used to train LSTM parameters through the training 
server.  Voice signals were preprocessed and MFCCs were used to obtain speech feature 
parameters and LSTM was used to make predictions.
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