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 In this study, a curvature change tracking program was developed to evaluate curvature 
changes in the main reflector of a very long baseline interferometry (VLBI) antenna structure.  
The data from the geometric model that was developed by fitting the main reflector into a three-
dimensional (3D) ellipsoid model were used as the fundamental data for the tracking program.  
The 3D ellipsoid fitting model was established using the 3D position coordinates of the feature 
points on the reflector surface extracted through nontarget-based close-range photogrammetry.  
To enhance the fitting accuracy of the 3D ellipsoid model, the optimal parameters were 
calculated by minimizing the residuals between the conjugate points and the ellipsoid fitting 
model and by removing outliers.  As a result, it was statistically confirmed that the fitting 
accuracy of the ellipsoid model was improved.  The improved ellipsoid model was incorporated 
into the curvature change tracking program.  The developed program will be used to evaluate 
the structural stability of the main reflector based on periodic curvature calculations, which can 
also be used as fundamental data for repair and reinforcement work in the future.

1. Introduction

 Very long baseline interferometry (VLBI) is a technology for precisely determining the 
location of a measurement point by analyzing the differences in signal arrival time between 
observation stations.  A VLBI antenna mostly consists of a parabolic antenna constructed 
with a diameter range from 20 to 30 m and has a reflector surface, which comprises several 
hundred metal panels.  The integrity of the shape of the parabolic reflector surface is critical to 
the antenna’s gain performance.  Deviation from the design shape can introduce measurement 
biases, which influence VLBI observations.  This is because changes in the focal length of the 
main reflector or local deformations on the reflector’s surface directly result in biased signal 
paths and, thus, biased baseline estimates.(1,2)

 To accurately determine changes in reflector shape, points on the structure at which 
deformations are likely to occur should be selected and periodically monitored.  An 
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accurate evaluation of the deformation sustained by VLBI antenna structures after extreme 
environmental events such as typhoons or earthquakes is critical to the determination of the 
safety and suitability of structures for their future occupancy.  A quantitative measurement 
of the deformation is an effective means of providing a basis for a more reliable estimation 
of VLBI antenna structure safety.  In a VLBI antenna structure, the curvature variations and 
patterns on the inner surface of the main reflector are the most important indicators used 
to estimate durability.  To measure changes in curvature and prevent resultant damage, it is 
necessary to establish techniques for tracking curvature changes.
 Most available approaches in this area involve the application of linear variable differential 
transformers (LVDTs), demountable mechanical strain gauges (DEMECs), extensometers, and 
fiber optics.  However, a general disadvantage of these techniques is their pointwise and one-
dimensional (1D) measurement capability.  If simultaneous two- or three-dimensional (2D 
or 3D) measurements at several locations are required, the instrumental workload becomes 
rather large.  The techniques are generally not suited for tasks requiring a large number of 
measurement points distributed over an object surface or for complete surface measurements.(3)

 In these cases, close-range photogrammetry is a valuable alternative for the design of 
powerful and flexible measurement tools.  The application of close-range photogrammetry will 
generally allow the simultaneous measurement of the deformation or displacement at an almost 
arbitrary number of locations over the camera’s field of view.  Data processing can be highly 
automated and fast, allowing real-time tracking at the camera imaging rate.(3)  The potential 
accuracy of close-range photogrammetry is generally at the sub-millimeter level in the case of 
measurement of the reflector target and at the millimeter level in the case of measurement of the 
nontarget.  
 Fitting algebraic or geometric surfaces to 3D data is a pervasive problem in numerous fields 
of science and engineering.  Primitive 3D fitting models involve fitting a quadratic surface 
to a set of points in space, which has applications in 3D reconstruction, pose estimation, the 
restricted stereo correspondence problem, and object recognition.(4–10)  One of the most used 
fitting models is the ellipsoid, which is of paramount importance in several fields.
 There have been numerous approaches toward solving the ellipsoid fitting problem.  
Previous work can be classified into two categories, namely, minimizing the algebraic distance 
and minimizing the geometric distance, according to their error distance definitions.(11–19)  The 
problems with geometric fitting (i.e., ineffective initialization, nonuniform point sampling, and 
heavy noise) are likely to result in an ineffective local minimum solution.  Furthermore, it is 
challenging to deduce the geometric error in high-dimensional spaces.  In contrast, algebraic 
fitting is significantly more straightforward owing to its convexity.  Thus, it has been greatly 
preferred in the literature owing to its more convenient numerical treatment and more effective 
statistical interpretation.(20)

 In this study, we propose a new curvature change tracking measurement technique based 
on a 3D geometrical model and close-range photogrammetry.  An optimal geometric model of 
scattered data in a 3D space was constructed by algebraic ellipsoid fitting, and the data were 
used as fundamental data for calculating the curvature changes of the main reflector.  The 
algebraic ellipsoid fitting problem can be mapped to an optimization problem that can be solved 
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using the least-squares (LS) method.  The parameters for the construction of an optimal 3D 
ellipsoid model for the main reflector were calculated by applying an algorithm that enhances 
the fitting accuracy while applying 3D ellipsoid fitting using the LS method.  Finally, to 
increase the accuracy of geodetic and astrometrical measurements performed by the VLBI 
antenna, a program that could periodically calculate the curvature changes of the main reflector 
with minimum labor and cost was developed.

2.	 Study	Subject	and	Experimental	Configuration

 To specify the optimal ellipsoid fitting method for detecting the curvature changes in a 
main reflector, in which multiple feature points are distributed, the main reflector of the VLBI 
antenna located in Sejong, a city in central South Korea, was selected as the target antenna.  
The VLBI antenna is of the Cassegrain type, which consists of a main reflector with a diameter 
of 22 m and a subreflector with a diameter of 2.2 m.  The general specifications for the VLBI 
antenna structure are presented in Table 1.

2.1	 Nontarget-based	photogrammetry

 Close-range photogrammetry is a technique for determining the 3D geometry (location, 
size, and shape) of physical objects by measuring and analyzing their 2D photographs obtained 
from the ground; it has been frequently applied to measure the displacement and deformation 
of facilities.(21–24)  The technological advances of close-range photogrammetry have matured 
to the point that they can now be implemented as measurement tools to obtain a detailed 
understanding of the mechanical deformations and full-field strain distribution of large scale 
composite structures.  This technique is a noncontact measurement technique that uses images 
captured simultaneously by a pair of digital cameras to track prescribed targets placed on a 
structure.  Using the principle of close-range photogrammetry, a full-field 3D structural shape 
consisting of several thousand measurement points can be acquired.  
 To successfully apply close-range photogrammetry, various types of targets should be 
bonded to the subjects, and an accurate measurement process for each target should be 
established.  The target configuration can be classified into the utilization of the feature points 
distinguished from the other pixels in the captured image and the attachment of the separate 

Table 1
Specifications of VLBI antenna structure used in the study.
Classifications Values
Antenna type Cassegrain
Main reflector diameter 22 m
Subreflector diameter 2.2 m
Receiving frequency band 2, 8, 22, and 43 GHz
Antenna illumination efficiency −60 %
Precision of antenna pointing 0.0131° (RMS)
Precision of main reflector curved surface 86 
Driving range Azimuth: ± 270°, elevation: 0–90°
Driving speed Azimuth and elevation 5°/s



3752 Sensors and Materials, Vol. 31, No. 11 (2019)

targets.  If the feature points are used as targets, nontarget-based close-range photogrammetry 
is advantageous for implementing a noncontact method that does not attach any targets to 
structures.
 An initialization process should be performed to calculate the interior and exterior 
orientation parameters of the cameras before performing close-range photogrammetry for each 
target using nonmetric cameras.  The precise values for the interior and exterior orientation 
parameters are calculated from the actual coordinates of the feature points measured by a total 
station survey.  The actual coordinates for the targets are used only once in the calculation of 
the camera calibration and orientation parameters.  However, the orientation parameters of the 
camera determined through the actual coordinates are continuously used until the camera is 
replaced.  Therefore, the actual coordinate measurement of the target and the camera calibration 
task should be conducted very accurately to determine the precise orientation parameters 
through the initialization process.
 In this study, close-range photogrammetry based on direct linear transformation (DLT) 
and a self-calibration bundle adjustment with additional parameters are used to obtain the 3D 
position coordinates of the feature points.(25,26)  DLT and bundle adjustment are precise camera 
calibration techniques and can be used as algorithms for constructing a fast and automated 
camera calibration process without using specific commercial software packages.
 The 3D position coordinates of the feature points were calculated with mm-level positioning 
accuracy by applying nontarget-based close-range photogrammetry to the main reflector of the 
VLBI antenna, wherein multiple feature points are distributed on the surface of the structure.  
High-resolution IP cameras were utilized as measurement sensors for the application of close-
range photogrammetry.  To solve the problems of IP cameras with a lower geometric stability 
than metric cameras, quantitative figures were obtained to apply consumer-grade digital 
cameras to close-range photogrammetry, through the precise calculation of the interior and 
exterior orientation parameters.
 The procedure for determining the 3D position coordinates mentioned above was first 
applied in a study conducted by Kim et al.(25)  The close-range photogrammetry software 
developed in the previous study was used to determine the 3D position coordinates of the 
feature points in this study.

2.2	 Experimental	configuration

 Figure 1 shows the experimental configuration for applying close-range photogrammetry 
to the main reflector of the VLBI antenna at the Space Geodetic Observation Center (SGOC), 
which is operated by the National Geographic Information Institute in South Korea.  To perform 
the ground control point survey for feature points uniformly distributed on the inner surface of 
the main reflector, a total station was installed in the fixed pillar closest to the VLBI position, 
and a local coordinate system was set.  The total station used to conduct the ground control 
point survey was an S8 Total Station from Trimble.  The VLBI antenna was pointed toward 
the azimuth, and the elevation angles were selected such that its front faced the total station 
installation direction at fixed intervals.
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 Attaching a reflective target on the inner surface of the main reflector for a ground control 
point survey is likely to reduce the positioning accuracy of the VLBI antenna owing to radio 
interference.  Thus, the feature points were measured by nontarget total station measurements.  
The measurements using the total station exhibited accuracy and error ranges of ± (2 mm + 
2 ppm) in the standard mode and ± (4 mm + 2 ppm) in the tracking mode.
 For close-range photogrammetry, stereo images of the main reflector were captured by two 
IP cameras, as shown in Fig. 1.  Arecont Vision AV10005DN cameras, which can measure 
10-megapixel images at 6 fps, were used.  As the cameras are used as references for the 
deformation measurement, they must be installed firmly so that their positions and pointing 

Fig. 1. (Color online) Experimental configuration for close-range photogrammetry application to main reflector of 
VLBI antenna at the SGOC.(25)
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directions do not change.  The fixed focal lengths of charge-coupled device (CCD) cameras 
1 and 2 in Fig. 2 were 12.466 and 10.367 mm, respectively.  The distances from these two 
cameras to the VLBI antenna were approximately 37 and 41 m, respectively.  The image size of 
the cameras was 2560 (H) × 1920 (V) pixels, the sensor size was 1/2.3″, and the pixel pitch was 
1.67 μm.
 Figure 2 shows the 3D position coordinates of the feature points on the inner surface of 
the VLBI antenna, calculated using the close-range photogrammetry software developed by 
Kim et al.(25)  Using their software, we calculated four residuals for the 3D position coordinates 
determined by LS estimation.  The precision of the results was verified using the standard 
deviation of the residuals, as shown in Fig. 2.  The mean precision of the 3D position coordinates 
was 2 mm, which was regarded as sufficient for detecting the excessive deformation of the 
VLBI antenna surface.

3.	 Study	of	Method	for	Optimal	Ellipsoid	Fitting
 
3.1	 Geometric	modeling	of	main	reflector	of	VLBI	antenna

 The development of a technique for fitting a specific ellipsoid to a set of points distributed 
within a 3D space is a thoroughly studied problem, with numerous applications in the fields of 
visual pattern recognition, astronomy, digital image analysis, computer vision, and computer 
graphics.(27–29)  Using an ellipsoid fitting technique, we fitted the 3D position coordinates of the 
conjugate points on the main reflector into a 3D ellipsoid equation and constructed a geometric 
model of the main reflector.  The data from this geometric model were used as fundamental 
data for calculating the curvature changes of the main reflector.

Fig. 2. (Color online) Measurement and accuracy analysis results for 3D position coordinates for conjugate points 
calculated using close-range photogrammetry software.(25)
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 An ellipsoid equation for a 3D space can be expressed as a second-order algebraic equation 
as(29)

 2 2 2 2 2 2 2 2 2 0ax by cz fyz gxz hxy px qy rz d+ + + + + + + + + = . (1)

 To construct a fitting model of a main reflector, fitting was attempted using the model with 
the 3D position coordinates of the conjugate points calculated through nontarget-based close-
range photogrammetry.  However, it was difficult to achieve the fitting accuracy for the required 
shape modeling of the main reflector.  The elliptic, parabolic, and hyperbolic equations can 
implement 3D shapes by determining the 2D shape of the plane curve of the main reflector and 
then rotating it around the principal axis.  However, the objects used in the fitting in this study 
were 188 conjugate points in 3D space.  To implement an approximate fitting model, a method 
for enhancing the fitting accuracy by considering an algebraic equation for the 3D shape and 
eliminating the outliers between the conjugate points and the fitting equation was considered 
appropriate.
 A fitting model for the main reflector was established to calculate the curvature changes 
of the main reflector of the VLBI antenna.  To calculate the Gaussian and mean curvatures 
of the main reflector, the (X, Y, Z) coordinates of the surface of the 3D fitting model of the 
main reflector were used.  The (X, Y, Z) coordinates used were 2D arrays of the points on the 
surface of the fitting model.  The determination of the curvature of each (X, Y, Z) coordinate 
on the surface of the 3D fitting model was conjectured to be capable of efficiently analyzing 
the curvature distribution for the main reflector.  Therefore, to construct a fitting model for the 
numerous conjugate points distributed in 3D space, a 3D ellipsoid model was constructed using 
Eq. (1).  However, the ten parameters of Eq. (1) together cannot yield an accurate fitting model 
owing to the high level of uncertainty in the orientation of the principal axis of the quadric.  
Therefore, the optimal fitting model for the distribution of the conjugate points was determined 
to be the following 3D ellipsoid equation with the following seven parameters:

 2 2 2 2 2 2 0ax by cz px qy rz d+ + + + + + = . (2)

 The algorithm for fitting the 3D position coordinates of the conjugate points into the 
algebraically expressed ellipsoid equation in Eq. (2) is presented in Fig. 3.  By following the 
process shown in Fig. 3, the conjugate points distributed within 3D space can be fitted into an 
ellipsoid equation optimized through the LS method.  As a result, the coordinates of the center 
of the ellipsoid and the radius and direction matrix of the ellipsoid model can be determined, 
and the values of the seven parameters in the algebraic ellipsoid equation in Eq. (2) can be 
determined.
 An ellipsoid model in 3D space using the center coordinates of the ellipsoid and the radii 
of the ellipsoid along the three axes is shown in Fig. 4.  This figure illustrates the 3D position 
coordinates of the conjugate points of the stereo images, which are used to express the ellipsoid 
model, on a 3D graph.  
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 Figure 5 shows the results of overlaying the 3D position coordinates of the conjugate points 
in Fig. 4 on the ellipsoid model constructed using the center coordinates and the radii along the 
three axes determined through the ellipsoid model fitting process.  The 3D position coordinates 
of the conjugate points were fitted into the ellipsoid model in the appropriate direction.  
 Figure 6 shows the part of the ellipsoid fitting model that is appropriate for tracking changes 
in curvature.  The figure shows only a portion of the ellipsoid model on the 3D graph to 
optimally express the curvature change tracking for the main reflector.

3.2	 Curvature	calculation	of	main	reflector	of	VLBI	antenna	

 The Gaussian and mean curvatures were calculated using the 2D coordinates of the points 
making up the geometrically fitted ellipsoid model.  These curvatures were used to track the 

Fig. 4. (Color online) Distribution of 3D position coordinates for conjugate points of stereo image.

Fig. 3. 3D ellipsoid fitting algorithm for main reflector of VLBI antenna.
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Fig. 5. (Color online) Results of overlaying ellipsoid 
fitting model and conjugate points.

Fig. 6. (Color online) Ellipsoid fitting model of 
main reflector to optimally express curvature change 
tracking.

changes in the curvature of the main reflector.  Figure 7 illustrates the algorithm for calculating 
the curvature of the main reflector that was applied as the geometric model in Fig. 6.
 Figure 8 shows a 3D graphic representation of the Gaussian and mean curvatures for each 
point of the ellipsoid fitting model calculated using the algorithm shown in Fig. 7 based on 
the ellipsoid fitting model for the main reflector shown in Fig. 6.  A 3D colored surface was 
implemented using the curvatures calculated at each position coordinate on the fitting model 
as a new property value.  The fitting model containing the curvatures was used to regularly 
monitor the deformation of the main reflector by converting the Gaussian and mean curvatures 
for each point of the ellipsoid fitting model into a database to obtain a time series.
 As shown in Fig. 8, the color scaling of the graph was implemented using a range of 
curvatures for each point of the fitting model, and the curvatures of the fitting model were 
uniformly distributed throughout the model.  The model in Fig. 8 was designed to detect 
abnormal changes in the curvature of the main reflector by periodically calculating the 
curvature from the time series within the same section.

Fig. 7. Gaussian and mean curvature algorithm.
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4.	 Enhancement	of	Fitting	Accuracy	for	Optimal	Modeling	

 To enhance the fitting accuracy of the ellipsoid model, the optimal parameters were 
calculated by minimizing the residuals between the conjugate points and the ellipsoid fitting 
model and by removing outliers.  For this purpose, the residuals between the conjugate points 
and the ellipsoid fitting model were regarded as distance functions, and the steepest-descent 
method, which is a nonlinear optimization method, was applied.
 To determine the local minimum of a function using a gradient descent, steps proportional 
to the negative of the gradient of the function at the current point were taken.  Using the 
steepest-descent method, the distance between a point within a space and a random point on 
the fitted ellipsoid model was calculated as the residual, and the minimum of this distance 
was determined by iteratively calculating a random point on the ellipsoid that minimizes the 
distance.
 To enhance the fitting accuracy, the standard deviation of all the residuals of the conjugate 
points was determined.  When a residual exceeded the 95% probable error of the standard 
deviation, the conjugate point was determined to be an outlier and removed.
 The fitting accuracy of the geometric model of the main reflector was enhanced by 
recalculating the parameters of the ellipsoid fitting model using the conjugate points from which 
a few of the outliers had been removed and by recalculating the curvatures.  The process for 
improving the fitting accuracy is described in Fig. 9.
 The process for determining the nearest point from a point on the ellipsoid fitting model 
in 3D space is illustrated in Fig. 10.  The minimum distance function J determined using the 
algorithm in Fig. 10 indicates the minimum distance between the 3D position coordinate of the 
conjugate point and the ellipsoid fitting model within the 3D space.
 The minimum distance function J was iteratively calculated by the above process, and 
the minimum J for each point was defined as the residual of the fitting model.  The standard 
deviation of the set of all residuals, calculated iteratively for each point distributed within 

(a) (b)

Fig. 8. (Color online) Ellipsoid fitting model expressed based on distribution of curvatures, (a) distribution of 
Gaussian curvatures, and (b) distribution of mean curvatures.
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the 3D space, was determined.  The points outside the 95% probable error of the standard 
deviation were regarded as outliers and removed.  The ellipsoid model fitting was applied again 
iteratively for the set of points from which outliers had been removed, and the fitting accuracy 
of the model of the main reflector was enhanced by determining the optimal parameters of the 
ellipsoid fitting model.  The detailed calculation procedure of the algorithm shown in Fig. 10 
including equations can be found elsewhere.(26)

 Figure 11 expresses the residual distribution between the conjugate points and the ellipsoid 
fitting model.  In this figure, the red lines indicate the residuals between the 3D position 
coordinates of the conjugate points used in the ellipsoid fitting and the fitting model.  A longer 
red line is associated with a larger residual between the conjugate points and the ellipsoid fitting 
model.  Furthermore, the 3D position coordinates of the conjugate points used for fitting the 
ellipsoid model are represented by the blue dots, and the black circles on the blue dots represent 
the conjugate points that are the objects of the residual calculation.  To enhance the accuracy 
of the ellipsoid fitting, the conjugate points with large residuals inside the red boxes shown 
in Fig. 11 were regarded as outliers, and the calculations for removing them were repeatedly 
conducted.  After the first such calculation, the outliers were removed from the red box.  
Furthermore, the number of points with a relatively long red line decreased throughout the use 

Fig. 9. Process for enhancing fitting accuracy. Fig. 10. Algorithm for finding the nearest point from 
a point on the ellipsoid fitting model.
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of the fitting model.  The fitting accuracy can be enhanced by repeatedly applying ellipsoid 
fitting to those points whose outliers have been partially removed.
 The results of the residual distribution analysis expressed through the red lines revealed that 
the outer parts of the main reflector fit the ellipsoid model more accurately than the central part.  
Because the outer parts of the main reflector exhibit a higher likelihood of curvature change, 
the ellipsoid fitting model can be used for tracking the change in the curvature of the main 
reflector.

5.	 Development	of	Curvature	Change	Tracking	Program	

 A program for calculating the curvature changes of the main reflector was developed, as 
shown in Fig. 12.  MATLAB was used owing to its numerical and GUI features.  This program 

Fig. 11. (Color online) Residual distribution between conjugate points and ellipsoid fitting model, (a) initial 
residual distribution (model expressed by Gaussian curvature), (b) residual distribution obtained by first outlier 
removal calculation (model expressed by Gaussian curvature), (c) initial residual distribution (model expressed by 
mean curvature), and (d) residual distribution obtained by first outlier removal calculation (model expressed by 
mean curvature).

(a) (b)

(c) (d)
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was used to fit the 3D ellipsoid model using the procedure described in Sects. 3 and 4, namely, 
by deriving the center point and  the radius along each axis using the 3D position coordinates 
of the conjugate points and enhancing the fitting accuracy by iteratively removing the outlier 
points.  Moreover, the Gaussian and mean curvatures were calculated for each point by using 
the 2D coordinates of the fitting model.
 The program mainly consists of the input part, which loads the 3D position coordinate file 
for the conjugate points calculated by nontarget-based close-range photogrammetry, and the 
output part, which displays a 3D graph that has been fitted into the optimal 3D ellipsoid model 
and model parameters.  Furthermore, to calculate the curvature changes of the main reflector 
through a time-series analysis of the same range, the program was designed to output each 
curvature result as a text file.
 The graphs in Fig. 12 were implemented by expressing the Gaussian curvatures in the 
model whose ellipsoid fitting process had been completed.  The iterative calculations used to 
determine the optimal parameters of the ellipsoid fitting model were set to stop the calculation 
process if the standard deviation was 2 cm or lower or if the amount of data after the outlier 
removal was 85% of the initial data or lower.  These criteria were determined to prevent loss of 
the original data owing to excessive data removal and to maintain a fitting accuracy similar to 

Fig. 12. (Color online) 3D graph results of optimal ellipsoid fitting model achieved through the developed program.



3762 Sensors and Materials, Vol. 31, No. 11 (2019)

that of the time-series calculations.  The curvature changes can be detected from the time-series 
analysis by identifying the abnormal tendencies.
 Table 2 presents the results of the statistical analysis of the residuals based on the iterative 
ellipsoid fitting calculations through outlier removal.  The ellipsoid fitting accuracy was 
enhanced by applying a statistical confidence interval of 95% (1.96 σ) to the residuals and then 
identifying and removing the residuals that exceeded this range (outliers).  As shown in Table 2, 
the accuracy of the first iterative calculation was 0.080 ± 0.035 m, whereas that of the fifth and 
final iterative calculation improved to 0.055 ± 0.019 m.

6.	 Conclusions	

 Deformation measurements are performed periodically to prevent death and injuries due to 
the damage or collapse of built structures.  Deformations and displacements in such structures 
can occur if they are not constructed on firm ground and are subjected to extreme loading; this 
causes hazardous shaking owing to crustal movements and external environmental conditions.  
To maintain the structural integrity under these conditions, it is crucial to make continuous 
observations using more convenient and cost-effective measurement methods than the 
traditional methods used to detect deformations and displacements.
 For this purpose, a curvature change tracking program was developed to calculate the 
curvature changes in the main reflector of a VLBI antenna; these changes can directly affect its 
performance.  As the fundamental data for constructing the geometric model, the 3D position 
coordinates of feature points that are precisely calculated through nontarget-based close-range 
photogrammetry were used to construct a 3D ellipsoid fitting model to implement the curvature 
change tracking of the main reflector of the VLBI antenna, which has an intricate geometry.  To 
determine the parameters of the optimal ellipsoid fitting model, the ellipsoid fitting accuracy 
was enhanced by removing the outliers using the steepest-descent method.  Then, to track 
the curvature changes, the Gaussian and mean curvatures of the fitted ellipsoid model were 
calculated.  The curvature change tracking program can be used to evaluate the structural 
soundness of the main reflector based on periodic curvature calculations.
 Because the objective of this study was to perform a time-series analysis of the curvature 
calculations of the main reflector to obtain additional evidence for detecting excessive 
deformations, the accuracy of the ellipsoid fitting was regarded as adequate for tracking 
purposes.  Furthermore, the developed program was demonstrated to have certain economic 

Table 2
Results of statistical analysis based on iterative ellipsoid fitting calculations. 

Statistical indicator Maximum deviation
(m)

Minimum deviation
(m)

Average deviation
(m)

Standard deviation
(m)

First iteration 0.164 0.006 0.080 0.035
Second iteration 0.133 0.003 0.064 0.026
Third iteration 0.114 0.002 0.058 0.021
Fourth iteration 0.103 0.001 0.056 0.020
Fifth iteration 0.095 0.001 0.055 0.019
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advantages, including lower operational costs and labor, over tracking methods that utilize other 
types of devices.
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